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ABSTRACT Understanding how genomic variation influences phenotypic variation through the molecular
networks of the cell is one of the central challenges of biology. Transcriptional regulation has received much
attention, but equally important is the posttranscriptional regulation of mRNA stability. Here we applied
a systems genetics approach to dissect posttranscriptional regulatory networks in the budding yeast Sac-
charomyces cerevisiae. Quantitative sequence-to-affinity models were built from high-throughput in vivo
RNA binding protein (RBP) binding data for 15 yeast RBPs. Integration of these models with genome-wide
mRNA expression data allowed us to estimate protein-level RBP regulatory activity for individual segregants
from a genetic cross between two yeast strains. Treating these activities as a quantitative trait, we mapped
trans-acting loci (activity quantitative trait loci, or aQTLs) that act via posttranscriptional regulation of
transcript stability. We predicted and experimentally confirmed that a coding polymorphism at the IRA2
locus modulates Puf4p activity. Our results also indicate that Puf3p activity is modulated by distinct loci,
depending on whether it acts via the 59 or the 39 untranslated region of its target mRNAs. Together, our
results validate a general strategy for dissecting the connectivity between posttranscriptional regulators and
their upstream signaling pathways.
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The advent of high-throughput genotyping and gene expression pro-
filing technologies has made it possible to treat messenger RNA levels
as quantitative traits and map the cis- and trans-acting loci that drive
their variation (Brem et al. 2002; Schadt et al. 2003; Smith and Kruglyak
2008; Lee et al. 2009). This has created new opportunities for studying

genetic variation at the level of gene regulatory networks rather
than individual genes. A common approach is to treat the mRNA
expression levels as heritable traits and use them to identify ex-
pression quantitative trait loci (eQTL) hotspots that regulate the
expression of a large number of genes. Detection of eQTL hotspots
is then based on a clustering procedure that identifies loci with many
significant eQTL linkages.

Integrative studies thus far have focused on regulation by DNA-
binding transcription factors (Ye et al. 2009; Lee and Bussemaker
2010). However, posttranscriptional control of transcript stability by
RNA-binding proteins (RBPs) is also critical for the regulation of
mRNA abundance (Foat et al. 2005). An increasing number of studies
report the involvement of posttranscriptional regulation by RBPs
in human genetic disorders (Lukong et al. 2008; Cooper et al. 2009;
Polymenidou et al. 2012; Yamazaki et al. 2012), and several studies
have identified nucleotide motifs associated with posttranscriptional
regulation by RBPs (Foat et al. 2005; Shalgi et al. 2005; Hogan et al.
2008; Riordan et al. 2011).

Copyright © 2014 Fazlollahi et al.
doi: 10.1534/g3.114.012039
Manuscript received May 9, 2014; accepted for publication June 11, 2014;
published Early Online June 17, 2014.
This is an open-access article distributed under the terms of the Creative
Commons Attribution Unported License (http://creativecommons.org/licenses/
by/3.0/), which permits unrestricted use, distribution, and reproduction in any
medium, provided the original work is properly cited.
Supporting information is available online at http://www.g3journal.org/lookup/
suppl/doi:10.1534/g3.114.012039/-/DC1
1Present address: Genetics and Genomic Sciences, Mount Sinai Hospital,
New York, New York 10029

2Corresponding authors: 1212 Amsterdam Ave, 2441, New York, NY 10027. E-mail:
hjb2004@columbia.edu; and 607 Fairchild Bldg, 1212 Amsterdam Ave, 2442,
New York, NY 10027. E-mail: hc2415@columbia.edu

Volume 4 | August 2014 | 1539

http://www.yeastgenome.org/cgi-bin/locus.fpl?dbid=S000005441
http://www.yeastgenome.org/cgi-bin/locus.fpl?dbid=S000002982
http://www.yeastgenome.org/cgi-bin/locus.fpl?dbid=S000003936
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://www.g3journal.org/lookup/suppl/doi:10.1534/g3.114.012039/-/DC1
http://www.g3journal.org/lookup/suppl/doi:10.1534/g3.114.012039/-/DC1
mailto:hjb2004@columbia.edu
mailto:hc2415@columbia.edu


Even though many studies have shown that mRNA stability is often
regulated through cis-regulatory elements in the 39 untranslated region
(UTR), examples also exist of stability regulation through the 59 UTR of
the transcripts, such as an upstream open reading frame (ORF) that can
inhibit ribosomal scanning and promote mRNA decay (Vilela et al.
1999; Hatano et al. 2013). It has also been shown that binding by the
heat shock protein HSP70 to a motif located in the 59 UTR of the tumor
suppressor gene SMAR1 stabilizes the transcript and leads to increased
SMAR1 protein levels (Pavithra et al. 2010). Finally, the secondary
structure of the 59 UTR has been linked to the mRNA stability (Cannons
and Cannon 2002). Taken together, these studies show that it is impor-
tant to include the 59 UTR when searching for cis-regulatory elements
that control mRNA stability and not just focus on the 39 UTR.

In this article, we formulate and apply a general method for dis-
covering genetic polymorphisms that accounts for differences in genome-
wide mRNA abundance patterns between strains or individuals that
reflect posttranscriptional regulation of mRNA stability. Because our ap-
proach uses the RNA sequence specificity of RBPs as prior information,
we first systematically constructed sequence-to-affinity models for 15 RBPs.
Our motif discovery procedure uses the MatrixREDUCE algorithm, which
combines accurate biophysical modeling of protein2RNA interaction (Foat
et al. 2005, 2006) with the use of high-throughput in vivo mRNA binding
data (Riordan et al. 2011). As previously demonstrated, the resulting
position-specific affinity matrices (PSAMs) can be used to infer changes
in the protein-level regulatory activity of each RBP from the genome-
wide pattern of changes in steady-state mRNA level (Foat et al. 2005).

For the systems genetics component of our study, we exploited
parallel mRNA expression data and genotype data across a segregating
population of yeast strains. The goal was to identify chromosomal loci
that modulate the protein-level regulatory activity of a particular RBP.
To this end, we first inferred RBP activities for each segregant from its
genome-wide mRNA expression pattern. Next, we treated the activity
of each particular RBP as a quantitative trait, and used linkage analysis
to map genetic loci whose allelic variation has an effect on the RBP
activity. We call these loci activity quantitative trait loci, or “aQTLs,”
by analogy with a study on DNA-binding transcription factors (Lee and
Bussemaker 2010). Because we infer the RBP activities from the collec-
tive behavior of the targets of each particular RBP, our trait is far less
noisy than the expression levels used as traits in eQTL analyses. Also
because of the reduced number of marker/trait combinations that needs
to be tested for significance compared with eQTL analyses, the statistical
power to detect trans-acting genetic variation is greatly increased.

Our analysis yielded causal aQTL relationships for a number of
RBPs, including Puf3p and Puf4p, members of the Pumilio/FBF (PUF)
homology domain family. The regulatory activities of these factors typ-
ically change in opposite directions in response to changes in nutrient
conditions, suggesting regulation by a single genetic locus. However, we
found that the activity of these two PUF proteins are linked to distinct
genetic loci. We mapped distinct aQTLs depending on whether Puf3p
acts via binding to the 59 or to the 39 UTR of its target mRNAs. We also
performed experiments to determine the effect of allelic variation at the
IRA2 locus on Puf4p posttranscriptional activity. We found that the
activity of Puf4p depends on the allele at the IRA2 locus in the BY but
not the RM strain background. It is likely that other polymorphisms in
RM make expression of Puf4p targets less sensitive to Puf4p activity.

MATERIALS AND METHODS

Strain construction
The PUF4::KanMX cassette was amplified from the relevant Mata
strain from the Saccharomyces cerevisiae Genome deletion collection

(sequence-www.stanford.edu/group/yeast_deletion_project/deletions3.
html) and used to transform BY4716 (MATa lys2D0) and YLK807
(MATa lys2D0 ura3D0 IRA2RM). G418 (Geneticin; Life Technologies,
Grand Island, NY)-resistant cells were selected and the site of integra-
tion confirmed by polymerase chain reaction (PCR). For RM1-11a
(MATa leu2D0 ura3D0 ho::KanMX) and YLK810 Mata leu2D0
ura3D0 ho::KanMX IRA2BY), the KanMX at the ho locus was replaced
with the NatMX cassette by transformation with p4339 cut with EcoRI
(Tong et al. 2001). Nourseothricin-resistant, Geneticin-sensitive trans-
formants were selected and transformed with the PUF4::KanMX
amplicon, as described previously (see Supporting Information, Table
S4 for details).

