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Abstract
Digitally animated characters are promising tools in research studying how we integrate information from speech and visual
sources such as gestures because they allow specific gesture features to be manipulated in isolation. We present an approach
combining motion capture and 3D-animated characters that allows us to manipulate natural individual gesture strokes for
experimental purposes, for example to temporally shift and present gestures in ecologically valid sequences. We exemplify
how such stimuli can be used in an experiment investigating implicit detection of speech–gesture (a) synchrony, and discuss the
general applicability of the workflow for research in this domain.
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Abbreviations
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Introduction

Gestures are an integral part of natural language use. Gestures,
defined as (mostly manual) movements related to the expressive
effort and recognized as being communicatively relevant
(Kendon, 2004;McNeill, 1992), are prevalent in communication
(face-to-face or in groups, e.g., Kendon, 2004; Özyürek, 2002),
whether interlocutors are visible or not (Bavelas, Gerwing,
Sutton, & Prevost, 2008). Proponents of contemporary gesture
theories generally agree on the tight link between speech,

language and gestures despite theoretical divides as to the precise
nature of the link (De Ruiter, 1998; Hostetter & Alibali, 2008;
Kelly, Özyürek, & Maris, 2009; Kita, Alibali & Chu, 2017;
Krauss, Chen, & Gottman, 2000; McNeill, 2005). Speech and
gestures are seen as forming an integrated whole, where both
parts are relevant. The connection is reflected in the close tem-
poral and semantic coordination between gestures and spoken
utterances found in language production (Kendon, 2004 for an
overview) whereby gestures and speech tend to express closely
related meaning at the same time. Speech and gestures co-occur
and gesturing in the absence of speech is rare in normal conver-
sation. Moreover, speakers gesticulate significantly less during
speech disfluencies or pauses than during fluent speech
(Graziano & Gullberg, 2018; McNeill, 1985; McNeill, 2005,
pp. 34–27). The semantic relationship between speech and ges-
ture has been characterized in terms of ‘lexical affiliates’
(Schegloff, 1984) to denote the word or words whose meaning
correspond to that expressed in gestures. However, given that
gestures often express ‘imagistic’ information complementing
or illustrating the verbally expressed meaning of an utterance as
a whole, in its communicative context, the notion of ‘conceptual
affiliates’ has been suggested instead (De Ruiter, 2000; see also
McNeill, 2005, p. 37).

Turning to reception, several studies have demonstrated
that addressees understand messages better if they are accom-
panied by gestures (e.g., Kelly et al., 1999; Rogers, 1978), and
conversely, that comprehension is negatively affected if infor-
mation across modalities is contradictory (e.g., Cassell,
McNeill, & McCullough, 1999). Despite the considerable
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body of research on gestures, some open questions remain
concerning speech–gesture integration in language process-
ing. For instance, questions remain as to whether integration
is inevitable or flexible, automatic or demanding of mental
resources, mirroring patterns in production or better described
as a case of general audiovisual integration.

A number of factors are likely to influence integration,
some contextual and others related to the kinematic character-
istics of the gestures, for example, temporal coordination. The
boundary conditions for integration of speech and gestures
have yet to be mapped out. One reason for this is methodo-
logical in nature, because the implementation of experimental
interventions in stimuli poses challenges and often requires
trade-offs between control and ecological validity. In order
to probe these matters, an experimental platform is needed
that enables precise kinematic manipulation of gestures within
natural and spontaneous speech and gesture sequences.

In this paper, we present an approach using 3D-animated
characters based on Motion Capture (MOCAP, Welch &
Foxlin, 2002) data from real speakers, and an experiment to
evaluate the method. We will focus specifically on temporal
properties of speech–gesture alignment in both the description
and evaluation of the method, but also discuss how the method
could be applied to other kinematic manipulations of gestures.
The question of temporal alignment is relevant for a number of
reasons. First, it can potentially reveal some crucial details to how
processing in the two channels is integrated and contribute to
multimodal language comprehension in real-time. Second, as
we will describe below, the available empirical evidence for ef-
fects of temporal alignment in language perception is inconclu-
sive. Third, temporal manipulations pose a particular methodo-
logical challenge because they are difficult to enact in a natural
way and require masking the faces of speakers to avoid con-
founding reactions to asynchronous lip movements (Massaro,
Cohen & Smeele, 1996).

