
1

Vol.:(0123456789)

Scientific Reports |         (2022) 12:6031  | https://doi.org/10.1038/s41598-022-09907-1

www.nature.com/scientificreports

The application and limitations 
of exposure multiplication factors 
in sublethal effect modelling
Neil Sherborne1*, Tjalling Jager2, Benoit Goussen3, Marie Trijau3 & Roman Ashauer4,5

Thanks to growing interest and research in the field, toxicokinetic–toxicodynamic (TKTD) models are 
close to realising their potential in environmental risk assessment (ERA) of chemicals such as plant 
protection products. A fundamental application is to find a multiplicative scale factor which—when 
applied to an exposure profile—results in some specified effect relative to a control. The approach is 
similar to applying assessment factors to experimental results, common in regulatory frameworks. It 
also relies on the same core assumption: that increasing the scaling always produces more extreme 
effects. Unlike experimental approaches, TKTD models offer an opportunity to interrogate this 
assumption in a mathematically rigorous manner. For four well-known TKTD models we seek to prove 
that the approach guarantees a unique scale factor for any percentage effect. Somewhat surprisingly, 
certain model configurations may have multiple scale factors which result in the same percentage 
effect. These cases require a more cautious regulatory approach and generate open biological and 
mathematical questions. We provide examples of the violations and suggest how to deal with them. 
Mathematical proofs provide the strongest possible backing for TKTD modelling approaches in ERA, 
since the applicability of the models can be determined exactly.

Assessing the ecological consequences of introducing chemical compounds, such as plant protection products 
(PPPs), into an environment requires some form of environmental risk assessment (ERA). At the individual level, 
an assessment compares the effects that exposure to the substance has on the organism to the level of exposure 
that it is likely to experience in the field. Traditionally, laboratory studies on standard species under relatively 
constant exposure have been used to derive certain summary  statistics1. For instance, a no observed effect con-
centration (NOEC) or an estimated concentration where x% effects relative to the control performance occur 
( ECx ). These statistical results are then compared to a predicted peak or time-weighted exposure concentration 
to derive a toxicity exposure ratio (TER). The final step is to compare the TER to some assessment factor (AF). 
The AF is designed to cover uncertainties relating to extrapolation to different species, conditions and exposure. 
If the TER is greater than the AF then the use case of the PPP is considered low risk. Setting aside the known 
methodological flaws in NOECs and ECx  values2, the approach cannot account for exposures which fluctuate 
over time. Variable exposure is typical in the field and can significantly alter the effects on the individual. Data 
collection and modelling methods exist which generate time series of concentrations present in the environ-
ment over time. For instance, in the aquatic environment, surface water models predict concentration levels 
over time in water bodies near treated fields. We refer to these time series concentrations as exposure profiles, 
since they determine the variable level of concentration organisms will be exposed to over time. ERA methods 
which accurately incorporate time-variable exposure are therefore valuable. However, it is impossible to test in 
the laboratory every exposure profile which may occur in the field.

In recent years, there has been growing interest in mechanistic models which can explain the effects of 
exposure to a harmful substance on an individual, population or community of  organisms3–7. At the individual 
level, toxicokinetic–toxicodynamic (TKTD) models describe how given exposure conditions ultimately translate 
to effects on the organism over  time8. Due to their mechanistic structure it is possible to extrapolate to predict 
effects under a different set of conditions, in particular to untested, time-variable exposure profiles. This ability 
to take into account the whole exposure profile is a great strength of TKTD models.

Within ERA, the pioneer of these models is the General Unified Threshold model of Survival (GUTS)4, a 
TKTD model for lethal effects which has been approved by the European Food Safety Authority (EFSA) for use 
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in ERA of aquatic  organisms7. The GUTS model can be calibrated on standard toxicity tests and used to predict 
the survival probability of an organism exposed to any exposure profile via the exposure multiplication factor 
(EMF) method. Ashauer et al.9 first introduced the concept of the EMF in ERA, although they referred to it as the 
multiplicative margin of safety. An EMF is a scale-factor applied to the exposure profile. Through iterative meth-
ods, it is possible to find an EMF value which corresponds exactly to some chosen level of effects. The approved 
procedure for GUTS in ERA uses this approach to identify the lethal profile for x% effects ( LPx)7. The LPx has 
a similar interpretation as the TER, since it tells us the extent to which the threshold for x% toxicant induced 
mortality is greater than the predicted exposure. However, now that extent is based on the entire exposure profile, 
not a single value. Therefore, risk assessment decisions can compare an LPx to the same AF values used with the 
TER. Although other measures for the potential effects of chemical exposure based on TKTD models  exist5, the 
presumption is that the EMF method will be transferred to other TKTD  models7. For models of sublethal effects, 
the term effective profile ( EPx ) is equivalent to the LPx.

