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Co-regulatory Network of 
Oncosuppressor miRNAs and 
Transcription Factors for Pathology 
of Human Hepatic Cancer Stem 
Cells (HCSC)
Rania Hassan Mohamed1, Nourhan Abu-Shahba2, Marwa Mahmoud2, 
Ahmed M. H. Abdelfattah   3,6, Wael Zakaria3 & Mahmoud ElHefnawi4,5

Hepatic cancer stem cells (HCSCs) are considered as main players for the hepatocellular carcinoma 
(HCC) initiation, metastasis, drug resistance and recurrence. There is a growing evidence supporting 
the down-regulated miRNAs in HCSCs as key suppressors for the stemness traits, but still more details 
are vague about how these miRNAs modulate the HCC development. To uncover some of these miRNA 
regulatory aspects in HCSC, we compiled 15 down-regulated miRNA and their validated and predicted 
up-regulated targets in HCSC. The targets were enriched for several cancer cell stemness hallmarks 
and CSC pre-metastatic niche, which support these miRNAs role in suppression of HCSCs neoplastic 
transformation. Further, we constructed miRNA-Transcription factor (TF) regulatory networks, which 
provided new insights on the role of the proposed miRNA-TF co-regulation in the cancer stemness 
axis and its cross talk with the surrounding microenvironment. Our analysis revealed HCSC important 
hubs as candidate regulators for targeting hepatic cancer stemness such as, miR-148a, miR-214, E2F 
family, MYC and SLC7A5. Finally, we proposed a possible model for miRNA and TF co-regulation of 
HCSC signaling pathways. Our study identified an HCSC signature and set bridges between the reported 
results to give guide for future validation of HCC therapeutic strategies avoiding drug resistance.

Hepatocellular carcinoma (HCC) is the fourth leading cause of cancer-related death worldwide1. Accumulating 
evidence suggests the hepatic cancer stem cells (HCSC) to be the main organizer for the HCC initiation, as 
hepatic tumor initiating cells (HTIC). HCSC are a distinct subset of undifferentiated cells endowing tumorigenic 
and stem-like-characteristics. HCSCs could be identified by various cell surface markers including CD13, CD24, 
CD44, CD90, CD133, EpCAM (CD326) and OV62, or by selection for the side population cells and those with a 
high aldehyde dehydrogenase activity3. Stemness features of HCSCs include persistent self-renewal, colony and 
sphere forming abilities and sustained ability of proliferation and differentiation into a tumor bulk. HCSCs are 
also related to poor outcomes and recurrence in HCC patients, due to their potentials for migration, invasion, 
metastasis, epithelial-to-mesenchymal transition (EMT) and drug-resistance. Research over the past decade has 
unraveled that HCSC are regulated by many factors including HCSC niche, genetic and epigenetic microenviron-
ment and stemness-related signaling pathways2. These factors drive the CSC to exhibit metabolic flexibility4 and 
promote angiogenesis5, neurogenesis6 and immune resistance7. Moreover, these factors confer the bio-energetic 
and biosynthetic requirements for maintenance of the tumor homeostasis and progression2. Thus, the deeper 
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understanding of the molecular (at genetic and epigenetic levels) properties of this crucial cell population can 
potentially improve HCC patient outcomes and survival.

Transcription factors (TF) are indispensable players to regulate the cancer stemness pathways. Among these 
TFs and pathways are Oct4, Sox2, Klf4, and c-Myc, Wnt/β-catenin, IL-6/STAT3, BMI-1, TGF-β, RAS/RAF/
MAPK, PI3K/AKT/mTOR, Notch and Hedgehog. Such signaling cascades are serially switched on and off in an 
alternating and cross-regulated manner in response to environmental variability to maintain the CSC biological 
and carcinogenic characteristics2,3. One of the epigenetic mechanisms, which crucially regulate HCSC hallmarks 
and hence, their contribution to tumor initiation and drug resistance mechanisms, are micro RNAs (miRNAs). 
Many reports suggest that single miRNA might target multiple hepatic cancer stemness related signaling path-
ways by acting as oncogenes or oncosuppressors8–10. Also, our group has undergone previous studies to highlight 
the importance of miRNA in HCC11–13, but still more details are hidden about how miRNAs modulate the HCSC 
mechanisms for HCC development. Tumor suppressor miRNAs, which have been reported to be significantly 
down-regulated in the HCSC play a key role to inhibit stemness and drug resistance features. Of these miRNAs, 
miR-145 and miR-148b suppress hepatic cancer stemness via inhibiting Oct4 and neuropilin-1, respectively14,15. 
MiR-199a-3p and miR-148a-3p reduce the drug resistivity in hepatocarcinoma cells by regulating mTOR-c-Met 
and TGF beta-SMADs, respectively16,17.