Real-time (RT)-PCR
Yeast were grown under standard laboratory conditions to early log
phase in yeast extract peptone dextrose (YPD) and harvested by centri-
fugation. Total RNA was extracted using the Master Pure YeastRNA
Purification Kit (Epicentre, Madison, WA) and 2.5 ng was used to gen-
erate cDNA with the iScript cDNA Synthesis Kit (Bio-Rad, Hercules,
CA). 1/20th of this reaction mix was used as template for RT-PCR using
1 · iQSYBR Green Supermix (Bio-Rad, Hercules, CA). All reactions
were carried out in triplicate using a StepOnePlus machine (Applied
Biosystems, Foster City, CA) and the data analyzed using AB software.
Three technical replicates were carried out for each strain (see Figure S6).

Amplification efficiencies were determined for each set of primers
using serial dilutions of genomic template from 8 to 0.25 ng/mL.
Relative amounts of RRS1 were determined, using THI6 as a reference
(Pfaffl 2001). Each cDNA synthesis reaction was carried out in parallel
with a control sample lacking reverse transcriptase, so that the signal
due to contaminating genomic DNA could be determined.

Primers used for RT-PCR
For RRS1, we used the primers 59-GGT AAC CTG GCA GCA TTC
GA-39 and 59-TGC AAC AAG GTC ATC ACG GA-39. For THI6, we
used 59-GGT GTA GAA CCG TTG GTA TTG G-39 and 59-CTG
GTA GCA TCT AAC AAG CCT CTC-39.

RBP data set
For our motif search, we analyzed genome-wide imunoaffinity purifi-
cation data for 45 different RNA binding proteins (Hogan et al. 2008). In
this study, bound mRNA molecules were isolated at mid-log phase from
cells growing in YPDmedia. The mRNA was hybridized to a microarray.
For each RBP, two to six experimental replicates were performed for
a total of 132 immunoprecipitation (IP) experiments.

Segregant mRNA expression and genotype data sets
For the aQTL analysis, we used genome-wide mRNA expression data for
108 haploid segregants from a genetic cross between two parental strains:
BY4716 and RM11-1a (Smith and Kruglyak 2008). As differential ex-
pression values, we used the log2-ratios between segregants and a refer-
ence consisting of a mixture of the BY and RM strains. Genotype data
for the same segregants at 2956 markers was obtained (Brem et al. 2002).

Preprocessing of RBP binding data
For our motif analysis, we took log2-ratios between the microarray
intensities for the immunoprecipitated sample and input sample, respec-
tively, for each RBP. To reduce the effect of outliers, we applied a rank-
quantile transformation based on the standard normal distribution. For
each RBP, x ¼ ðx1; x2; . . . ; xnÞ denotes the vector of binding log2-ratios
across all genes, sorted in ascending order. We first ranked the data
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points (x) in each column (i.e. IP experiment). Let PrðX, xÞ denote the
cumulative distribution function for a standard normal random variable
X. As illustrated in Figure S1, we then defined xi as the i

th quantile,

PrðX, xiÞ ¼ rankðxi 2 1
2Þ

n

and used it to replace the ith element in the vector x. This trans-
formation reduces the effect of outliers.

Motif discovery
To model for RBP-mRNA binding occupancy, we used a biophysical
model similar to that presented by Foat et al. (2006). We assume that
the free protein concentration is low relative to the dissociation con-
stant for protein-RNA interaction (Ghaemmaghami et al. 2003; Miller
et al. 2008; Zhu et al. 2009). The occupancy (N) of sequence (S) of
mRNA of gene (g) by an RBP (f) is given as follows:

NgfðSÞ � ½f�KgfðSÞ

Where the total affinity Kgf of S is defined as the sum of the relative
affinities of a sliding window of length Lf. Here, Lf represents the
length of the binding site.

Kgf ¼
X
i2S

YLf
j¼1

Wfjbiþj2 1
ðSÞ

Here b indicates the nucleotide identity of the base at the coordinate
iþ j2 1 within sequence S. The aforementioned formula assumes
that the contribution to the binding free energy at each position
within the binding site is independent. The set of w’s thus represent
the PSAM of RBP (f).

We assume the relative abundances between the amount of mRNA
bound to an RBP and the control sample is approximately proportional
to the mRNA occupancy. We can then use the binding data to train the
PSAMs (Foat et al. 2005). Our RBPs motif discovery approach is shown
in Figure S2. To detect the motifs, we used the MatrixREDUCE pro-
gram from the REDUCE Suite package (bussemakerlab.org/software/
REDUCE) to perform a genome-wide fit of a PSAM to the rank-quan-
tile log2-ratios of RBP binding data. MatrixREDUCE builds a multiple
linear regression model originally developed by (Foat et al. 2005, 2006).
We used an enhanced version of MatrixREDUCE that can infer PSAMs
and can explain the signal variation in multiple data sets simultaneously.

The MatrixREDUCE algorithm consists of two steps: seed motif
finding and PSAM optimization. The seed finding step seeks to
identify within the set of all possible nucleotides of a specified length,
the one whose occurrence best correlates with the binding signal. The
motif size is allowed to vary from to 1 to 10 nucleotides in our analysis.
Once the optimal motif was identified, it was used as a seed for the
optimization procedure. For an optimal motif of length L, a matrix of
size 4 · L, representing each nucleotide A, C, G, and T/U at positions 1
to L was constructed. At every column (i.e., position in the seed motif)
the best nucleotide element was given value equal to 1 and unaccept-
able nucleotides (i.e., the other three elements) were given a very small
number close to zero. The optimization step aims to find the optimal
weight matrix by minimizing an error function:

ðC;�Fef�; fwgÞ¼ argmin
X
e

X
g

ðZge2Fef
X
i2Sg

YLf
j¼1

wfjbiþj21
ðSgÞ2CÞ2

The indices f, e, and g label RBP, IP experiment replicate, and
gene, respectively. Here, Z represents the rank-quantile transformed

binding data for training set. The training set was obtained by ran-
domly selecting 50% of the data from each transformed IP experi-
ment. The motif seed finding step and subsequent optimization step of
the PSAM are both performed on the training set. Once the optimi-
zation step converges for this PSAM, the residues of Z are then used
for the next seed finding and optimization iteration. The intercept C
represents the genome-wide basal expression level when no preferred
motif is present on the sequence. The slope F reflects a combination of
the activity of the RBP under the media conditions in which binding
was assayed, and the efficiency of the protocol for the particular
technical replicate. We split every column of the binding data ran-
domly into two sets of equal sized training and test sets and ran
MatrixREDUCE on the training set of all experimental replicates of
an RBP simultaneously (using command line option -mf). For every
RBP, we searched for binding motifs on the whole mRNAs, 59 UTRs,
ORFs and 39 UTRs sequences separately. For Idh1p, Nrd1p, Tdh3p,
and Vts1p, we also ran the software without the -mf argument because
for all of these factors one of the experimental duplicates was missing
more than 40% of the data points. We obtained the Saccharomyces
cerevisiae UTR sequences RNA-seq data (Nagalakshmi et al. 2008).
mRNA ORF sequences were downloaded from Yeast Genome Data-
base (Saccharomyces Genome Database; www.yeastgenome.org). For
all RBPs, we searched for PSAMs of length 1210 iteratively with a
p-value cut-off of 0.001.

Computational validation of PSAMs
We calculated the affinity scores of the discovered PSAMs using the
AffinityProfile software from the REDUCE Suite package. We then
calculated the Pearson t-value and Spearman p-value for the
correlation of the affinity scores to the test data set. We further tried
to capture low-specificity flanking sequences for PSAMs that passed
a validation step on the test set (i.e., the remaining 50% of each IP
experiment). We extended the flanking sides at most one nucleotide
position (i.e., added column (1,1,1,1) to the flanks of the PSAM) and
ran the OptimizePSAM software from the same package using the
PSAMwith added columns on the sides as seed. We continued adding
columns to the sides of the PSAM until no nucleotide’s weight at the
added side flanks was less than 0.1. In the case of Nrd1p PSAM
optimization we neglected this criterion where the matrix element
for G nucleotide at position 8 was equal to 1 · 1027. Further flank
addition and optimization of this PSAM resulted in optimization
divergence after several rounds. At the end of each optimization
cycle, we validated the newly extended PSAM by calculating the
Pearson t-value and Spearman p-value on the test set. After this
step, we ran OptimizePSAM using the full data on the PSAMs
passed validation steps.