Speech–gesture coordination in production

It is frequently stated that gestures align temporally with co-
expressive spoken elements. Kendon (1972, 1980) found
matching parallel hierarchical organizations of concurrent speech
and gesture sequences, based on kinematic and prosodic features.
Kendon’s organization of gestures into units (an ‘excursion’ of
one or both hands from and back to a resting position) containing
one or more gesture phrases consisting of gesture phases
(preparations, strokes, holds and retractions; Kendon, 2004) has
been highly influential. Kendon has also made detailed observa-
tions regarding the temporal alignment to the effect that gestural
phrases tend to emerge before speech where the same idea is
encoded (Kendon, 1980), which ledMcNeill (1992) to formulate
the Phonological Synchrony Rule stating that “[a] gesture pre-
cedes or ends at, but does not follow, the phonological peak
syllable of speech” (McNeill, 1992, p. 26).

Even if results differ somewhat depending on
operationalizations and units of analysis (Beatty & Aboudan,
1994; Butterworth & Beatty, 1978; Nobe, 2000), findings
from studies focused on the alignment of words with strokes,
that is, the most effortful and expressive movement phase of a
gesture, generally adhere to the phonological synchrony rule,
although there is some variation in the degree of ‘anticipation’
of gestures (Chui, 2005; Ferré, 2010; Kranstedt et al., 2006).
This may depend on the communicative context (Beatty &
Aboudan, 1994) or the precise nature of the co-expressive
relationship between speech and gestures under investigation
(Bergmann, Aksu & Kopp, 2011). Others have pointed out
that stroke timing is also related to word or sentence level
prosodic structures (Esteve-Gibert & Prieto, 2013; Loehr,
2007; McClave, 1994).

Speech–gesture coordination in reception

Although several empirical studies have examined how the
coordination of natural speech and gestures is processed in
reception, the role and nature of this coordination for
reception remains elusive. Tasks and the precise aspects of
asynchrony under study play a role for results. For example,
Kirchhof (2014) explicitly asked participants to judge whether
video and audio tracks with different temporal shifts were
synchronous or not. The stimuli included videos of natural
speech and gestures but faces had been masked to eliminate
compromised lip sync. The results revealed a great tolerance
for temporal shifts in both directions with shifts of 600 ms
being tolerated in 60% of the trials. In a similar judgement
task (Leonard & Cummins, 2011), participants instead had to
identify which of two versions of short video excerpts showed
a single gesture that had been temporally shifted relative to its
original position and to speech. The results showed that de-
layed beat gestures were easy to spot (even with delays as
brief as 200 ms) compared to advanced gestures (unless by
600 ms or more).

Studies using electrophysiological measures of brain activ-
ity and event-related potentials (ERPs), that is more implicit
measures of processing, have shown that semantic integration
is affected by advancing gestures by more than 200 ms
(Habets et al., 2011; Obermeier & Gunter, 2014).

These findings suggest that explicit and implicit tasks and
measures may reveal different levels of sensitivity. A method-
ological challenge in this domain is to control speech and
manipulate gesture in experimental settings, in order to truly
probe effects of asynchrony on information processing.

Some studies record actors performing scripted gestures
(e.g., Cassell, McNeill, & McCullough, 1999; Woodall &
Burgoon, 1981). Others use video editing, combining differ-
ent image sequences with the same audio track (e.g., Habets
et al., 2011; Leonard & Cummins, 2011; Obermeier &Gunter,
2014), typically examining one gesture in isolation. This
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approach often requires the speaker’s face to be masked to
avoid distraction from asynchronous speech and lip move-
ment. Although such methods provide experimental control,
they also raise methodological concerns. First, there is a risk
that scripted gestures or manipulated videos draw undue at-
tention to the objects of study. Scripted and performed ges-
tures may have different temporal and spatial properties from
naturally produced ones. It is very difficult for speakers to
intentionally shift the timing of their gestures. Similarly, in
videos where speakers’ faces are concealed, gestures may
draw undue attention because listeners tend to predominantly
gaze at the speaker’s face in normal (face-to-face) settings
(Gullberg & Holmqvist, 2006). Blocked access to the
speaker's face may therefore only leave listeners with gestures
to look at, drawing un-due attention to them.