The previous studies recommended TFs as potential regulatory targets of the dysregulated miRNAs and simul-
taneously as major gene transcription regulators through binding to the promoter regions of target genes by 
their DNA-binding domains18. TFs and miRNAs are able to co-regulate the expression of targets in forms of 
feed-forward (FFLs) and feedback loops (FBLs)19. The FFL is a motif in which a TF regulates miRNA or miRNA 
represses a TF, and both of them co-regulate a joint target. FFLs include three types according to the master reg-
ulator and regulation of each other: miRNA-FFL, TF-FFL and composite FFL. Regarding the FBL, it is a motif 
in which a TF and miRNA regulate each other, and each of them regulates their targets individually. Such loops/
motifs are important to construct, by means of integrative analysis of transcriptomic data, regulatory networks 
of gene expression18. The resulted Gene Regulatory Networks (GRNs) illustrate the crosstalks between the sets of 
molecular elements that work together to regulate a biological process and to identify hub elements, which can 
be recommended as valuable therapeutic targets20. An-Yuan Guo group revealed the crucial roles of miRNA-TF 
co-regulatory networks in Schizophrenia, T-cell acute lymphoblastic leukemia, myocardial infarction and the 
development of B cell and T cell21–24. In our study, we curated the HCSC down-regulated miRNA and their 
up-regulated gene and TF candidate targets from literature survey, GEO DataSet and the prediction of com-
bined bioinformatics tools. Then, we constructed novel miRNA-TF-gene co-regulatory networks, identified hub 
elements and proposed a model to link and present a systematic understanding of the molecular mechanisms 
underlying development of HCSCs and drug resistance. We aim to open new therapeutic strategies to be validated 
in the future against hepatic cancer stemness and chemoresistance.

Results
miRNAs and their targets pathway and gene ontology (GO) enrichment analysis.  To investigate 
the oncosuppressor role of the down-regulated miRNA in HCSC development, it was necessary to determine 
HCSC down-regulated miRNA, up-regulated targets and their functions. We selected the HCSC differentially 
down-regulated miRNA and up-regulated genes (P < 0.05) through extensive search in publications and data-
bases as described in the Methods section. We curated 13 miRNAs out of the literature mining, and 2 miRNAs 
from the GEO datasets. Most of the selected 15 significantly down-regulated miRNA in HCSCs are broadly con-
served (miR-148a/b-3p, 145-5p, 199a/b-3p, 194-5p, 9-3p, 15b-3p, 22-5p, 122-5p, 214-3p, 29c-3p), except miR-
149-5p is intermediately conserved, miR-491-5p is mammalian-specific25 and miR-548c-5p is primate-specific26. 
By using miROB intractome online database [mirob.interactome.ru/microRNA_databases], we built a pathoge-
netic processes network for hepatocellular carcinoma. We found 10 of our 15 selected miRNA (miR-148a/b-3p, 
145-5p, 15b-3p, 22-5p, 122-5p, 214-3p, 29c-3p, 149-5p and 491-5p)- the rest are not identified in the miROB 
intractome database (miR-199a/b-3p, 194-5p, 9-3p and 548c-5p)- are predicted to block/inhibit the expression of 
high number of genes (85% target genes) involved in the biological processes and pathways of the hepatic cancer 
stemness and chemoresistance (Fig. 1). That was a first step to proceed forward in our aim and to suggest the role 
of these miRNAs as hepatic cancer stemness suppressors. We compiled both the validated and predicted targets 
that are common between our selected bioinformatics target prediction tools and compared them to the signifi-
cantly up-regulated genes expressed in HCSC and chemoresistant hepatic cancer cells in the literature and GEO 
database to pick the possible targets to our selected miRNA (Supplementary Table S1). In the target set, we found 
31 target genes were originally collected out of the literature mining, and 158 target genes from the GEO datasets. 
Of these targets, we found around 16% are validated and 84% are predicted targets. Moreover, the STRING analy-
sis showed the high functional connectivity between the targets; 157 of the 189 targets are closely linked together 
in one cluster (Fig. 2a).