We selected the final set of PSAMs by performing a specificity test.
For each PSAM, we calculated the Pearson t-values for correlation of
each of the 132 IP experiments to the affinity score on the 59 UTR,
ORF, and 39 UTR separately. We only accepted those RBP/region
combinations for which the PSAM affinity score exclusively was cor-
related to the IP data from which it was derived. In the case of
YLL032C, we used the complete mRNA sequence. For YLL032C, no
statistically significant motif was obtained when MatrixREDUCE was
run using the 59 UTRs, ORFs, or 39 UTRs separately. Only the search
that was performed using the complete mRNA sequences detected
a motif for YLL032C.

Functional assessment of novel motifs
We used two different approaches to functionally assess the discovered
PSAMs: Gene Ontology (GO) enrichment analysis (Ashburner et al.
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2000) and correlation to 167 stress conditions (Gasch et al. 2000). We
used GO enrichment scoring analysis to detect the underlying regula-
tory program, cellular state, or cellular component for the novel motifs.
For each GO category, we tested whether the affinity scores for a PSAM
on ORF or UTR sequences were associated with a specific biological
pathway or not. We applied the nonparametric Wilcoxon-Mann-
Whitney test to determine whether the affinity scores of mRNA regions
within a particular GO category have a different distribution than the
affinity scores for all other mRNAs. We used an iterative procedure for
removing the effect of redundant nested GO categories (Boorsma et al.
2008). We only considered GO categories with at least 10 genes. To
correct for multiple testing, we performed a Bonferroni correction on
the resulting p-values accepting only categories with p-values smaller
than 0.01/N, where N is the number of unique GO categories.

To perform the GO enrichment analysis, we used packages GO.db
and org.Sc.sgd.db for Saccharomyces cerevisiae from the Bioconductor
website within the R statistical programming environment (www.
Bioconductor.org).

To further validate novel motifs, we correlated the affinity scores of
the 25 factors to expression data from 173 different stress conditions.
The stress conditions include heat shock, exposure to oxidative or
reductive chemical agents, nutrients or amino acid starvation, and
changes in osmolarity. We performed least-squares multiple linear
regression of the genome-wide mRNA expression levels of each
condition to the affinity scores of all of the selected RBP/region
combination and compared the t-values of the regression coefficients
among different conditions.

Inferring segregant-specific RBP activities
From the RBP motif discovery analysis we obtained 25 independent
RBP/region combinations. As in Lee and Bussemaker (2010), we used
the affinity scores of the obtained PSAMs as a predictor for mRNA
differential expression (Foat et al. 2006; Bussemaker et al. 2007). The
study by Lee and Bussemaker (2010) showed that the effect of trans-
acting polymorphisms on mRNA expression via the activity of tran-
scription factors is independent of the effect due to allelic variation in
cis-regulatory sequences. Because this study focused on the trans-acting
genetic variation, and also to simplify the analysis, all affinity scores
were calculated based on the transcript sequences of S288c, a strain
isogenic to BY. We performed genome-wide multiple regression on
the 25 RBP/region combinations of every segregant mRNA expression
log2-ratios to infer segregant-specific activity levels of the RBPs.

ygs ¼ b0s þ
X
f

bfsKfg

Where ygs represents the differential mRNA levels of gene g for
segregant s relative to the reference. Here, the regression coefficient
bfs represents the activity level of RBP f for segregant s, whereas
Kfg represents the aggregated affinity of the 59 UTRs, ORFs, 39
UTRs, or the complete mRNA sequence of gene g of the BY strain
for the factor under consideration, as mentioned previously.

aQTL mapping
Significant aQTL regions were discovered by splitting the multiple
regression coefficient between BY and RM at every marker and testing
for the significance of the difference between the distributions of the
two groups of coefficients using the composite interval mapping
(CIM) method for maximum resolution (Zeng 1994). CIM uses mul-
tiple regression on multiple markers to obtain a precise mapping of
the QTL. We used CIM implementation in R/qtl package by (Broman

et al. 2003). LOD score, an acronym for “logarithm of the odds ratio,”
was calculated to check for linkage. We calculated the LOD score to
test the linkage of the RBPs inferred activities at each locus. We
performed 200 independent random permutations on the columns
of expression data (i.e., segregants) while preserving the genotype data
to get LOD score thresholds at 1% false discovery rate (FDR) level. We
obtained this threshold for each RBP/region combination separately.

To confirm that the detected aQTL regions for the RBPs are
modulated by trans-acting factors and not dominated by a single-gene
eQTL, we repeated the analysis after eliminating 3 groups of genes: (i)
genes that encode RBPs; (ii) genes fully or partly located within 10 kb
of aQTL markers; and (iii) genes whose expression variation maps to
a marker 20 kb of aQTL markers, and scoring an affinity of at least
50% of the maximum for the RBP under consideration (see Figure
S5). To find the latter group, we carried out eQTL analysis using the
expression of each gene as a trait and calculated LOD score for every
marker using CIM method. We combined these three groups of genes
and removed them from the affinity and expression data sets for each
RBP separately. This way, the activity calculation for each factor was
not affected by elimination of unrelated genes.

Protein2protein interaction data
Protein2protein interaction data were downloaded from (thebiogrid.
org) for yeast, April 2012. We used it to detect any known genetic or
physical interactions with the genes located in aQTL regions.

Validation of predicted locus2RBP associations
We used gene expression profiles for two mutant strains growing in
glucose medium collected by Smith and Kruglyak (2008) where IRA2
alleles were swapped between the BY and RM strains. We label the
strain carrying the RM allele of IRA2 in the BY background as
(RM@IRA2) and the strain carrying the BY allele of IRA2 in the
RM background as (BY@IRA2). The reference sample used for the
gene expression measurements was pooled parental mRNA (BY and
RM). To obtain the net effect of the IRA2 allele replacement on the
genome-wide mRNA levels (yg), we subtracted the mean log-ratio of
the related background of each mutated strain (shown for RM@IRA2
strain as an example):

yBY/g
RM@ IRA2 ¼ log2

 
½mRNAg �ðRM@ IRA2; glucoseÞ

½mRNAg �ðpoolÞ

!

2 log2

 
½mRNAg �ðBY ; glucoseÞ

½mRNAg �ðpoolÞ

!

We performed multiple regression between the aforementioned data
vector and the affinity scores of 25 RBP/region combinations.
Similarly, we calculated the relative mRNA expression for the RM
strain when IRA2 was replaced by the BY allele in the RM back-
ground and carried out multiple regression analysis. To capture the
effect of the IRA2 allele swap between the two backgrounds, we
subtracted the regression coefficients between the two cases for all
the 25 combinations. We then permuted the two y vectors for all
genes 1000 times independently to calculate the statistical signifi-
cance threshold at 1% FDR level (jyj. 2:7).

Linear model analysis of quantitative RT-PCR data
For each of the three technical replicates of the eight strains, we
calculated the difference in CT values between RRS1 (test) and THI6
(control). Because of the inverse relation between mRNA level and CT,
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we subtracted the test value from the control value. We performed
a least-squares fit of the following linear model to estimate the effect of
IRA2, and PUF4 on the mRNA level of RRS1, as well as the genetic
interaction between IRA2 allelic status and PUF4 deletion:

CTðTHI6Þ2CTðRRS1Þ ¼ b0 þ b1xRM@ IRA2 þ b2xPUF4D
þ b3ðxRM@ IRA2 · xPUF4DÞ þ e

Here each independent variable takes on the value x = 1 when the IRA2
allele is RM, or the PUF4 gene is deleted, respectively, and x = 0 other-
wise. We fit the model separately for two subsets that were selected
based on the background strain BY or RM.

RESULTS

Data
For motif discovery, we used RNA immunoaffinity purification data
that included a total of 132 IP experiments for 45 RBPs from Hogan
et al. (2008). For the aQTL search, we used parallel genotyping and
genome-wide mRNA expression data (collected in rich-media condi-
tions) for 108 segregants from a cross between two haploid yeast
strains: BY4716 (BY) and RM11-1a (RM) (Smith and Kruglyak 2008).