Despite the EMF method gaining acceptance, little attention has been paid to the core assumption that the 
method makes. Namely, that scaling (multiplying) an exposure profile will always identify a unique LPx (or 
EPx ) for any valid x (0–100%). While this may seem intuitively true it is nonetheless an assumption, especially 
for more complex models and variable exposure profiles which may offer significant potential for organisms to 
repair damage and recover from sublethal effects. However, it is important to note that similar assumptions are 
made implicitly for all real-world experiments, and have also not been thoroughly scrutinised. It is thanks to 
modelling that we can test these assumptions at all. Unlike real-world experiments, TKTD models allow us to 
interrogate arbitrary exposures with full knowledge of all state variables at all times. This knowledge means that 
general rules can be identified and proved. A mathematical proof of existence and uniqueness of the LPx (or EPx ) 
value for the TKTD model would put the method on the most solid ground possible.

Recently, Baudrot and  Charles10 calculated expressions for the LPx values for the reduced forms of the GUTS 
model. Their results implicitly show that the LPx exists and is unique for any non-zero exposure profile. However, 
the more complex versions of GUTS, and other prominent TKTD models which will be used for ERA in the 
near future remain untested.

This paper aims to prove the conditions under which unique multiplier values exist for the TKTD mod-
els described as ready for use or approaching readiness in EFSA’s Scientific Opinion on TKTD  models7. The 
models in question are  GUTS4, an example Dynamic Energy Budget (DEB)  model11 and—in the supporting 
information (SI)—the primary producer models for  microalgae12 and Lemna13. The proofs show under which 
circumstances EPx s and similar quantities are guaranteed to exist and be unique. Each proof follows a similar 
philosophy, which should be applicable to other TKTD models. It is impossible to prove results from empirical 
experimental methods in the same rigorous way. However, our results inform experimental and model design, 
from both a scientific and regulatory perspective. Scientifically, any time accepted assumptions are shown to be 
invalid is an opportunity for discovery and improvement, either through model developments or new research to 
fill knowledge gaps. From a regulatory viewpoint there are implications for how to implement the EMF method. 
For instance, if uniqueness of the LPx cannot be guaranteed it is unwise to use a root-finding algorithm without 
some consideration of which LPx—if any—is the right one to use in ERA.

Materials and methods
The exposure multiplication factor approach. It is possible for TKTD models to incorporate many 
different aspects to increase realism, including modelling different  temperature14 and food availability, and mix-
tures of  stressors15. However, there is currently no regulatory guidance on how to deal with the interaction of 
all of these sources of variability. Therefore, they are not currently included in TKTD models for standard ERA 
 applications7. Instead, with the exception of the exposure concentration, all conditions in the model are typically 
fixed to the laboratory conditions maintained during the empirical bioassays. In essence, the model is simulat-
ing in silico versions of standard bioassays, but with many more exposure profiles than would be feasible in 
empirical, laboratory based experiments. We therefore refer to this strategy as a laboratory mimic approach. The 
approach limits complexity by focusing on a more thorough consideration of exposure compared to methods 
which produce single summary statistics.

Once a suitable TKTD model has been calibrated it is possible to run the model with any exposure profile 
and see the effects on the model organism relative to control conditions. For implementations within ERA, 
the model should also be properly validated according to the relevant  guidelines7. An EMF scales the whole 
exposure profile according to that value. An EMF of 10 means that at any time the exposure in the model is 10 
times greater than what is actually specified at that time in the unmodified exposure profile. The goal is to find 
an EMF value which imposes some specified percentage reduction in an aspect of organism performance. Typi-
cally, these will be the same as the measured outcomes in laboratory tests, for example survival probability or 
reductions in growth or fecundity.

The accepted use of GUTS in ERA finds the LPx value based on the survival probability at the end of the 
exposure profile. That is, LP50 is the EMF which causes 50% toxicant induced mortality at the end of the expo-
sure. We will extend the approach to the DEB-TKTD, algae and Lemna models, as is presumed by  EFSA7. For 
sublethal effects, such as growth, reproduction or biomass, the EP10 is the EMF which causes a 10% reduction 
in that quantity compared to control conditions in the model.

To find the LPx (or EPx ) an iterative algorithm tests different EMF values until exactly (within some numerical 
tolerance) x% effects occur at the end of the exposure profile. That EMF is the LPx . For efficiency, a root-finding 
algorithm is often used. Over many iterations the algorithm should converge to the LPx . However, if no LPx 
value exists, the algorithm could either run indefinitely or report the last tested EMF value before it stopped. In 
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cases where multiple LPx values exist algorithms may converge to any of the different—but equally correct—LPx 
values (or produce an error).

In order to construct the proofs, we introduce new notation to signify a state variable which may change in 
response to the EMF. This is best done with an example. Consider survival, denoted by the state variable S(t). 
This is obviously dependent on time t but also, perhaps implicitly, dependent on the EMF, which we will denote 
α . Survival when exposure has (potentially) been altered by the EMF α is denoted by S(t;α) . As a result, survival 
under control conditions (i.e. zero exposure) is equivalent to S(t; 0) for any exposure profile, whereas the response 
to the unmodified exposure profile, i.e. prior to any multiplicative changes, is equivalent to S(t; 1).