To understand and get more insights for the functional role of the selected miRNA-targets in hepatic cancer 
stemness, the cancer stemness related pathways (KEGG pathway) enrichment analysis and biological functions 
(GO) classification of the differentially HCSC-up-regulated targets were performed (Fig. 2b,c). The result revealed 
that the up-regulated genes were mainly categorized into 53 statistically significant cancer related pathways that 
form strong associations to cancer stem cell and drug resistance hallmarks (Supplementary Table S2). Also, the 
top GO terms for biological functions covered the main hallmarks and the pre-metastatic niche of the CSCs 
including cell cycle arrest, positive regulation of EMT, cell growth, negative regulation of apoptotic process, 
response to drug and positive regulation of cell proliferation. It is also noteworthy that the most significantly 
enriched term was the regulation of transcription (Supplementary Table S2). Taken together, our results strongly 
suggest the selected down regulated miRNAs to be studied as suppressor miRNAs for the main pathways and 
processes associated with CSCs and drug resistance in liver cancer.
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The HCSC miRNA-TF feed forward and feedback loops (FFLs & FBLs).  Since we found the regula-
tion of transcription is the most enriched term for our targets, we sought to define the target genes controlled by 
the significantly enriched TFs and to investigate the miRNA-TF mediated FFLs and FBLs among them, hence we 
can find more clues for regulation of the HCSC. Using RegNetwork software27, we got 32 TFs inside the miRNA 
targets (Supplementary Table S1). Because the miRNA and TF can regulate the same target, we constructed 249 
FFLs, of which 157 miRNA-FFLs, 75 TF-FFLs and 17 composite-FFLs (Supplementary Table S3), proving that 
in our system, the miRNA-FFLs were the prominent networks regulating the HCSC development. By testing the 
significance of the miRNA-FFLs via the randomization test using FANMOD software28, we found that they are 
highly significant (P ≤ 0.001), indicating the strong relativity of the selected miRNAs, TFs and target genes in the 
HCSC and drug resistance characteristics. We could not construct more than two verified HCSCs miRNA-FFLs 
networks using the verified regulations (yellow highlighted rows in miRNA-FFL table; Supplementary Table S3), 
which suggests the novelty of the recommended new regulatory mechanisms included in our miRNA-FFL net-
works. Moreover, as the miRNA and TF can also regulate each other we also could construct 4 novel feedback 
loops.

The HCSC miRNA-TF co-regulatory network.  HCSC miRNA-TF co-regulatory networks are effective 
way to study the hepatic cancer stemness gene regulation. To construct a co-regulatory network of HCSC and 
drug resistance development, we merged the FBLs and the miRNA-FFLs. Thirteen HCSC-miRNAs (87% of the 
selected miRNA), 16 HCSC-TFs (50% of the targeted TFs) and 58 HCSC- target genes formed 87 nodes and 266 
edges in our network (Fig. 3). In this co-regulatory network, miR-214 and TFAP2A form the largest sub-network 
to co-regulate many genes (14 miRNA-FFLs) and both have verified association with HCSC and CSC develop-
ment29,30. Some of these correlations are consistent with the experimentally verified ones, such as, miR-214 roles 
to repress TFAP2A, NRAS and FSCN131,32. Moreover, IGF1R, TNPO1 and FASN are experimentally validated 
targets for TFAP2A, as annotated by RegNetwork software, and are involved in multiple cancer stemness and 
drug resistance processes30,33–35.

miRNA-TF sub-networks role in regulating HCSC.  For better understanding of the HCSC regulation 
and interpreting the reliability of our regulatory network, hubs have been selected according to the criteria men-
tioned in the Methods. We selected 9 regulators including 4 miRNA hubs (miR-214, miR-548c, miR-145 and 
miR-148a) and 5 TF hubs (MYC, TFAP2A, E2F1, E2F2 and E2F3) and 7 target gene hubs (SLC7A5, CAMKIIA, 
NAA15, NRAS, CCNA2, IGF1R and CCNT2). All the hubs were found to be strongly connected as shown in 
the extracted hub sub-network (Fig. 4a). MYC here is a very rich hub regulated by 3 miRNA and 9 TFs, while 
it regulates 2 miRNA and 43 genes of the HCSC up-regulated targets. Moreover, it links to 5 of the 7 hub genes. 
Out of the hub sub-network, we found E2F3 has been shown to be the most regulated gene by 6 hub elements (4 
miRNA and 2 TFs), while it regulates 4 hub elements (3 genes and a TF). Of the hub miRNAs, miR-148a is the 
most promising one to be regulated by 2 hub TFs and regulates 8 hub elements (3 TFs and 5 genes). The hub genes 
here are related to many enriched biological processes and pathways supporting the cancer stemness and drug 
resistance traits such as anti-apoptosis, proliferation, poor differentiation and EMT (Supplementary Table S2).

It is noteworthy to mention that, the gene having the highest number of in-miRNA-TF common edges in our 
network is SLC7A5, which is related to essential amino acid (EAA) intake and confirms the importance of the 
EAAs metabolism for maintaining the hepatic cancer stem cell phenotype36,37. This is also confirmed here with 
the significant enrichment of SLC7A5 in the central carbon metabolism in cancer, which has essential role in CSC 
metabolic niche35. We here suggest a possible direct correlation between SLC7A5 and glutamine metabolism on 

Figure 1.  HCC pathogenetic network of the selected HCSC down-regulated miRNAs. (a) Network and (b) 
chart are created by miROB online database. Arrows and bars in red indicate the negative effect of the miRNA 
on the targeted biological process, while green arrows show the positive effect. (c) The graph indicates the 
number of miRNA target genes to promote (with HCC) and to suppress (against HCC) HCC.
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Figure 2.  The functional enrichment analysis of the HCSC up-regulated target proteins. (a) STRING network. 
DAVID enrichment analysis represents the involved (b) biological processes (GO) and (c) pathways (KEGG).