RBP motif discovery
Our motif discovery procedure is summarized in Figure 1A and Figure
S2. We used the MatrixREDUCE program from the REDUCE Suite
software package, which takes as inputs the nucleotide sequences and
RBP binding log2-ratios for all mRNAs. To reduce the effect of outliers,
we applied a quantile-based transformation to the binding data (see the
sectionMaterials and Methods). To define RNA sequences, we used the
annotation from (Nagalakshmi et al. 2008) and extracted 59 and 39
UTRs, ORFs, and complete mRNA nucleotide sequences. For every
RBP, we performed a genome-wide motif search on complete mRNA
transcripts, ORFs, 59 and 39 UTRs separately. We did this to allow for
functional differences within each transcript. In some cases, we also
observed that using the complete mRNA sequence hindered our ability
to discover motifs. For instance, for Nrd1p and Puf2p, we could only
detect statistically significant binding motifs using the 39 UTRs.

After the training step, using a random sample of 50% of the data,
we calculated the affinity scores using the derived position-specific
affinity matrices (PSAMs; see the section Materials and Methods) and
only selected those validated using the remaining 50% of the data. We
further optimized these PSAMs by adding flanking sequence (up to one
nucleotide on either side) to capture low-specificity bases not identified
during the training step. A final optimization step using the complete
data set yielded PSAMs for 20 of 45 RBPs (see Table S1 and Table S5).

Regulation of mRNA stability typically is carried out through
protein interactions via the 39 UTR (Grzybowska et al. 2001; Mignone
et al. 2002; Shalgi et al. 2005); however, there are exceptions: yeast
Khd1p represses FLO11 expression by binding to its coding region
(Wolf et al. 2010) and Msl5p binds a specific motif near the intron-
exon boundary during splicing (Berglund et al. 1997; Garrey et al.
2006). To accommodate binding at multiple locations along a tran-
script, we scored the correlation between 132 IP experiments and the
affinity of each mRNA region (i.e., 59 UTR, ORF, and 39 UTR) sep-
arately. We also required that each PSAM was most correlated with
binding for each factor (IP data). Five of the 20 PSAMs we discovered
(Idh1p, Mrn1p, Puf1p, Rna15p, and Yra2p) did not pass this speci-
ficity test (Figure S4).

Figure 2A shows the sequence logos for the final 15 PSAMs, whereas
Figure 2B lists the 25 significant RBP/region combinations we detected.

There was an exception for Scp160p, for which the aggregated affinity
across the ORFs was more correlated to the Bfr1p IP experiment (green
dots). This was expected because Bfr1p associates with cytoplasmic
mRNP complexes containing Scp160p (Lang et al. 2001). There is
a large gap between the relevant IP experiments (red dots) and the
rest of the IP experiments (blue dots) for the affinity of 39 UTRs to
Pub1p, Puf2p, Puf3p, Puf4p, and Puf5p, indicating that these PSAM
are highly specific to the binding data from which they were derived.

Refined PSAMs for RBPs of known sequence specificity
Of the 15 specific PSAMs we discovered, 12 are broadly consistent
with motifs derived previously from the same binding data (Gerber
et al. 2004; Hogan et al. 2008). Our motif for Gbp2p, GRNGNNGR
(R is A/G), is predictive for binding in the ORF. Gbp2p is involved
in mRNA export from the nucleus to the cytoplasm. The motif
HGGUGW (H is A/C/U, W is A/U) previously reported for this
protein (Riordan et al. 2011) is compatible with our finding. Khd1p
is involved in the asymmetric localization of Ash1p in daughter cells,
which is a transcription inhibitor of the mating type switch protein
encoded by the HO gene. Khd1p binds to CNN repeats in coding
regions of its targets in vitro (Hasegawa et al. 2008). A more recent
study reported enrichment of YCAY (Y is C/U) in the mRNAs bound
to Khd1p (Wolf et al. 2010). Msl5p is part of the splicing initiation
complex (Abovich and Rosbash 1997) and binds to branch-point
sequence UACUAAC (Berglund et al. 1997; Garrey et al. 2006), in
agreement with the PSAM we identified for this protein. Nab2p is
involved in poly(A) tail formation control and export of mRNA from
nucleus to cytoplasm (Hector et al. 2002; Kelly et al. 2010). Consistent
with our finding, the Nab2p PSAM is enriched with adenine (Kim
Guisbert et al. 2005). The PSAM we found using Nrd1p binding data
has a core motif CUUG. This protein is subunit of the Nrd1p-Nab3p-
Sen1p complex, which mediates the termination of small nucleolar
RNAs (Vasiljeva et al. 2008). It has been reported that Nrd1p binds to
GUAR and Nab3p recognizes UCUU or CUUG (Carroll et al. 2004;
Lunde et al. 2011; Porrua et al. 2012). Because Nab3p and Nrd1p
form a complex, it is not surprising that we identified the Nab3p motif
when analyzing the Nrd1p binding data. Indeed, we found a highly
similar motif when using Nab3p binding data (p-value , 10216,
Spearman rank correlation between aggregated 39 UTR affinities).
The motif we obtained for Pin4p looks similar to the motif reported
by (Hogan et al. 2008). In the case of Pub1p, a poly(U) binding
protein that is essential for stability of many mRNAs (Anderson
et al. 1993; Matunis et al. 1993; Duttagupta et al. 2005; Hogan et al.
2008; Li et al. 2010), our motif is indeed a U-rich element. The
YLL032C gene encodes an unannotated protein that may interact with
ribosomal complexes (Fleischer et al. 2006). Our algorithm found an
AUACC motif as reported previously (Hogan et al. 2008).

PUF proteins
Among the RBPs for which we were able to identify a binding motif are
four members of PUF family. Not much is known about the physiological
role of Puf2p. It interacts preferentially with mRNAs that encode
membrane-associated proteins (Gerber et al. 2004). In a recent
study, it was shown computationally and experimentally that Puf2p
binds to a dual UAAU motif with 3 nucleotide linker.(Yosefzon et al.
2011). Our PSAM search algorithm captures the same motif. The Puf2p
binding consensus motif is distinct from the UGUA-containing
motifs bound by Puf3p, Puf4p, and Puf5p (Gerber et al. 2004; Foat
et al. 2005; Miller et al. 2008). Puf3p binds nearly exclusively to
mRNAs that encode mitochondrial proteins (Gerber et al. 2004)