Proof methodology. For each model, the critical endpoint will be a change in one or more state variables 
in the model relative to the same variable under control conditions. Therefore we must show that a higher mul-
tiplier value applied to the exposure profile will always cause greater or equal effects on these state variables, a 
property known as monotonicity. Secondly, each variable affected by the EMF should be continuous with respect 
to the EMF, such that there are no values of the EMF which introduce discontinuities or undefined values in the 
state variables. Then, for some desired x% response, all that remains is to show that arbitrarily large EMFs cause 
greater than x% effects. When all these conditions are met, by the Intermediate Value Theorem (IVT) we know 
that some critical EMF leading to exactly x% exists. For uniqueness we also require strict monotonicity (without 
equality) in some neighbourhood of the critical EMF, otherwise the critical EMF will be some interval, rather 
than a single value.

Each of these proofs result in one or more theorems for the corresponding TKTD model. Only the theorems 
are presented in the main text. The details of each proof, and all model equations, are provided in the SI.

Models. The GUTS framework. The GUTS framework is a set of nested models which quantify organism 
survival over time, typically under chemical  stress4. In the full version of the model, uptake and elimination of 
the external concentration occurs according to a simple one compartment ODE which describes the internal 
concentration over time. Internal concentration then induces damage, another one-compartment model with 
accrual proportional to the internal concentration and repair proportional to the current damage. Each organ-
ism has some threshold for sensitivity drawn from a probability distribution, typically the log-logistic function. 
The individual’s probability of death increases linearly according to some rate parameter (the killing rate) multi-
plied by the extent to which damage exceeds the threshold.

Typically, reduced forms of the model (referred to as GUTS-RED) are expected to be used in the ERA of 
 PPPs7,16. These reduced models replace the internal concentration and damage ODEs with a single state vari-
able, scaled damage, so called because it has the same dimensions as the external  concentration4. As a further 
simplification, the death mechanism is simplified to one of two extreme cases. The first of these, stochastic death 
(GUTS-RED-SD), assumes that each organism has the same threshold value, once the scaled damage exceeds the 
threshold, death is a chance process. Secondly, the individual tolerance (GUTS-RED-IT) model takes the killing 
rate to infinity, such that death is instantaneous for the individual as soon as its threshold damage is exceeded. 
These simplifications enable GUTS-RED-SD and GUTS-RED-IT to be calibrated from standard mortality bioas-
says. A full schematic of the model, similar to that presented  in16 is presented in Fig. 1.

The output of the model is the survival probability over time. The goal is therefore to find the EMF value 
which causes an x% reduction in the survival probability due to toxicant induced mortality at the end of the 
exposure profile.

Figure 1.  Schematic of the GUTS model framework. Boxes represent state variables within the model. Red 
ellipses are functions and the exposure profile is the forcing variable. Reduced forms (GUTS-RED) collapse 
the toxicokinetics and damage dynamics boxes into one state variable. The SD death mechanism assumes all 
organisms in the cohort have the same sensitivity threshold. The IT death mechanism assumes immediate death 
once the individual’s threshold is exceeded.
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DEB models. DEB also does not refer to a single model but rather a set of models which share many core 
assumptions. DEB theory uses a number of physical and biological laws to derive a mechanistic model of ODEs 
for the growth, reproduction and survival of an  organism17. DEB-TKTD (sometimes referred to as DEBtox) 
models include additional equations to describe the uptake, transformation and elimination of a substance and 
the stress it causes. As such it can model the endpoints from standard aquatic animal bioassays and make predic-
tions about untested exposures.

The full suite of DEB-TKTD models has recently been reviewed for their suitability for standardised ERA 
applications in the near  future18. For this analysis we will use the recent reserve-less DEBkiss model of  Jager11. 
We chose this model as it is a simple, comprehensive implementation for an animal’s post-birth lifecycle under 
some known exposure profile Cw . This simplicity reduces the amount of data required for model calibration. 
The derivation of the model is presented thoroughly in the original publication. A summary of the model and 
all state variables and model parameters are given in the SI. Here only a brief description is given.

All DEB models consider the assimilation, distribution and dissipation of energy within a single organism. 
In DEBkiss models, energy assimilated through food is immediately split between two branches. The somatic 
branch receives the fraction κ of all assimilated energy. From this energy, somatic maintenance (proportional 
to the volume of the organism) is paid, and the remainder goes toward growth of new structure (biomass). 
This structure is tracked with the state variable structural length, L. The remaining (1− κ) fraction is spent on 
maturation processes. Energy in this branch is first used to pay maturity maintenance (again linked to volume 
in this model) with the remainder being invested in maturation (for juveniles) or reproduction (adults). Here, 
the model of  Jager11 makes two common simplifications to reduce model complexity. Firstly, we assume that 
size is a proxy for maturity, this means that maturation does not need to be modelled; the switch from juvenile 
to adult occurs once the animal has reached a given size. Secondly, the model assumes that reproduction is a 
continuous process rather than discrete. Although untrue, this assumption is useful for many  species19. Cumula-
tive reproduction Rc is the second state variable.