Figure 3.  The proposed co-regulatory network of HCSC. The network created by MATLAB. Green circles are 
TFs, yellow rectangles are target genes, red triangles are miRNA, and purple triangles are miRNA acting also as 
TF target genes. Red edges are directed from miRNA, while green edges directed from TF to their targets.
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hepatic cancer stemness which may be supported by Liao et al. They have reported that, the deprivation of glu-
tamine inhibits the glutathione synthesis and disrupts the redox balance of the CSC. This increases the reactive 
oxygen species (ROS) level, which reduces the stemness characteristics and drug resistance by degradation of 
β-catenin and decrement of ABCG2 expression, respectively37. Also, it has been reported that, the increase of ROS 
levels can lead to CSC apoptosis38.

Moreover, it has been reported that, although its function remains to be elucidated, the overexpres-
sion of NAA15 is strongly related with the cancer poor differentiation. The homology of NAA15 to yeast 
N-acetyltransferase (NAT) 1 may indicate its function in protein acetylation, which has great impact on cel-
lular differentiation, growth and apoptosis39. This has been also confirmed by involvement of NAA15 into our 
GO enriched biological processes of positive regulation of transcription and negative regulation of apoptotic 
process. The expression level of the cell cycle regulators (i.e. CCNT2 and CCNA2) has been linked to cell cycle 
progression and cancer growth. CCNT2 is a member of cyclin family that facilitate the transcription activity of 
RNA polymerase II by regulation of cyclin-dependent kinase (CDK) kinase during the cell cycle. Moreover, in 
the gastrointestinal tract tumors, the bile acid receptor FXR dependent suppression of cancer cell proliferation 
has been suggested to be through suppression of CCNA240,41. In addition to sharing of IGF1R and CAMKIIA 
in HIF-1 signaling pathway in our enriched cancer stemness pathways, high IGF1R and CAMKIIA expression 
enhances the carcinogenesis by inducing the stemness, chemoresistance and anti-apoptosis. It has been reported 
that, IGF1R induces drug-resistivity of Huh7 against anti-cancer agent, through inhibition of caspase-3. Also, 
CAMKIIA has anti-apoptotic effect through activation of NFκB, which in turn activates the sarco/endoplasmic 
reticulum Ca2+-ATPase (SERCA) to enhance the survival of CSC under the metabolic stress33,42. This result sug-
gests the hubs to have important controlling effects through different regulatory roles in HCSC development. So, 
we are here suggesting several novel routes of hepatic cancer stemness and drug resistance regulation dependent 
on our hub genes.

The previous result attracted our interest to study the significance of our network by checking the FFL and FBL 
sub-network of the miR-148a regulation in the HCSC (Fig. 4b). Several studies identified the role of miR-148a in 
pathogenic processes related to the CSC such as, chemoresistivity and EMT, which suggest it as a therapeutic tool 
for hepatic cancer stemness17,43. By extending the bridges of our sub-network with the literature survey results, we 
confirmed the oncosuppressor model of miR-148a through inhibition of cancer stemness by targeting SMAD2 in 
HCSC, AKT2 and KLF4. SMAD2 is a key player for the TGF-β signaling pathway in the initiation of the hepatic 
cancer, where it induces the EMT and CSC-like properties and markers. MiR-148a has been shown to inhibit 
cell proliferation and EMT properties in bladder cancer through ERBB3/AKT2/c-myc and ERBB3/AKT2/Snail 
signaling. KLF4 inhibition was shown to suppress the cyto-protective autophagy process, which is considered as 
a source of energy for the anti-apoptotic gastric cancer cells17,43,44. Also, we proposed miR-148a targeting more 
genes with oncogenic effects such as, NAA15, IGF1R, SLC7A5, CAMKIIA, CCNT2 and NRAS, etc. In addition, 
we proposed that TFAP2A, FOSB, E2F1 and JUNB may regulate the expression of miR-148a. These results and 
links confirm the significance of our networks and suggest more therapeutic roles for up-regulation of miR-148a 
to suppress hepatic cancer stemness through targeting many processes such as cell cycle progression, drug resist-
ance, HCSC redox and metabolic balance.

hsa-mir-148a-3p SMAD2
hsa-mir-148a-3p MYC
hsa-mir-148a-3p WASL
hsa-mir-148a-3p CDKN1B
hsa-mir-148a-3p CCNA2
hsa-mir-148a-3p MYCBP2
hsa-mir-148a-3p AKT2