Another concern is that stimuli often isolate individual
word–gesture combinations. However, in face-to-face com-
munication, gestures rarely occur in isolation. Instead, they
appear in sequences of sustained spoken and gestured dis-
course, just as words rarely occur on their own, but are
surrounded by other words. Note that in the aforementioned
study of explicit detection (Kirchhof, 2014), whole gesture
sequences were shifted, rather that specific word-–gesture
pairs. That said, although the temporal shift of an entire ges-
ture sequence avoids the validity concerns related to isolated
target gestures, it also makes it more difficult to control exact-
ly what spoken content the shifted gesture strokes end up
overlapping with. Tolerance for asynchrony might depend
on addressees’ ability to relate strokes to some spoken content
in the same utterance. Therefore, shifted strokes that end up
with entirely unrelated speech or with silence may affect per-
ception. To summarize, methods used to study speech–gesture
coordination in reception often display a tension between ex-
perimental control and ecological validity.

As a way to address this tension, we propose an approach
using 3D-animated characters based on MOCAP data of nat-
ural speech and gestures. 3D-animated characters allow us to
manipulate a multitude of parameters with precision and con-
trol, and thus to study integration while avoiding some of the
problems outlined above. We present how detailed control
over temporal shifts of gestural strokes relative to speech can
be implemented within the platform below.

Animated characters and gestures

The use of animated characters is in itself not new in gesture
research. Embodied Conversational Agents (ECAs; Cassell,
2001) are animated characters whose behavior is autonomous,
i.e., not scripted or remotely controlled by a human. Their
behavior is often realized by speech and gesture-synthesis,
and in some cases by recombining MOCAP recordings of
gestures (Xu, Pelachaud, & Marsella, 2014). ECAs were cre-
ated to allow humans to interact with artificial intelligence

(AI) software in the same way we interact with humans
face-to-face. An interactive ECA’s behavioral repertoire
should ideally include gestures. ECA development is not lim-
ited to practical applications but contributes to our understand-
ing of natural gestures. Tools for gesture generation
(synthesis) are driven by models with a basis in observations
and theories of gestures (Cassell, Vilhjálmsson, & Bickmore,
2004). Evaluations of a model’s output can be indicative of its
validity. Xu, Pelachaud, & Marsella (2014) asked participants
to judge how similar ECA gestures were to natural gestures,
and found a preference for gesture sequences that aligned with
so-called ideational units in speech, following proposals for
how natural gestures align (see Calbris, 2011). Kopp &
Wachsmuth (2004) have described a method for synthesizing
gestures with high-level specifications. Their gesture synthe-
sis is constrained by empirically observed regularities in the
kinematics of gestures and the coordination with speech, in-
cluding adherence toMcNeill’s Phonological Synchrony Rule
and a stricter constraint that gesture strokes should not precede
emphasized words. They compared the output of their
synthesis to an actual recording, and found congruence
between the artificial and natural gestures in their timing
relative to speech. Treffner, Peter & Kleidon (2008) found that
participants perceived words that were temporally overlap-
ping with beat gestures produced by an animated character
as more strongly emphasized. Another study tested learning
outcomes in children listening to mathematical explanations
from an ‘animated teaching agent’ with scripted gestures, ei-
ther as ‘originally’ manually aligned by authors or delayed or
advanced 500 ms relative to the ‘original’ alignment, and
found that delayed gestures were detrimental to learning
(Pruner, Popescu, & Cook, 2016) .