When conditions worsen, for example due to increased exposure, it is possible that the organism will no 
longer have enough energy to pay somatic maintenance. This is starvation. Different species are likely to have 
different responses when this occurs. For our purposes, the model animal ceases growth and redirects sufficient 
energy from the reproductive branch to the somatic branch to pay somatic maintenance. If somatic maintenance 
costs exceed all energy assimilated from food then the animal must also shrink. It does this by burning structure 
to release energy with yield yP , between zero and one. Structural length, L, decreases during this phase.

While different core DEB model variants may be used for numerous reasons, e.g. to better suit the model 
organism, substance or model environment, the TKTD elements differ little between  these18. The best approach 
to utilising DEB-TKTD in ERA is therefore also not species specific. Traditionally, stress in DEB-TKTD models 
was directly linked to the (scaled) internal  concentration17,20. However, experience with GUTS has shown that 
often toxic effects are not well described by the internal  concentration21, and thus a scaled damage state variable 
is now proposed for DEB as well. The uptake and elimination rate of damage is governed by a dominant rate 
constant, kd . Growth and reproduction processes can alter the uptake and elimination of damage, and thus may 
have an effect on damage dynamics. These influences on damage are known as “feedbacks”11. All feedback pro-
cesses are represented as xi , where the subscript changes to describe each process. If uptake or elimination occur 
across a membrane (e.g. the skin) which grows as the organism grows, then the surface area to volume ratio will 
affect the rate of either process. This ratio changes over time. These feedbacks are denoted xu and xe respectively. 
Additionally, damage can also be diluted, either by growth ( xG ) or by reproduction ( xR ). Each process may or 
may not be relevant for any given stressor, this is represented by a binary vector

Under this scheme, traditional DEB-TKTD models which used internal concentration, have X = [1, 1, 1, 0] . 
Suggestions on when each feedback is likely to be active ( X i = 1 ) or inactive ( X i = 0 ) are given by  Jager11.

Above some tolerance threshold, damage creates stress, s, to the organism, which increases linearly, just as in 
the GUTS framework. This stress then perturbs one or more processes according to the physiological mode of 
action (pMoA) of the substance. Standard pMoAs are an inhibition to assimilation, sA , increased maintenance 
costs, sM , increased growth costs, sG , increased reproduction costs, sR and hazard to the embryo during oogen-
esis, sH . Stresses not active for a given pMoA are zero. We will sometimes refer to the pMoA as a binary vector 
S such that

It is common to couple a DEB-TKTD model to a survival module following the GUTS-RED-SD 
 framework22,23. We will also follow this approach to extend the utility of the results. The survival probability 
state variable is denoted by S. A full schematic of all elements of the model is given in Fig. 2.

Comparing the schematics in Figs. 1 and 2 shows the similarities in many elements of the model structures. 
For both models, the core elements of damage accumulation and repair are first-order processes. Indeed, if there 
are no feedback processes ( X = [0, 0, 0, 0] ) the survival probability over time predicted by the DEB-TKTD model 
will be identical to a GUTS-RED-SD model.

The extra complexity of the DEB model means that the model organism is no longer constant over time, it 
grows and reproduces. This introduces new state variables for these processes which can also be affected by stress, 
and investigated with the EMF approach. Additionally, the growth and reproduction processes can impact the 
damage uptake and elimination processes through the feedback processes. These processes are not included in 
a GUTS model, since there the model organism is not changing over time. For more information on GUTS and 
DEB models, see EFSA  20187.

(1)X := [Xu,Xe ,XG ,XR].

[sA, sM , sG , sR , sH ] = s × S.
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For this DEB model there are three model outputs which could be assessed with the EMF approach: reduction 
in size, fecundity or survival at the end of the exposure profile. Each of these relates directly to one of the state 
variables in the DEB model, L, Rc or S, respectively.

Results
The GUTS model. For completeness, we will prove the result for the most general GUTS model, which will 
also prove the result for all reduced forms.

Theorem 1 For any model version within the GUTS framework, let S(t;α) denote the survival probability at time 
t for a given non-zero exposure profile Cw(t) scaled by some EMF value α . For any chosen x > 0 percentage effect 
(exposure-induced mortality), model end time tE and background mortality hb low enough such that S(tE; 0) > 0 
there exists a unique EMF α∗ such that

α∗ is the LPx for the exposure profile.

Baudrot and  Charles10 calculated LC50 values for GUTS-RED-SD and GUTS-RED-IT. Their results implied 
the result of Theorem 1 for the main regulatory models. Our work makes the result explicit and generalises it 
to the whole GUTS framework. Another result of Theorem 1 is that the LPx is monotonically increasing with 
respect to x. For example, the LP50 will always larger than the LP10 for the same exposure profile. This result 
comes directly from (S4) in the SI.
DEB models. Due to the additional complexity of the DEB model we split the result into multiple theorems 
and proofs, starting by showing continuity and monotonicity of the damage ODE.