E2F1 CCNA2
E2F3 CCNA2
MYC NRAS
MYC CDKN1B
MYC CCDC6

TFAP2A TNPO1
TFAP2A KIT
TFAP2A MYC

Verified Correla ons

a

b

Figure 4.  Sub-networks extracted from the HCSC miRNA and TF regulatory relationships. (a) Sub-network 
among the representative hubs. (b) The miR-148a sub-network model. Red edges are directed from miRNA, 
while green edges directed from TF to their targets.
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Discussion
Hepatic cancer stem cells are strongly considered as the tumor initiator and main players for the cancer relapse 
and chemoresistance2. This study opened a window on the roles of the selected down-regulated miRNAs and 
their predicted and validated targets in the hallmarks of the hepatic cancer stemness development and drug 
resistivity. Moreover, as we found many TFs as miRNA targets, we evaluated the co-regulation of the miRNAs 
and TFs for the HCSC related up-regulated genes. We revealed that, the different means of this co-regulation may 
control many significant pathways in HCSC development. For the first time, we constructed novel cancer stem-
ness miRNA-TF FFL networks to uncover new regulatory mechanisms. We also proposed new bridges linking 
up many published results about these important hepatic cancer stemness and drug resistivity pathways. So that, 
we widen the scope to understand more roles for the selected miRNA over the experimentally validated ones and 
shed the light over the mechanisms involved in the HCSC development.

In agreement with the previous reports and reviews, our results proved the significant roles of the selected 
miRNAs on suppressing the pathways and biological processes associated with the cancer stemness such as, cell 
cycle, apoptosis, adherence junction, EMT and Wnt, TGF-β, PI3K-Akt, MAPK, ERBB and neurotrophin sig-
naling pathways8,9,29,43. Also, we found many signaling pathways regulating cancer stemness that can be con-
trolled/targeted by our selected miRNA panel such as, FoxO, HIF-1, and Hippo signaling pathways. The PI3K/
Akt/mTOR signaling pathway activation could induce stemness traits through decreasing the ROS levels. The 
PI3K/Akt/mTOR signaling pathway activates nuclear localization of FoxOs and stimulates the hypoxia-inducible 
factor- 1α (HIF-1α), which in turn stimulates the transcription of FoxOs, that regulate the catalase production 
and ROS removal45. This agrees with the ongoing wave of research in oncology that the antioxidant defense is 
fundamental for maintenance of stemness and drug resistance in cancer cells45,46. In addition to their roles in 
the maintenance of redox balance inside the CSCs, FoxOs transcription factors translocation into the cytoplasm 
prevents the expression of death receptor ligands to enhance the survival of the cancer cells47. The CSCs-like 
properties of EMT and chemoresistance are also maintained via HIF-1α activation of, not only FoxOs, but also 
SIRT1 production mediated by NFκB pathway48. Target genes such as those involved in the Wnt and TGF-β path-
ways can inhibit Hippo pathway and accumulate YAP/TAZ proteins. This consequently induces EMT stimulated 
by TGF-β pathway and drug resistance via different mechanisms such as, actin remodeling or connective tissue 
growth factor (CTGF) production49. These results suggest our selected miRNAs may overcome the resistance of 
the CSC to the known drug targets by inhibiting more signaling pathways involved in the development of hepatic 
cancer stemness.

Our analysis also showed the proposed great impact of the selected miRNAs to act as oncosuppressors and 
control some novel significantly enriched pathways, which do/might enhance the crosstalk between the HCSC 
and its microenvironment. These pathways include the pathways regulated by hormonal and metabolic changes 
(i.e. Proteoglycans in cancer, Choline metabolism in cancer, Sphingolipid signaling pathway, Prolactin signal-
ing pathway, Thyroid hormone signaling pathway, Glucagon signaling pathway, Insulin signaling pathway and 
Central carbon metabolism in cancer), neurogenic (i.e. Axon guidance) and immunological pathways (i.e. T cell 
receptor signaling pathway, Inflammatory bowel disease (IBD), B cell receptor signaling pathway and Chemokine 
signaling pathway) and pathways featuring the stem cell pluripotancy (i.e. Signaling pathways regulating pluripo-
tency of stem cells and Oocyte meiosis). Moreover, there are many enriched pathways linked to the development 
of other cancers, which proposes the significant links of the selected miRNA to inhibit, may be in the same way, 
the development of many other tumors.