Volume 4 August 2014 | Dissecting Posttranscriptional Networks | 1543

http://www.yeastgenome.org/cgi-bin/locus.fpl?dbid=S000005441
http://www.yeastgenome.org/cgi-bin/locus.fpl?dbid=S000002982
http://www.yeastgenome.org/cgi-bin/locus.fpl?dbid=S000005820
http://www.yeastgenome.org/cgi-bin/locus.fpl?dbid=S000005441
http://www.yeastgenome.org/cgi-bin/locus.fpl?dbid=S000002982
http://www.yeastgenome.org/cgi-bin/locus.fpl?dbid=S000005441
http://www.yeastgenome.org/cgi-bin/locus.fpl?dbid=S000002982
http://www.g3journal.org/lookup/suppl/doi:10.1534/g3.114.012039/-/DC1/FigureS2.pdf
http://www.g3journal.org/lookup/suppl/doi:10.1534/g3.114.012039/-/DC1/FigureS2.pdf
http://www.yeastgenome.org/cgi-bin/locus.fpl?dbid=S000005195
http://www.yeastgenome.org/cgi-bin/locus.fpl?dbid=S000006246
http://www.g3journal.org/lookup/suppl/doi:10.1534/g3.114.012039/-/DC1/TableS1.pdf
http://www.g3journal.org/lookup/suppl/doi:10.1534/g3.114.012039/-/DC1/TableS5.pdf
http://www.yeastgenome.org/cgi-bin/locus.fpl?dbid=S000000128
http://www.yeastgenome.org/cgi-bin/locus.fpl?dbid=S000001458
http://www.yeastgenome.org/cgi-bin/locus.fpl?dbid=S000004106
http://www.yeastgenome.org/cgi-bin/locus.fpl?dbid=S000004982
http://www.yeastgenome.org/cgi-bin/locus.fpl?dbid=S000006105
http://www.yeastgenome.org/cgi-bin/locus.fpl?dbid=S000003851
http://www.yeastgenome.org/cgi-bin/locus.fpl?dbid=S000003012
http://www.yeastgenome.org/cgi-bin/locus.fpl?dbid=S000001697
http://www.g3journal.org/lookup/suppl/doi:10.1534/g3.114.012039/-/DC1/FigureS4.pdf
http://www.yeastgenome.org/cgi-bin/locus.fpl?dbid=S000003616
http://www.yeastgenome.org/cgi-bin/locus.fpl?dbid=S000005724
http://www.yeastgenome.org/cgi-bin/locus.fpl?dbid=S000005724
http://www.yeastgenome.org/cgi-bin/locus.fpl?dbid=S000003616
http://www.yeastgenome.org/cgi-bin/locus.fpl?dbid=S000004961
http://www.yeastgenome.org/cgi-bin/locus.fpl?dbid=S000006246
http://www.yeastgenome.org/cgi-bin/locus.fpl?dbid=S000003936
http://www.yeastgenome.org/cgi-bin/locus.fpl?dbid=S000002982
http://www.yeastgenome.org/cgi-bin/locus.fpl?dbid=S000003146
http://www.yeastgenome.org/cgi-bin/locus.fpl?dbid=S000000517
http://www.yeastgenome.org/cgi-bin/locus.fpl?dbid=S000000517
http://www.yeastgenome.org/cgi-bin/locus.fpl?dbid=S000000128
http://www.yeastgenome.org/cgi-bin/locus.fpl?dbid=S000001668
http://www.yeastgenome.org/cgi-bin/locus.fpl?dbid=S000002386
http://www.yeastgenome.org/cgi-bin/locus.fpl?dbid=S000000128
http://www.yeastgenome.org/cgi-bin/locus.fpl?dbid=S000000128
http://www.yeastgenome.org/cgi-bin/locus.fpl?dbid=S000004106
http://www.yeastgenome.org/cgi-bin/locus.fpl?dbid=S000003090
http://www.yeastgenome.org/cgi-bin/locus.fpl?dbid=S000003090
http://www.yeastgenome.org/cgi-bin/locus.fpl?dbid=S000005195
http://www.yeastgenome.org/cgi-bin/locus.fpl?dbid=S000005195
http://www.yeastgenome.org/cgi-bin/locus.fpl?dbid=S000006111
http://www.yeastgenome.org/cgi-bin/locus.fpl?dbid=S000006111
http://www.yeastgenome.org/cgi-bin/locus.fpl?dbid=S000005195
http://www.yeastgenome.org/cgi-bin/locus.fpl?dbid=S000006111
http://www.yeastgenome.org/cgi-bin/locus.fpl?dbid=S000005195
http://www.yeastgenome.org/cgi-bin/locus.fpl?dbid=S000006111
http://www.yeastgenome.org/cgi-bin/locus.fpl?dbid=S000000147
http://www.yeastgenome.org/cgi-bin/locus.fpl?dbid=S000004961
http://www.yeastgenome.org/cgi-bin/locus.fpl?dbid=S000003955
http://www.yeastgenome.org/cgi-bin/locus.fpl?dbid=S000006246
http://www.yeastgenome.org/cgi-bin/locus.fpl?dbid=S000006246
http://www.yeastgenome.org/cgi-bin/locus.fpl?dbid=S000006246
http://www.yeastgenome.org/cgi-bin/locus.fpl?dbid=S000003936
http://www.yeastgenome.org/cgi-bin/locus.fpl?dbid=S000002982
http://www.yeastgenome.org/cgi-bin/locus.fpl?dbid=S000003146
http://www.yeastgenome.org/cgi-bin/locus.fpl?dbid=S000003936


Figure 1 Overview of our computational
methodology. (A) Motif discovery. We used
MatrixREDUCE on rank-quantile transformed
binding data (training set) and mRNA se-
quences. We repeated this analysis by re-
placing the complete mRNA sequences by 59
untranslated regions (UTRs), open reading
frames (ORFs), and 39 UTRs separately. We
accepted the position-specific affinity matri-
ces (PSAMs) only if they passed validation
on test set and specificity test (exclusive cor-
relation of affinity scores for a RNA-binding
protein affinity to its own binding data). (B)
Activity quantitative trait loci (aQTL) method.
Genome-wide affinity scores were calculated
using PSAM and sequences. The affinity
scores were used to infer segregant-specific
RNA-binding protein (RBP) activities. The ac-
tivities were obtained by multiple linear re-
gression on differential mRNA expression
levels to the affinity scores. The regression
coefficients represent the RBP activity levels
for each segregant. For linkage analysis, the
activities were treated as quantitative traits.
For each factor we split the inferred activities
of segregants at each marker based on the
inherited allele (BY or RM) at that marker.
We then test whether the distribution of the
activities levels between the two subsets is
significantly different using Composite inter-
val mapping. Whenever the distribution of
these inferred activity levels of a RBP depends
on the genotype variation of a specific chro-
mosomal marker, we obtain a high logarithm
of the odds ratio score at that marker, indicat-
ing the presence of an aQTL (at 1% false dis-
covery rate level).
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and is involved with mitochondrial localization of nuclear-encoded
mRNAs (Saint-Georges et al. 2008). Puf3p enhances COX17 mRNA
degradation by binding to a UGURNAUA motif in its 39 UTR (Olivas
and Parker 2000; Jackson et al. 2004). Puf4p is known to bind to a
UGUAUAUUA motif in the 39 UTR of HO endonuclease mRNA and,
together with Puf5p, negatively regulates it (Hook et al. 2007; Miller
et al. 2008). Puf4p is also known to bind preferentially to mRNA encode
ribosomal proteins (Gerber et al. 2004). The PSAMs we found for Puf3p,
Puf4p and Puf5p are all in agreement with the motifs reported earlier.

Novel binding specificities for Scp160p, Sik1p,
and Tdh3p
Our method detected novel binding specificities for three RBPs for
which previous motif finding attempts had failed. To corroborate
these finding, we analyzed the correlation of PSAM-based affinity
scores with differential mRNA expression data across 173 different
stress conditions (Gasch et al. 2000). It was previously shown that this

procedure allows us to quantitatively estimate changes in protein-level
regulatory activity of RNA-binding trans-acting factors (Foat et al.).
We also performed GO analysis on the in vitro affinity scores using the
Wilcoxon-Mann-Whitney test (see the sectionMaterials and Methods).

Scp160p is an RBP involved in the mating response (Guo et al.
2003). It contains multiple heterogeneous nuclear ribonucleoprotein
K-homology domains. Scp160 affinity for ORF sequences is highly
anticorrelated with expression in YPD stationary phase relative to
early log phase, YPD, nitrogen depletion, and heat shock conditions
and positively correlated for cold shock and hypo-osmotic shock con-
ditions (see Table S2). GO analysis based on the mRNA affinity scores
for Scp160p showed an association with the nitrogen compound met-
abolic process category (p-value, 1028, Wilcoxon-Mann-Whitney test).

Sik1p (Nop56p) is a component of the box C/D snoRNP com-
plexes that direct 29-O-methylation of pre-rRNA during its matura-
tion. Our detected motif for Sik1p is enriched in both 59 UTRs and
ORFs of mRNAs. We observed positive correlation of ORF affinity

Figure 2 List of selected position-specific affinity
matrices (PSAMs) based on the specificity test. (A)
List of known and novel RNA-binding protein (RBP)
motifs obtained by our motif discovery approach.
These 15 PSAMs passed validation and specificity
tests. (B) Specificity test. Scatter plot for the factors
specificity test where the Pearson t-values of corre-
lation between 132 RBP binding experiments and 25
selected PSAM-region combinations are presented.
Only the factors with at least one self RBP immuno-
precipitation (IP) experiment t-value (red dots) appear-
ing at the top are shown. The only exception is for
Scp160p acting via open reading frames (ORFs) where
we have a greater correlation to Bfr1p binding data
(green dots). We accepted this PSAM because
Scp160p and Bfr1p are known to interact and are
coimunoprecipitated in IP measurements.
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scores with differential expression during YPD stationary phase growth
and after heat shock (see Table S2). It could be that Sik1p has a direct or
indirect role in rRNA methylation regulation under heat shock and that
could explain why we observed positive correlation for the heat shock
conditions. GO analysis showed significant association with ribosome
and rRNA-related categories (p-value , 1029).

Tdh3p encodes glyceraldehyde-3-phosphate dehydrogenase, which
is required during gluconeogenesis and is essential for yeast cells to
grow on noncarbohydrate sources such as ethanol and glycerol
(McAlister and Holland 1985). The affinity score for Tdh3p correlates
positively with expression changes after exposure to menadione, a syn-
thetic nutritional compound, and negatively to sorbitol and nitrogen
depletion. GO scoring analysis for this factor showed the categories
“intrinsic to membrane,” “thiolester hydrolase activity,” “glucosyl-
transferase activity,” and “glycerophospholipid metabolic process” to
be significantly associated (p-value , 1026 in all cases).