Theorem 2 Let Cw be some external concentration over time. Assume an effects model where the effects of higher 
exposure on growth and/or reproduction are always adverse (or zero) at all points in time. Then, defining the scaled 
damage ODE as

Then, for any combination of feedbacks X = [Xu, 0,XG ,XR] , damage is monotonically increasing with respect 
to α , and is continuous with respect to α as long as changes to L and R are continuous. Moreover, damage is strictly 
monotonically increasing with respect to α whenever D(t; 1) > 0.

The limitation that Xe = 0 will be discussed in greater detail later. However, depending on the pMoA of the 
stressor we can extend the result of Theorem 2 slightly.

(2)S(tE;α∗) =
(

1−
x

100

)

S(tE; 0),

(3)
D(t;α)

dt
=kd(xuαCw − xeD)− (xG + xR)D.

Figure 2.  Schematic of the DEB-TKTD model. The exposure profile acts as a forcing variable on the scaled 
damage. The life-history diagram shows the energy fluxes within the organism. The stress function affects one 
or more processes marked by the ellipses. Damage also affects survival probability through the GUTS-SD death 
mechanism. Feedback processes (1) mean that growth and reproduction can alter the uptake and elimination of 
damage.



6

Vol:.(1234567890)

Scientific Reports |         (2022) 12:6031  | https://doi.org/10.1038/s41598-022-09907-1

www.nature.com/scientificreports/

Corollary 3.1 If the pMoA of a substance directly affects reproduction and does not affect growth, i.e. 
S = [0, 0, 0, sR , sH ] then the results of Theorem 2 holds for any combination of feedbacks.

Finally, we can step from the results of Theorem 2 and Corollary 3.1 to show the existence and uniqueness of 
a critical multiplier ( EPx or LPx ) for growth, reproduction and survival.

Theorem 3 Consider the DEB-TKTD model of Jager11 and a substance such that at least one of Theorem 2 or 
Corollary 3.1 hold. Further, let Cw(t) be a non-zero exposure profile where the time of first exposure is before t1 as 
defined in Table 1. Then, for any chosen percentage effect level x > 0 there exists a unique EMF α∗ > 0 such that

this α∗ is the EPx (or LPx ) for the exposure profile Cw(t).

The monotonicity of effects on all state variables in the DEB model means that, for the conditions described 
in Theorem 3, the EPx (or LPx ) is also monotonically increasing with respect to x.

We should note here that one can either setup an algorithm to find the critical multiplier value for growth, 
reproduction and survival individually and then select the minimum or setup the algorithm to directly find the 
minimum critical multiplier as in (4). Both will produce the same result, but the second approach is likely to 
be faster.

One could argue that ERA should consider the combined effects of lethal and sublethal stress on the indi-
vidual’s fitness. This is possible using the continuous form of the Euler–Lotka  equation24

where B(t) is the number of births at time t, l(a) is the fraction of females which survive to age a and b(a) is the 
birth rate for mothers of age a. For the offspring of a test population which all have the same age (as is the stand-
ard in long-term toxicity experiments) this integral collapses to a single point, B(t − a) = 1 when t = a and zero 
elsewhere. The DEB model provides exactly the values which we need to calculate B(t). Namely

One can now find the births per individual per time predicted by the DEB model as

Integrating (6) over the duration of the experiment gives the expected number of offspring produced per 
female alive at the start of the test.

There are two clear options for how to proceed. Firstly, one could calculate 
∫ tE
0

B(t)dt for each EMF and 
compare it to the control, similar to finding EPx values for individual endpoints. Alternatively, one can use B(t) 
as the basis to estimate the intrinsic population growth  rate25. This quantity provides an estimation of population 
growth based on the survival and fecundity over time of individuals. Indeed, it is listed as a potential output value 
in the experimental guidelines for standard Daphnia magna reproduction  tests26. For the first of these options 
we offer an extension to Theorem 3.

Corollary 3.2 Consider a DEB-TKTD model and exposure profile such that Theorem 3 holds. The number of 
expected offspring per female, given by

(4)min

(

L(tE;α∗)

L(tE; 0)
,
Rc(tE;α∗)

Rc(tE; 0)
,
S(tE;α∗)

S(tE; 0)

)

= 1−
x

100

(5)B(t) =

∫ t

0

B(t − a)l(a)b(a)da,

l(a) = S(a), b(a) =
d

dt
Rc(a).

(6)B(t) = S(t)
d

dt
Rc(t).

Table 1.  Table of the state variables and pMoAs (including combinations of pMoAs) in the DEB-TKTD 
 model11. In each case, t1 is first time point where the external concentration is non-zero. Each entry in the table 
shows the condition which must be met in order for x% effects to be possible at the end of the exposure profile 
( tE ). N/A is used for pMoAs which do not affect the state variable. In cases where the condition is not met for a 
given variable, a multiplier may still be found for the others. Under assimilation stress (fourth column) there is 
a maximum rate at which length L can decrease. This rate is the von Bertalanffy growth rate, rB , divided by the 
yield of burning structure to provide energy, yP . *At least one of the two reproductive pMoAs must be active.