We found that many of the HCSC-miRNA targets are enriched significantly as transcription factors and the 
other targets are mostly common targets to the miRNAs and TFs in consistence with the concept of Cui et al.50. 
The previous result drove us to construct the FFLs and FBLs for investigation of the co-regulatory mechanisms 
of HCSC miRNA-TF. We found the extracted hub elements of these networks (Fig. 4a) are highly connected 
and reported to have experimentally validated important roles in cancer stemness hallmarks development. For 
instance and in accordance with Chen et al. and Khan et al., who defined E2F family emerging roles in EMT and 
cancer cell proliferation via cell cycle progression51,52. We found here 3 members of E2F family as hub elements 
for hepatic cancer stemness promotion. Not only the hub elements, but it is noteworthy that the extracted sub-
networks such as the miR-214 and TFAP2A may shed the light on the importance of the sumoylation pathway in 
maintenance of the hepatic cancer stemness. Small ubiquitin-like modifier (SUMO)-conjugated TFAP2A tran-
scription factor induces the expression of CD44, which maintain the cancer stemness characteristics of breast and 
colorectal CSCs30. Moreover, the miR-148a subnetwork showed interesting results that linked several pathways in 
pathology of HCSC. The resulted networks could work as a bridge for the previously reported results and consid-
ered as a step for more studies to experimentally validate these links.

Here, we also proposed a partial model (Fig. 5) based on the links we found in our study, which may illus-
trate the possible crosstalk between several pathways such as, JAK/STAT, Wnt, TGF-β, PI3K signaling pathways 
involved in the HCSC pathology and possible blocking of these pathways through our suppressor miRNA panel. 
Studies showed that TGF-β regulates the cancer stem cell self-renewal and differentiation properties via inducing 
leukemia inhibitory factor (LIF) and IL-11 activation of the JAK/STAT pathway and STAT3 phosphorylation in 
glioblastoma and colon cancer, respectively. Also, inhibition of STAT3 activation was shown to reduce cancer 
stemness and sphere formation. Blocking of Wnt signaling pathway has been reported to inhibit Wnt dependent 
gene expression of the stemness markers, EMT, metastasis and sphere formation. Moreover, the PTEN, an inhib-
itor for the PI3K signaling pathway, represses the expression of stemness and drug resistance markers OCT4, 
SOX2, NANOG and MDR1 in glioblastoma. mTOR is considered a main player of the stemness and drug resistiv-
ity induced by PI3K pathway16,53–55. Here and as a result of linking the reported results and our predicted correla-
tions, the model is partially proposing the crosstalk of all these pathways to enhance the hepatic cancer stemness 
in means of: 1- MYC and STAT3 may connect JAK/STAT, Wnt and PI3K in HCSC to activate expression of 
CD44 stemness marker, mTOR as a self-renewal and drug resistance inducer and inhibit apoptosis via activation 
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of Bcl2. We also showed a significant enrichment of metabolic, hormonal and immunological pathways that 
might enhance the microenvironment of the HCSC dependent on MYC and/or STAT3 such as, Proteoglycans 
in cancer, Prolactin signaling pathway, Thyroid hormone signaling pathway, Central carbon metabolism in can-
cer, Inflammatory bowel disease (IBD) and Chemokine signaling pathway (Supplementary Table S2). 2- Smad3, 
β-catenin and CRBBP complex may connect TGF-β and Wnt pathways in HCSC to induce EMT through high 
expression level of α-smooth muscle actin (α-SMA). 3- CAMKIIG may increase hepatic cancer stemness char-
acteristics by inducing the expression of MYC in β-catenin dependent manner and stemness markers, Oct4 and 
SOX2, expression via induction of AKT phosphorylation. Also, our functional enrichment analysis suggested 
CAMKIIG to regulate the HCSC microenvironment through regulation of Proteoglycans in cancer, Neurotrophin 
signaling pathways, Glucagon signaling pathway and Oocyte meiosis pathway (Supplementary Table S2).

The limitation of this study might be that, 1- Some of the targets are shown to be validated according to 
DIANA-TarBase, but we found the way of validation is indirect or unknown and, then included these targets as 
predicted. 2- The number of the HCSC oncosuppressor miRNA may be more than our selected miRNA, but we 
tried to collect the most confirmed down-regulated ones. 3- Other limitation, some of the collected significantly 
up-regulated targets in this study were shown in the literature to be liver oncosuppressors such as, AXIN156. One 
probability is that the up-regulated gene is mutated57 or has a role in drug resistivity, but not directly in stemness 
characteristics. So that, our study suggests more experimental and mutational studies to prove the predicted roles 
of such genes in liver cancer stem/resistant cells.

In conclusion, we could link up miRNA, TF and their targets in networks to support more understanding of 
the HCSC regulation and to guide more researches for validation of these links. Also, our results and proposed 
model may suggest therapeutic strategies by targeting the enriched pathways via the selected oncosuppressor 
miRNA panel. Inspiring from the hub elements and the functionally enriched pathways in our study, we are 
confirming some recommended and suggesting new therapeutic targets for inhibition of these enriched path-
ways. For example, 1- Targeting MYC protein, which regulates cell cycle and drug resistivity represented here 
in controlling CCNT2 and IGF1R, respectively. MYC is also considered as a linker between several signaling 
pathways to maintain the liver cancer stem cell phenotype, microenvironment and drug resistance as shown in 
our results and others58. 2- Targeting E2F family, especially E2F3, aiming for cell cycle arrest and anti-proliferative 
effect on the HCSC41,51. 3- Targeting of SLC7A5 protein to inhibit the essential amino acid uptake and metab-
olism, hence inhibiting the metabolic niche and induction of the oxidative stress in cancer stem cells36,37. (4) 
Targeting CAMKIIG, which might inhibit several pathways regulating different aspects in HCSC properties and 
microenvironment.