Dissecting genetic variation in RBP activity
across segregants
It has been experimentally validated that by analyzing the mRNA
differential expression levels of putative targets of a transcription
factor, changes in the protein-level regulatory activity of that factor
can be inferred (Boorsma et al. 2008). As for the activity levels, it has
been shown that they vary among members of a population of an
organism and can be treated as a quantitative trait for genetic linkage
analysis to capture polymorphisms that modulate the activity of the
transcription factors (Lee and Bussemaker 2010). Here we applied
a similar approach to identify trans-acting loci controlling the activity
of RBPs that influence mRNA expression levels through posttran-
scriptional control of their half-lives (Foat et al. 2005).

We combined segregant-specific genome-wide mRNA expression
profiles with prior information about the posttranscriptional regula-

tory network to infer differential RBP activity levels in each of 108
haploid segregants from a genetic cross between a lab (BY) and a wild
(RM) strain (Smith and Kruglyak 2008). Figure 1B and Figure S3
illustrate the steps involved in this analysis. We used the 25 RBP/
region combinations from the motif discovery analysis to calculate
the aggregate affinity scores (Figure 2B). Multiple regression on affin-
ities was then performed independently for each segregant mRNA
expression profile, and the regression coefficients were interpreted
as estimates of the corresponding RBP activities. We used the CIM
method (Zeng 1994) to map aQTLs for each of the 25 RBP/region
combinations. To account for multiple testing, we calculated LOD
score thresholds corresponding to a 1% FDR by performing 200 per-
mutations (see the section Materials and Methods). Table 1 summa-
rizes the results of our analysis. We were able to map at least one
aQTL for Khd1p, Msl5p, Pub1p, Puf2p, Puf3p, Puf4p, and the puta-
tive regulator YLL032C.

Segregation of trans-acting alleles decouples Puf3p and
Puf4p activity
The binding specificities of Puf3p and Puf4p differ with respect to the
length of the gap between the UGUA and AUA submotifs (cf. Figure
2A). As a consequence, they have distinct target sets, as measured in
terms of the correlation in binding affinity across all transcripts (Fig-
ure 3A). The same observation holds across the larger set of RBPs:
with few exceptions, they control independent sets of targets (Figure 3B).

It has been previously noted that Puf3p and Puf4p activity levels
respond oppositely when cells are exposed to different sugar sources
(Foat et al. 2005). Consistently, when we analyzed the activity varia-
tion for both factors form genome-wide expression data across a vari-
ety of stress conditions (Gasch et al. 2000), we observed a marked
negative correlation (Figure 4A; r = 20.67, p-value , 10216). By
contrast, inferred Puf3p and Puf4p activity levels do not correlate

n Table 1 Discovered aQTL regions for RBPs

RBP mRNA Region aQTL Region Max LOD Score Direct Interaction Interaction Type Reference

Khd1p 39 UTRs Chr15 14.6
154,310-193,910

Msl5p 39 UTRs Chr15 15.2
136,328-170,944

Pub1p 39 UTRs Chr15 6.0
154,310-193,910

Puf2p 59 UTRs Chr2 5.8
533,269-565,215

Chr15 7.0
154,310-193,910

Puf3p 59 UTRs Chr2 7.1 POP7 GI (Wilmes et al. 2008)
555,788-592,862

Puf3p 39 UTRs Chr11 6.8 LAP4 PI (Breitkreutz et al. 2010)
229,053-247,943

Chr14 13.9 MKT1 GI (Lee et al. 2009)
449,640-502,315

Puf4p 59 UTRs Chr15 10.4
154,310-193,910

Puf4p ORFs Chr15 13.5
154,310-193,910

Puf4p 39 UTRs Chr15 10.7
154,310-193,910

YLL032C mRNAs Chr15 5.9
141,634-170,944

aQTL, activity quantitative trait loci; RBP, RNA-binding protein; LOD, logarithm of the odds ratio; UTR, untranslated region; ORF, open reading frame; GI, genetic
interaction; PI, physical interaction.
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across the segregants from the BY-RM cross (Figure 4B; r = 20.001,
p-value = 0.99). This suggests that their respective activities are mod-
ulated by distinct genetic loci. Thus, our systems genetics approach
provides us with a unique opportunity to dissect the connectivity
between the upstream TOR signaling pathway and these two factors.

Recovering MKT1 as an aQTL for Puf3p acting via the
39 UTR
The LOD score profile shown in Figure 5 highlights the genomic
locations at which allelic variation drives variation in Puf3p activity.
When we used 39 UTR sequences (Figure 5, C and F), our method
recovered an aQTL on chromosome XIV. This locus was previously
discovered computationally and experimentally (Lee et al. 2009). The
authors suggested that the MKT1 gene at this locus regulates p-body
abundance, which in turn regulates Puf3p target abundance; they also
tested the effect of MKT1 deletion on Puf3p target mRNA expression
in a RM background. The genome-wide mRNA expression profile of
the MKT1D strain was used to demonstrate that Puf3p targets are
significantly down-regulated. The Mkt1 protein contains two amino
acid polymorphisms between the RM and BY strands: G30D and
R453K (Lee et al. 2009).

Besides MKT1, we identified a second aQTL for Puf3p activity. This
locus, which is marginally significant, contains the LAP4 gene on chro-
mosome XI (Figure 5, C and E). It has been reported that Lap4p phys-
ically interacts with Puf3p (Breitkreutz et al. 2010) and contains four
coding polymorphism between RM and S288c, a strain isogenic to BY.

A distinct aQTL modulates Puf3p acting via the 59 UTR
Puf3p is believed to interact with the 39 UTRs of its targets (Olivas and
Parker 2000; Gerber et al. 2004; Jackson et al. 2004). No evidence of
functional interaction with the 59 UTR has been reported to our
knowledge. As mentioned previously, Puf3p activity is modulated by
an aQTL at the MKT1 locus on chromosome XIV when acting
through 39 UTRs of its targets. However, as described above, when
we analyzed the binding data for Puf3p, we found that binding motif
matches in the 59 UTR were also predictive of transcript binding.
Surprisingly, we found that the activity of Puf3p when acting through
the 59 UTR is modulated by a locus on chromosome II that is distinct
from theMKT1 locus (Figure 5, A and D). This aQTL region contains
POP7, a gene that is reported to have positive genetic interaction with
Puf3p (Wilmes et al. 2008). Sequence alignment between the RM and
S288c strains revealed a coding polymorphism at amino acid position
58 on the Pop7p sequence: the histidine (H) in the RM strain is
a glutamine (Q) in S288c. Pop7p is the subunit of both RNase MRP
and nuclear RNase P; RNase mitochondrial RNA processing cleaves
pre-rRNA, whereas nuclear RNase P cleaves tRNA precursors to
generate mature 59 ends and facilitates turnover of nuclear RNAs
(Chamberlain et al. 1998; Houser-Scott et al. 2002). This makes the
H58Q polymorphism a prime candidate for experimental validation.
The same aQTL region also contains two mitochondrial related genes
EHT1 and FZO1. The coding region of these genes contains three
coding and three noncoding polymorphisms for the former and
two coding and ten noncoding polymorphisms for the latter. Re-
gardless of the identification of the precise causal single-nucleotide
polymorphisms at this locus, our results suggest that Puf3p acts by
distinct mechanisms depending on where it binds within the transcript,
and responds to distinct upstream pathways.