Endpoint of concern

S , pMoA

[0, 0, 0, 0, 0] [0, 0, 0, sR , sH ]
∗ [0, 0, 1, sR , sH ] [1, 0, sG , sR , sH ] [sA, 1, sG , sR , sH ]

Length, L N/A N/A L(t1) <
100−x
100

L(tE; 0) L(t1) <
100−x
100

e
rB
yP

(tE−t1)L(tE; 0) t1 < tE

Reproduction, Rc N/A Rc(t1) <
100−x
100

Rc(tE; 0)

Survival, S t1 < tE
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has a unique EPx α∗ such that

Our results provide a rigid boundary to the applicability domain of the EMF approach both in terms of exist-
ence and uniqueness. Existence relies on the initial time in the profile when external concentration is non-zero, 
as described in Table 1. While it is important to know about these conditions, they will rarely inhibit an ERA, 
since long initial periods with zero exposure are uncommon.

Cases where uniqueness cannot be guaranteed require more caution and it is unwise to use root-finding 
algorithms. In the next subsection we explore what can happen outside of this domain and provide suggestions 
for how to still produce a single reliable EPx value.

Surface:volume scaling of elimination. There is a reason that in Theorem 2, Xe = 0 was specified. In some cases 
when Xe = 1 a higher multiplier is no guarantee of higher damage for all time. Consider a substance which acts 
on assimilation and has surface area:volume scaled elimination (i.e. X = [0, 1, 0, 0] ). The damage ODE under 
some EMF α is then

where Lm is the maximum length the organism can reach. The EMF has a positive direct effect on damage, but 
also an opposing indirect effect. Increasing damage decreases the size of the organism which, due to the surface 
area:volume elimination of damage, enables faster elimination of damage. As a result, not only does Theorem 2 
no longer hold but in fact a larger multiplier value can cause lower damage at some points in an exposure profile. 
In other words, we observe a paradoxical result whereby more exposure translates to less effect some time after 
exposure.

Figure 3 illustrates what we will refer to as the “more is less” scenario. The exposure consists of a single 
pulse early in the animal’s life, modelled for two multiplier values, α2 > α1 . During the exposure phase the 
direct effect of the higher exposure causes higher damage and greater effects on size. After the pulse, external 
exposure is zero, and therefore the external concentration and uptake remain zero regardless of α . Regardless 
of the EMF, scaled damage can only decrease during this phase. However, the effects of the higher multiplier 
are still relevant. As Fig. 2 shows, the feedback processes still influence damage dynamics. The model organism 
exposed to α2Cw is smaller and therefore able to eliminate damage more rapidly because Xe = 1 . This eventu-
ally leads to lower damage for the model organism exposed to α2Cw (i.e. D(t;α1) > D(t;α2) ). The more is less 
phenomenon can also impact growth and cumulative reproduction, as seen in Fig. 3b,c. Sometime after exposure 
L(t;α2) > L(t;α1) and R(t;α2) > R(t;α1) . For survival, and any additional endpoints without recovery, this 
“crossover” is unlikely, mortality during the exposure phase (where D(t;α2) > D(t;α1) ) will almost certainly 
dominate any mortality during the recovery phase. Figure 3d shows that for certain x% effect levels (vertical 
axis) multiple EPx values exist.

In practice, instances of non-uniqueness such as Fig. 3 will be rare since they rely on a sudden and significant 
decrease in external exposure. Moreover, EMF methods for DEB-TKTD models will include a moving time win-
dow  method18 consisting of many exposures constructed sequentially and assessed. Each window will produce 
an EPx value, but only the lowest will be relevant for the ERA. A time window which starts slightly earlier in the 
broader exposure profile would feature the same pulse later in the model organism’s lifespan and thus not allow 
organism recovery. Depending on the exact endpoint used, one would expect those windows to have a lower 
(and unique) EPx . However, the potential for multiple EPx values raises concerns across all areas which impose 
a multiplicative margin of safety. We cannot guarantee that a multiplier resulting in x% effects exists nor that 
any value found by the algorithm is unique.

Although not pictured here, maintenance and growth pMoAs and combinations of feedbacks which include 
Xe = 1 can also produce the “crossover” in the damage values and the “more is less” phenomenon seen in Fig. 3. 
It can also arise for scenarios which do not feature a deviation from the standard rules for growth (e.g. a starva-
tion phase) and for other DEB based models. The SI features a similar plot to Fig. 3 showing damage crossover 
for a standard DEB model.

Knowing this, the obvious question is how to proceed? Certainly with caution when Xe = 1 is necessary in 
model calibration and validation. Under such circumstances algorithms must ensure that the EPx value found is 
the lowest multiplier which gives x% effects when there is a risk of non-uniqueness. The brute force approach, 
incrementing from zero until the desired effect level is met or exceeded, is one example. Whether it is realistic for 
higher EMF values to cause reduced effects in vivo then does not alter the conservatism of the approach for ERA.