Methods
Collection of HCSC down-regulated miRNAs.  To collect a set of significantly down-regulated miRNAs 
in HCSCs, we performed an extensive literature mining, in order to search for studies that detected the signifi-
cantly down-regulated miRNAs (P < 0.05) in HCSCs. These miRNAs were derived from HCC patients, two or 
more hepatic cancer stem-like cell lines, or at least one hepatic cancer stem-like cell line, but the miRNAs derived 
from a single hepatic CSC-like cell line was reported to have a role against hepatic cancer stemness. We excluded 

Figure 5.  The proposed model of the interacted HCSC pathways regulated by the selected miRNAs and TFs. 
Solid lines are the experimentally validated, while dashed lines are the predicted correlations. Red lines are 
directed from miRNA, while green lines directed from TF to their targets.
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the down-regulated miRNAs with reported dual role in cancer stem cell development. We used PUBMED search 
tool using the keywords “(hepatic cancer stem cells OR drug resistant hepatic cancer stem cells) AND (miR-
NAs)8,29,59,60”. We also searched using Gene Expression Omnibus (GEO) database [ncbi.nlm.nih.gov/geo/] with 
the same keywords for screening a large deal of functional genomic and epigenomic studies and found the GEO 
dataset of accession number GSE66529. PhenomiR knowledgebase [tools4mirs.org/software/mirna_databases/
phenomir/] was also searched for confirming the selected microRNA expression in HCC and their related biolog-
ical processes. The identified set of miRNAs was entered to miRBase [mirbase.org] to get the accession numbers 
of their mature forms.

MicroRNA target genes prediction and identification.  Firstly, microRNA target analysis was done 
using miRWalk 2.0 server [mirwalk.uni-hd.de/]. MiRWalk is a comprehensive database from which both pre-
dicted and experimentally validated miRNA-target could be obtained61. MiRWalk target prediction server 
provides miRNA targets obtained from the intersection of different prediction algorithms. In our analysis, we 
selected the target prediction algorithms: miRWalk, Targetscan v7.0, miRanda, RNA22, Mirmap, and Pictar to 
obtain the common predicted targets with cut off p-value < 0.05. Also, to widen our human target search, we 
added the targets predicted by miRanda [microrna.org] using the filter of (view target sites with all miRNAs 
with good mirSVR scores) and confirmed the binding site by RNA22 [cm.jefferson.edu/rna22/] and/or intaRNA 
[http://rna.informatik.uni-freiburg.de/IntaRNA/Input.jsp]. Secondly, we collected the significantly up-regulated 
HCSC genes (P < 0.05) from GEO datasets of GEO accession numbers GSE73571, GSE59713 and GSE47932 and 
from the literature mining in PUBMED search tool using keywards (“hepatic cancer stem cells OR drug resistant 
hepatic cancer stem cells) AND (genes OR gene expression profile OR gene expression array”)59,62–67. We curated 
the up-regulated target genes from data derived from HCC patients or two or more hepatic cancer stem-like cell 
lines. Then, we selected only those target genes up-regulated in HCSC and drug resistant hepatic cancer cells, by 
comparing the common targets coming from the target prediction tools with those HCSC up-regulated targets 
got from the literature mining and GEO datasets. Both predicted and validated targets of each selected miRNA 
were merged together in a target list, and then integrated to undergo subsequent enrichment analysis.

Functional annotation enrichment analysis and pathogenic network inference.  Functional 
enrichment analysis for the obtained miRNA targets was performed using DAVID server [Database for 
Annotation, Visualization and Integrated Discovery], [david.ncifcrf.gov], which provides the most enriched gene 
ontology (GO) terms as well as pathways from several databases such as KEGG, Biocarta, Reactome and others 
offering the most relevant functions in which a certain gene list can be involved68. The most essential enriched 
gene ontology annotations and pathways, which are extracted from DAVID with Bonferroni correction and false 
discovery rate (FDR) correction for multiple testing by filtration P value < 0.05 in responses to the hepatic cancer 
stemness and chemoresistance, were then deeply studied. To predict the proposed role of the selected miRNA, 
we used miROB database [mirob.interactome.ru/microRNA_databases] and built a pathogenetic processes net-
work for hepatocellular carcinoma using the selected set of miRNAs as an input. In addition, STRING network 
database [string-db.org] was used to obtain functional protein interaction networks between our miRNA targets.