Genetic modulation of Puf4p activity
The aQTL LOD score profile for Puf4p is shown in Figure 6. In this
case, regulatory activity seems to be modulated by the same locus on

Figure 3 Affinity correlation vs. activity correlation. (A) Clustered heat-
map of Pearson correlations calculated for the inferred activity levels of
25 factors. The activities were calculated using multiple regression on
the genome-wide expression levels to the RNA-binding protein (RBP)
affinities on selected mRNA regions. (B) Pearson correlations of affinity
scores. For convenience, factors are in the same order as in panel (A).
(C) Possible scenario for observing more significant correlations be-
tween inferred activity levels of the RBPs. (A) Significant negative cor-
relation between Puf4p activity on 39 untranslated regions (UTRs) and
Sik1p activity on open reading frames (ORFs) (Wilmes et al. 2008);
However, Puf4p and Sik1p have distinct set of target genes (weak
correlation between their affinities as observed in panel B).
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chromosome XV regardless of whether it acts through the 59 UTR,
ORF, or 39 UTR of its target mRNAs. Strikingly, however, the di-
rection of the change in Puf4p activity from the BY and RM allele at
this locus takes opposite values depending on whether Puf4p acts via
the 39 or the 59 UTR (Figure 6, D and F). Messenger RNA eQTL
analysis of mRNA levels of the PUF4 gene revealed a linkage to the
same locus on chromosome XV. This finding suggests that the
detected difference in the activity of Puf4p between BY and RM is
due to transcriptional and/or posttranscriptional variation between
the two strains. One of the genes located in the aQTL region is
IRA2, which encodes a GTPase-activating protein that negatively reg-
ulates Ras signaling and controls intercellular cAMP levels (Tanaka
et al. 1990). Puf4p interacts with Tpk1p, cAMP-dependent protein
kinase catalytic subunit (Cannon and Tatchell 1987; Toda et al. 1987;
Ptacek et al. 2005). Indeed, the genome-wide expression profiles as-
sociated with allele replacement from BY@IRA2 to RM@IRA2 (Smith
and Kruglyak 2008) correlated significantly with Puf4p affinity scored
on the 39 UTR (r = +0.10; t = +5.6; p-value = 2.03 · 1028; see the
section Materials and Methods for details).

The expression response to IRA2 allele replacement did not cor-
relate with affinity scored on the ORF or 59 UTR. This finding sug-
gests that a polymorphism that is genetically linked to but outside
IRA2 is responsible for modulation Puf4p activity as it acts via the 59
UTR. Possible causal genes are REX4 and BRX1, both of which have
putative roles in pre-rRNA possessing and ribosome assembly. Puf4p is
known to interact with mRNAs encoding nucleolar rRNA-processing
factors (van Hoof et al. 2000; Kaser et al. 2001; Eppens et al. 2002).
The coding region of REX4 contains three coding single-nucleotide
polymorphisms between the RM and S288c strains: the asparagine
(N) at position 34, phenylalanine (F) at position 155, and lysine (K)
at position 248 in RM are lysine (K), leucine (L), and arginine (R)
in S288c, respectively. There is a single noncoding polymorphism
at position 243 within the coding region of BRX1; the thymine in
RM is cytosine in S288c.

The activities of five other RBPs (Khd1p, Msl5p, Pub1p, Puf2p,
and YLL032C) are also linked to the IRA2 locus. Using the IRA2 allele

replacement data again to test these aQTL associations, we found that
only the affinity of Puf2p via the 59 UTR (r = –0.079; t = –4.4; p-value =
1.05 · 1025) was significantly correlated with differential mRNA
expression. Even though we found the linkage to IRA2 locus and
significant correlation between IRA2 allele replacement data and the
affinity score of Puf2p, no evidence has been reported for a connection
between them in the literature thus far.

Validation of detected loci using IRA2
allele replacement
To test our computational prediction that the activity of Puf4p is
influenced by the allelic variation at the IRA2 locus, we used RT-
PCR to monitor expression of RRS1, a representative target of Puf4p.
To normalize our RRS1measurements, we used as a nontarget control
THI6, based on the criteria that it did not show any notable predicted
binding affinity for Puf4p according to our PSAM, was not enriched
for Puf4p binding in the study by (Hogan et al. 2008), and showed no
significant expression difference after IRA2 allele replacement (Smith
and Kruglyak 2008). We carried out three technical replicates for each
strain (see Figure S6 and Table S3). When active, Puf4p destabilizes its
target mRNAs through interaction mostly via 39 UTR of its targets
(Hook et al. 2007; Miller and Olivas 2011). Indeed, we observed that
the expression of RRS1 increases 1.8 fold when PUF4 is deleted in the
BY background (Figure 7). The expression of RRS1 in the same BY
background decreased by 3.1-fold when IRA2 was replaced with the
RM allele, indicating that Puf4p was more active. This is consistent
with the prediction by our aQTL analysis that Puf4p activity is mod-
ulated by the IRA2 locus (Figure 6, C and F). Since our aQTL analysis
treats each locus as independent, we performed the same analysis in
the RM background (Figure 7). Surprisingly, we did not observe any
change in RRS1 expression either upon deletion of PUF4 or allele
replacement for IRA2. This suggests that in the RM background
RRS1 becomes insensitive to Puf4p activity.

To analyze the results from the quantitative RT-PCR, we performed
a least-squares fit of a linear model to the difference in normalized
mRNA expression level (see the section Materials and Methods).

Figure 4 Decoupling of Puf3p and Puf4p activity. (A) Scatter plot of inferred activity levels for (Gasch et al. 2000) stress data sets shown for Puf3p
[39 untranslated regions (UTRs)] and Puf4 (39 UTRs). To infer RNA-binding activities, we performed a multiple regression on the mRNA levels of
each experimental condition to all 25 factors affinity scores. (B) Scatter plot of inferred activity among 108 segregants for the same two factors.

1548 | M. Fazlollahi et al.

http://www.yeastgenome.org/cgi-bin/locus.fpl?dbid=S000002982
http://www.yeastgenome.org/cgi-bin/locus.fpl?dbid=S000002982
http://www.yeastgenome.org/cgi-bin/locus.fpl?dbid=S000002982
http://www.yeastgenome.org/cgi-bin/locus.fpl?dbid=S000002982
http://www.yeastgenome.org/cgi-bin/locus.fpl?dbid=S000005441
http://www.yeastgenome.org/cgi-bin/locus.fpl?dbid=S000002982
http://www.yeastgenome.org/cgi-bin/locus.fpl?dbid=S000003700
http://www.yeastgenome.org/cgi-bin/locus.fpl?dbid=S000005441
http://www.yeastgenome.org/cgi-bin/locus.fpl?dbid=S000005441
http://www.yeastgenome.org/cgi-bin/locus.fpl?dbid=S000002982
http://www.yeastgenome.org/cgi-bin/locus.fpl?dbid=S000005441
http://www.yeastgenome.org/cgi-bin/locus.fpl?dbid=S000005441
http://www.yeastgenome.org/cgi-bin/locus.fpl?dbid=S000002982
http://www.yeastgenome.org/cgi-bin/locus.fpl?dbid=S000005440
http://www.yeastgenome.org/cgi-bin/locus.fpl?dbid=S000005437
http://www.yeastgenome.org/cgi-bin/locus.fpl?dbid=S000002982
http://www.yeastgenome.org/cgi-bin/locus.fpl?dbid=S000005440
http://www.yeastgenome.org/cgi-bin/locus.fpl?dbid=S000005437
http://www.yeastgenome.org/cgi-bin/locus.fpl?dbid=S000000128
http://www.yeastgenome.org/cgi-bin/locus.fpl?dbid=S000004106
http://www.yeastgenome.org/cgi-bin/locus.fpl?dbid=S000004961
http://www.yeastgenome.org/cgi-bin/locus.fpl?dbid=S000006246
http://www.yeastgenome.org/cgi-bin/locus.fpl?dbid=S000003955
http://www.yeastgenome.org/cgi-bin/locus.fpl?dbid=S000005441
http://www.yeastgenome.org/cgi-bin/locus.fpl?dbid=S000005441
http://www.yeastgenome.org/cgi-bin/locus.fpl?dbid=S000006246
http://www.yeastgenome.org/cgi-bin/locus.fpl?dbid=S000005441
http://www.yeastgenome.org/cgi-bin/locus.fpl?dbid=S000005441
http://www.yeastgenome.org/cgi-bin/locus.fpl?dbid=S000006246
http://www.yeastgenome.org/cgi-bin/locus.fpl?dbid=S000002982
http://www.yeastgenome.org/cgi-bin/locus.fpl?dbid=S000005441
http://www.yeastgenome.org/cgi-bin/locus.fpl?dbid=S000005820
http://www.yeastgenome.org/cgi-bin/locus.fpl?dbid=S000002982
http://www.yeastgenome.org/cgi-bin/locus.fpl?dbid=S000005820
http://www.yeastgenome.org/cgi-bin/locus.fpl?dbid=S000006135
http://www.yeastgenome.org/cgi-bin/locus.fpl?dbid=S000002982
http://www.yeastgenome.org/cgi-bin/locus.fpl?dbid=S000002982
http://www.yeastgenome.org/cgi-bin/locus.fpl?dbid=S000005441
http://www.g3journal.org/lookup/suppl/doi:10.1534/g3.114.012039/-/DC1/FigureS6.pdf
http:/www.g3journal.org/lookup/suppl/doi:10.1534/g3.114.012039/-/DC1/TableS3.xlsx
http://www.yeastgenome.org/cgi-bin/locus.fpl?dbid=S000002982
http://www.yeastgenome.org/cgi-bin/locus.fpl?dbid=S000005820
http://www.yeastgenome.org/cgi-bin/locus.fpl?dbid=S000002982
http://www.yeastgenome.org/cgi-bin/locus.fpl?dbid=S000005820
http://www.yeastgenome.org/cgi-bin/locus.fpl?dbid=S000005441
http://www.yeastgenome.org/cgi-bin/locus.fpl?dbid=S000002982
http://www.yeastgenome.org/cgi-bin/locus.fpl?dbid=S000002982
http://www.yeastgenome.org/cgi-bin/locus.fpl?dbid=S000005441
http://www.yeastgenome.org/cgi-bin/locus.fpl?dbid=S000005820
http://www.yeastgenome.org/cgi-bin/locus.fpl?dbid=S000002982
http://www.yeastgenome.org/cgi-bin/locus.fpl?dbid=S000005441
http://www.yeastgenome.org/cgi-bin/locus.fpl?dbid=S000005820
http://www.yeastgenome.org/cgi-bin/locus.fpl?dbid=S000002982