Table 2 summarises the domain where the margin of safety approach can be used in conjunction with a 
root-finding algorithm without concern in the DEB-TKTD model of  Jager11. For model configurations where 
non-uniqueness could emerge using another method to find the EPx is advisable. For example, a brute-force 
approach starting from an EMF of 0 in small increments (e.g. by 0.1). Without good reason, calibration should 
first be attempted with no feedbacks. Under this guiding philosophy of pursuing model simplicity we expect 
that the problem cases will be rare.

B(tE;α) =

∫ tE

0

S(t;α)
d

dt
Rc(t;α)dt

B(tE;α∗)

B(tE; 0)
= 1−

x

100

dD

dt
= kd

(

αCw −
Lm

L
D

)
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Figure 3.  An illustration of the issues which can occur using the EMF approach for substances with surface 
area:volume scaled elimination (i.e. X = [0, 1, 0, 0] ). The (non-multiplied) exposure is a constant 1µg/L for the 
first 14 days and zero thereafter and effects assimilation only ( S = [1, 0, 0, 0, 0] ). (a) Scaled damage, (b) length 
over time, (c) cumulative reproduction. (d) Endpoint value as a proportion of control after 40 days. The shape 
of these curves show that certain effect levels can be caused by two distinct multiplier values. Parameter values 
are L0 = 0.1 , f = 1 , rB = 0.1 , Lp = 0.6 , Lm = 1 , Rm = 15 , κ = 0.8 , yP = 0.64 zb = 0.1 , bb = 1 , kd = 0.05 , 
X = [0, 1, 0, 0] . See the SI for the definitions of these parameter values.

Table 2.  A table to mark under which scenarios the EMF approach is and is not guaranteed to produce a 
unique EPx. Theorem/corollary references denote how uniqueness is assured. The X i terms denote that the 
corresponding theorem applies regardless of whether the feedback process is active or not. Note that when 
combinations of pMoAs are present, the most negative result holds. The problematic scenarios occur when 
Xe = 1 and the pMoA affects assimilation, maintenance or growth.

pMoA

Feedbacks, X Assim Maintenance Growth Reproduction costs Embryonic hazard

[Xu , 1,XG ,XR] Uniqueness not guaranteed Corollary 3.1

[Xu , 0,XG ,XR] Theorem 3
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Other issues. The damage crossover illustrated in the previous subsection occurs more commonly, and to a 
greater extent, when the pMoA is assimilation effects. This is because, at least in this standard implementation, 
stress can cause 100% effect and completely cease assimilation when sA ≥ 1 (see SI for details). When this is the 
case, higher exposure (even from an increased multiplier) does not translate to higher stress. This differs from 
other pMoAs, whose stress values are unbounded. Indeed, replacing 1− sA with 1/(1+ sA) in the model ((S5) in 
the SI) reduces the occurrence and scale of “crossovers” such as Fig. 3. However, the formulation of the pMoA 
should not be based on how it might affect the algorithm or the EMF.

Certain species require further deviations from the standard model. For instance, different life-stages, growth 
and/or reproduction rules might be introduced to explain observed phenomena. Before models featuring these 
deviations are used in an EMF approach one should consider the potential issues as we have done in this sec-
tion. While a proof of existence and uniqueness of the EPx for each model variant is ideal it is also infeasible. 
However, modellers should ensure that their approach is robust enough to deal with issues around existence and 
uniqueness. Checking that the model endpoint is reduced by x% when the EPx is applied to the exposure profile 
is an easy way to check accuracy and existence. An argument (if not a full, formal proof) for uniqueness should 
also be considered. In cases where that is not possible, the algorithm must be set up to identify the lowest EPx , 
or check that no lower values exist.

One common addition is to DEB-TKTD models which feature starvation is to assume that there is some 
maximum amount of starvation/shrinking which an animal can survive. Once that point is met or exceeded 
death is  instantaneous27. Such death mechanisms cause problems. They can introduce a discontinuity in the 
response versus multiplier value for a given time window (i.e. a “jump” in plots such as Fig. 3). For instance, if in 
the example given in Fig. 3 the animal was not allowed to shrink, and instead died, then the multiplier of 6 would 
result in 100% effects on survival (and significant growth effects). In contrast, the exposure when the multiplier is 
2 is survivable and the animal can recover. Presumably, for some critical αc ∈ (2, 6) the exact threshold for death 
is reached. This αc is a discontinuity between partial and 100% effects relative to control. Under some circum-
stances this will prohibit finding a multiplier which results in exactly x% effects, regardless of the method used.

There are two readily apparent solutions to this at the individual level. One is to set αc as the multiplier for 
the window, the second is to replace such discrete responses with graded responses. In this example for instance, 
shrinking could add to the lethal hazard h. It is not possible to universally recommend one approach over the 
other as it will depend on the species’ behaviour. Once that decision has been made these issues must be recog-
nised and reported by the modellers.