Prediction of regulatory interactions between miRNA, target genes and TFs.  We used the tar-
gets of our miRNA set that act as transcription factors (TF) to explore the miRNA-TF-Gene regulatory inter-
actions. We could obtain the combinatorial regulatory interrelations between miRNAs, TFs and genes using 
RegNetwork database [regnetworkweb.org]27. RegNetwork collects a list of TFs for human and mouse from 
FANTOM, UniProt, TRANSFAC and JASPAR. RegNetwork provides the experimentally validated, as well as the 
predicted transcriptional and post-transcriptional regulatory interactions using KEGG, TRED, TRANSFAC and 
JASPAR databases depending on the transcription factor binding sites (TFBS). The TFBS conservation data in 
RegNetwork database were collected from the UCSC Genome Browser and Ensembl databases. The RegNetwork 
confirms the conserved binding sites by computing a score not less than the threshold score for the data provided 
from UCSC Genome Browser, which are calculated by TFLOC program and LiftOver tool of UCSC, and by doc-
umenting the alignment information of Ensemble database using MOODS software27.

Generation of Feed forward (FFL) and feedback loops (FBL) and statistical analysis.  We sum-
marized the miRNA, TF and gene interactions and constructed miRNA-FFL, TF-FFL, Composite-FFL and FBL 
manually as shown in the Supplementary Table S3; sheet 2–5 according to the flow chart in Fig. 6. Then, we tested 
the significance of miRNA-FFL by running random permutation using FANMOD tool. Only motif found more 
than 5 times of Z-score higher than 2 and p-value < 0.05 in FANMOD export settings was considered signifi-
cantly enriched. According to the program manual, firstly, we converted each element in the miRNA-FFL into 
number manually and arranged them as binary correlations (edges), each per line in a notepad.txt file (i.e. in the 
first miRNA-FFL between hsa-mir-148a-3p, E2F1 and CCDC6, the hsa-mir-148a-3p, E2F1 and CCDC6 are enu-
merated as 1, 2 and 3, respectively), so their arrangement were as following:

1 “tab” 2
1 “tab” 3
2 “tab” 3

Then, we selected this file within the input graph frame and chose the network to be directed. The algorithm 
options were selected to be full enumeration and the subgraph size of 3. In the randomization test, the motifs are 
detected by comparing their frequency of occurrence in the original network to their frequency of occurrence 
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in a number of similar, yet randomized networks. We used 10,000 random networks with the default settings of 
local constant number of bidirectional edges and edge exchange parameters (3 exchanges per edges and 3 tries 
per exchange). The p-value was set to be the number of random networks in which the motif occurred more often 
than in the original network, divided by the total number of random networks.

HCSC co-regulatory network, sub-networks and hub analysis.  To construct a proposed HCSC 
co-regulatory network, we merged the miRNA-FFL and FBL, then we implemented two computer programs 
to process and visualize the resulting network elements (nodes and edges). Briefly, we developed a computer 
program using the Matlab® programming environment [Matlab© release 2017a, The MathWorks, Inc., Natick, 
Massachusetts, United States] to summarize the relationships among pairs of miRNAs, TFs, and Genes from the 
input dataset shown in the Supplementary Table S3; sheet 6. The relationships corresponding to these pairs can 
intuitively be visualized as “from X to Y”, where X and Y are the pairs in a relationship. We labeled the whole input 
dataset as Reg. The dataset, Reg, is represented in this program as an “N by 3” matrix (i.e., a matrix with N rows 
and three columns; Supplementary Table S3; sheet 6). Based on this Reg matrix, our program implementation 
extracted all kinds of the required relationships as output formalized by defining the following two set-theoretic 
categorizations (called R and G) of equations (1) and (2):

	 (1)

	 (2)

Our hand-coded programs are implemented in a way that discovers and deletes duplicates, so that the visu-
alization neither repeats the same nodes nor repeats the same edges between the same nodes. As a second step, 
the summarized relationships resulting from our hand-coded computer program were used as an input to a 
general-purpose diagramming application [yWorks GmbH (2018). yEd Graph Editor [software: r.3.18], retrieved 
from yworks.com/yed], which we used to visualize the whole network in a graph-like structure, with the miR-
NAs, TFs, and Genes being the graph nodes, while the relationships among the corresponding elements being the 
graph edges. We then extracted the hub elements (miRNA, TF or gene) from the different correlations according 
to the following rules modified from21–24: 1- The summation of the out and in edges of the miRNAs and TFs are 
higher than the average. 2- The targets must be common targets for miRNAs and TFs, and the in edges are equal 
or higher than 10. Then, we focused on several sub-networks and hub sub-networks, which were visualized using 
Cytoscape version 2.869.
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