Performing the regression on the four strains with BY background, we
obtained an excellent fit (R2 = 0.96), with a significant negative effect
of allele replacement to RM@IRA2 (t-value = –9.2; p-value = 1.6 ·
1025), a significant positive effect of PUF4 deletion (t-value = +4.7;
p-value = 1.6 · 1023), and a significant positive interaction between
these two predictors (t-value = +4.4; p-value = 2.4 · 1023). The signs
of the regression terms are all consistent with our aQTL-based findings
and the known role of PUF4 as a destabilizer of mRNA transcripts
(Hook et al. 2007; Miller and Olivas 2011). In addition, once Puf4p is
absent the allelic identity of IRA2 does not have any significant effect
on RRS1 based on the positive sign of the interaction term. The fit
parameters of the regression on the 4 strains with RM background

were all insignificant. It could be that the effects are less severe on this
particular target. Taken together, these results validate our aQTL pre-
diction for IRA2-Puf4p, but also point to additional genetic complexity
that remains to be elucidated.

DISCUSSION
We have presented a method for identifying trans-acting genetic mod-
ulators of gene expression, which uses mRNA expression and geno-
typing data from a segregating population. We used this method to
detect aQTL of RBPs. The activities are inferred from RBP binding
preferences and the expression data. The inferred activity levels of
the RBPs are treated as quantitative traits and were mapped to the

Figure 5 Activity quantitative trait loci (aQTL) profiles for Puf3p. Results for the trans-acting genetic modulators of Puf3p activity, mapped using
our aQTL method. The significant thresholds at 1% false discovery rate level are calculated using 200 independent permutations of the expression
data among segregants (red horizontal lines). We obtained distinct aQTL profiles for Puf3p when using affinity scores on (A) the 59 untranslated
regions (UTRs), (B) open reading frames (ORFs), and (C) the 39 UTRs. Significant aQTL peaks remained after filtering out for the three groups of
genes mentioned previously. We identified POP7 as a putative modulator of Puf3p activity levels when inferred from the 59 UTRs for the locus on
chromosome II (A). The corresponding split of the activity levels at this marker is shown (D). We detected two possible modulators, LAP4 on
chromosome XI and MKT1 on chromosome XIV, for Puf3p activity levels when inferred from the 39 UTRs (C). (E) and (F) present the activity level
splits at these two loci.
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chromosomal marker using genotype data. Our method aims to
identify posttranscriptional regulatory mechanism underlying ge-
netic variation in gene expression levels.

We applied our aQTL method to a data set for 108 segregants
from a genetic cross between two yeast strains (Smith and Kruglyak
2008). RBP sequence specificities were obtained by our motif discov-
ery approach. We calculated the affinity scores for the 25 RBP/region
combinations and detected 12 locus-RBP linkages of which only one
was previously reported. We recovered the MKT1 locus on chromo-
some XIV as a putative modulator of Puf3p activity inferred from 39
UTRs (Lee et al. 2009). Interestingly, we found different loci as mod-
ulators of Puf3p when using the 59 and 39 UTRs. We also predicted
and experimentally validated IRA2 as a possible modulator of Puf4p

activity when the 39 UTRs affinities were used to infer the activities.
Allelic variation at the IRA2 locus has been shown to be an important
determinant of phenotypic differences between the BY and RM strains
(Smith and Kruglyak 2008; Chen et al. 2009; Litvin et al. 2009; Lee and
Bussemaker 2010). Taken together, these results show that post-tran-
scriptional regulation accounts for at least some of these differences.

Our motif discovery approach is based on biophysical modeling of
the binding of RBPs to target RNAs. It detects potential regulatory
elements within RNA sequences that are recognized by diverse RBPs.
Our algorithm searches for binding sites in the form of position-
specific affinity matrices (PSAMs). Most approaches either impose
a threshold to filter RBPs binding data or use gene expression data in
combination with mRNA half-lives to identify stability motifs associated

Figure 6 Activity quantitative trait loci (aQTL) profiles for Puf4p. Results of the trans-acting genetic modulators of Puf4p activity levels mapped
using our aQTL method. The significant thresholds at 1% false discovery rate level were calculated using 200 independent permutations of the
expression data (horizontal red lines). The peaks on chromosome XV remained after filtering out for the 3 groups of genes mentioned in the text.
(A2C) aQTL profiles for Puf4p activity inferred from 59 untranslated regions (UTRs), open reading frames (ORFs), and 39 UTR affinity scores,
respectively. Puf4p activity showed a significant linkage to a locus on chromosome XV irrespective of the mRNA region used for affinity
calculation. This locus includes the IRA2 gene. The effect of allelic variation at the IRA2 locus on Puf4p activity changes direction depending
on whether Puf4p acts via 59 UTRs or 39 UTRs (D, F).
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with RBPs. Measuring mRNA half-lives requires transcription arrest,
which can interfere with the post-transcriptional control of mRNAs
under study (Grigull et al. 2004). Hence, the interpretation and usage of
mRNA half-lives should be performed cautiously. By contrast, our
model is not based on defining a target set or mRNA half-lives.

The biophysical model that underlies our method assumes that
binding of RBP to mRNA transcripts occurs at nonsaturating
concentrations. This indeed seems to be a reasonable assumption.
For example, the total number of Puf3p and Puf4p proteins in haploid
S288c cells was found to be 846 and 721 molecules, respectively, and
therefore the total protein concentration for these factors is ~30 nM
(Ghaemmaghami et al. 2003). The dissociation constant for the opti-
mal binding sequence for Puf3p equals ~3 nM (Zhu et al. 2009) and
that for Puf4p ~14 nM (Miller et al. 2008). Considering that the free
protein concentration is likely to be much smaller than the total pro-
tein concentration, and that the dissociation constant increases for

suboptimal binding sites, we believe that our assumption of lack of
binding saturation is valid.

The PSAMs discovered for 12 RBPs agree with previously reported
consensus motifs in other studies. In addition, we discovered three novel
motifs for Scp160p, Sik1p, and Tdh3p. The functional validation results
from GO enrichment analysis and condition-specific genome-wide
mRNA expression data suggest that these novel motifs could be the
binding site for Scp160p, Sik1p and Tdh3p or their cofactors. Since
we used binding data obtained using imunoaffinity purification, the
pulled-down mRNA molecules could plausibly be bound indirectly by
the RBP, in which case the motifs obtained would reflect the RNA
binding specificity of the cofactor(s). Experimental follow up will be
required to rule out this possibility and further validate our new findings.

Taken together, our findings highlight the importance of post-
transcriptional regulation that reflects in the mRNA stability by RBPs.
Our approach is not yeast-specific and can be applied to other organisms.

Figure 7 RT-PCR results for RRS1 expression. (A) Heat-
map representation of fold-difference in (normalized)
expression for all pairwise combinations of the eight
strains used. The fold changes represent the change
of RRS1 expression from rows to columns. Red, green,
and gray represent increase, decrease, and no change
in the expression level, respectively. (B) Graphical rep-
resentation of the effect on the expression of RRS1 by
IRA2-RM and deletion of PUF4. Here, b and P represent
the regression coefficients and their p-values from the
linear model on the RRS1 quantitative RT-PCR data (see
the section Materials and Methods).
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