Discussion
Using mechanistic models to better understand and predict the effects of exposure to potentially harmful sub-
stances such as PPPs is clearly of great value. Especially for aquatic organisms, where we often have the luxury of 
a well defined predicted exposure, the path ahead may seem obvious. However, as we have shown, implementing 
models—especially for sublethal effects—requires care.

In most previous work, it has simply been assumed that the EMF approach will produce a unique value for 
any level of effects relative to the control. This is not the case. By pursuing rigorous mathematical proofs we have 
found certain restrictions and exceptions. For the GUTS model framework, any non-zero exposure profile has a 
unique LPx for any x. For the primary producer models, the major findings are the restrictions on the exposure 
profile. Since both the algae and Lemna models have some maximum rate of biomass or population decay, the 
first instance of non-zero external concentration in the exposure profile must occur with sufficient time before 
the end of the profile for the effect of the substance to exceed x% . For more information see the SI. Similar find-
ings occur for some of the pMoAs in the DEB model, as shown in Table 1. The reason behind this is the same as 
for the primary producer models.

When using these models to make predictions it is important to realise that we must protect organisms (or 
populations in the case of algae) of different ages and sizes. For GUTS models this has no effect, but for DEB the 
time that exposure occurs within its lifespan is important. For instance, effects of exposure to a substance which 
increases growth costs will have more effect on a juvenile, growing organism than a fully grown adult. For this 
reason, moving time-windows have been suggested in ERA. The method constructs consecutive intervals of time 
from the exposure profile of concern and finds the EPx for each window. The EPx for the profile as a whole is the 
minimum of these  values18. The approach also guarantees that some windows will have immediate exposure. This 
means that, although non-existence could occur for certain windows, a relevant EPx for the exposure profile will 
always exist. These results provide confidence in the EMF method and the use of the most efficient root-finding 
algorithms to calculate LPx and EPx values for these models.

However, for DEB models there are further limitations due to the possible feedbacks and model exten-
sions. The feedback options in (1) are important to accurately describe damage dynamics in a one-compart-
ment module. Finding the appropriate feedback mechanisms can significantly improve the correspondence 
between the model and the  data11. Until recently the configuration X = [1, 1, 1, 0] was the default in DEB-TKTD 
 applications17,22. This meant that every model application featured the problematic surface area:volume scaling 
of elimination. Although these feedbacks match our intuition and knowledge for dermal uptake and elimination 
the “more is less” multiplier paradox is a non-intuitive result which can arise in this scenario and indeed any 
other scenario with Xe = 1 . However, as was shown in Theorem 3 and Corollary 3.1, uniqueness is guaranteed 
for all reproductive pMoAs, and substances with any pMoA as long as Xe = 0.

Whether the behaviour illustrated in Fig. 3 can occur in real-world tests is unknown. Experimental data 
exploring this would be of value regardless of the results. The majority of ecotoxicology, especially ERA, is built 
on the presumed idea that scaling (i.e. multiplying) exposure will scale the effects in the same direction. Using 
the well-known and highly respected DEB theory we have shown that this might not always be the case. If the 
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behaviour in the model were to be observed experimentally it could change our perspective on ranking different 
exposures in terms of effects, at least at the individual level. On the other hand, if it was clearly refuted it could 
signal a need to alter and improve the TKTD aspects of the model.

The issues raised in this work are therefore important. It is imperative that modellers and anyone using 
the models are aware of the domain of applicability and demonstrate that they are within them. This applies 
to all TKTD models. The simplest solution to non-uniqueness in a regulatory context is to avoid root-finding 
algorithms in favour of (for example) a robust brute-force approach checking multiplier values from zero and 
increasing in small increments (e.g. 0.1) to approximate the lowest EPx . Accuracy and conservatism are thus 
maintained by sacrificing elegance and computational efficiency.

The EMF approach of replicating standard in vivo experiments in silico is appealing. Models are used to 
generate the same endpoints that are recorded at the end of real-world experiments specifically designed and 
performed for the ERA of PPPs. However, taking proportional effects at the end of the in silico experiment is only 
one option. We have shown in Corollary 3.2 one example of how a new endpoint can be derived from model state 
variables and used for ERA. Alternatively, one could define the endpoint for ERA as the maximum proportional 
effect at any point in the window. Although we cannot a priori determine at what time the maximum effects 
will be observed, the results of Theorems 1 and 3 as well as Theorem S1 and Theorem S2 in the SI hold for any 
value of t and so will also guarantee uniqueness and existence of α∗ as long as the time at which the difference 
is assessed remains constant for all EMFs. However, this approach is generally not recommended. To give one 
example, if reproduction is delayed at all compared to the control, during that delay there is a 100% reduction 
in reproduction compared to the control.

This work has capitalised on a hitherto under-utilised aspect of TKTD models: the ability to provide rigor-
ous proofs of certain properties. By doing so, we have conclusively shown under which circumstances LPx and 
EPx values exist and are unique. These model results also lend some verification to the use of multiplicative 
AFs applied to standard bioassay results. It may not always be possible to prove similar results for other TKTD 
models. Nonetheless, it is essential to consider all possible results and behaviours of a model before using it in 
any official context.
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