In experimental studies of speech–gesture integration, es-
pecially in the receptive domain, synthesized or scripted ges-
tures may not be the best option. To address some of the
methodological concerns outlined above, it may be preferable
to rely on non-interactive animated characters based on
MOCAP data which thus reflect natural speech and gesture
production. For example, Wang & Neff (2013) asked partici-
pants to rate ‘the naturalness of the behavior’ of animated
characters based on MOCAP recordings of speakers
performing scripted utterances with gestures. They manipulat-
ed gestures such that the onset of the gestures was shifted
relative to their lexical affiliate, varied on a discrete scale
ranging from – 0.6 s (gesture before word) to + 0.6 s (gesture
after word). Gestures starting after their lexical affiliates were
rated as less natural when presented in parallel with gestures
starting slightly before the lexical affiliate (typical in natural
production). They found no difference in ratings when asyn-
chronous videos were presented and rated in isolation. The
study had an explicit focus on gestures, both in the task (com-
paring two videos varying only in speech–gesture timing) and
in the stimuli (single, scripted gestures performed by
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characters with concealed faces). It therefore still remains un-
clear whether addressees perceive temporally shifted gestures
relative to speech as unnatural when not asked explicitly about
this. Because many existing methods potentially draw un-due
attention to gestures, although they are rarely in focus during
real-life listening, it is difficult to reliably generalize individ-
ual findings.

Our approach

We propose and evaluate a new approach to create an exper-
imental platform to study speech–gesture integration, while
also attempting to address the tension between experimental
control and ecological validity.Wemake use of characters that
are animated on the basis of optical MOCAP recordings of
natural (unscripted) human speech and gesture. The resulting
digital animation data with high temporal and spatial fidelity
enables us to precisely manipulate single target gestures situ-
ated in longer natural sequences of speech and gestures (en-
suring ecological validity) while keeping everything else con-
stant across conditions (ensuring experimental control).

We will present a workflow for creating animated charac-
ters based on MOCAP data, and describe in detail how we
used the workflow to create experimental stimuli for an ex-
periment designed to probe implicit detection of speech–
gesture asynchrony. We will also outline how the workflow
can be applied to address other research questions regarding
speech–gesture reception and integration. We will discuss the
results of the experiment both in terms of evaluating the meth-
od, and in terms of how they relate to previous research on
speech–gesture synchrony. Finally, we will discuss potential
extensions and generalizability of the method for future
studies.

Method

Outline of workflow for a new approach

The core idea of the workflow described here is to use 3D
MOCAP data from segments of spontaneous speech and ges-
ture to animate characters, and then to manipulate those ani-
mations according to experimental variables related to the
kinematics of the gesture and its relationship with speech.

Figure 1 outlines the workflow with the individual steps
described in more detail below. The workflow is intended to
be generally applicable to experimental designs addressing
speech and gesture integration. However, we exemplify it here
by an implementation of stimuli where temporal alignment is
systematically varied by shifting the timing of one specific
gesture within a segment of speech, while keeping speech,
facial animation, and temporally adjacent movement constant.

Workflow: Preparation step

We used the following recording equipment: a passive
marker-based optical motion capture system with eight
ProReflex MCU infrared (IR) cameras, a ZOOM H4 Handy
Recorder for audio recording, and an ASUS Xtion PRO LIVE
3D sensor for recording depth maps and video of the face
(ASUS; www.asus.com). An additional GoPro Hero video
camera 4 (GoPro; gopro.com) recorded reference videos for
later use in the processing of recorded data, generation of
animations, and gesture annotation. The IR cameras have a
focal length of 6 mm, and can be repositioned freely.

Before initiating the MOCAP recordings, we conducted
pilot tests to determine recording quality from different equip-
ment setups, best spatial configuration, and equipment needed
for improving data fidelity. These tests led us to some specific
configurations of theMOCAP setup used for stimulus produc-
tion. Full-body motion is commonly captured by cameras that
are evenly distributed around the upper edges of the space, all
viewing the subject from above. To reduce the risk of occlud-
ed MOCAP markers (particularly an issue for markers on the
hands and the fingers), we used a customized configuration of
the cameras. Taking advantage of the constraints imposed by
the seated position of speakers during recordings, some cam-
eras were placed in low lateral positions to better capture hand
movements (see Fig. 2). For capturing gestures, other specific
communicative situations (like a verbal presentation in front
of a projected slide show) simulating the predicted range of
movements in a 3D environment to find optimal camera con-
figurations might be an option (Nirme & Garde, 2017).

We recruited three speakers who were told that we wanted
to record them while speaking and that the recordings would
be used to create 3D animated characters. No mention was
made of gestures. IR reflective passive markers were attached
to the head, torso, legs, arms, hands and feet of the speakers by
double adhesive tape, directly to their skin, tightly fitted
clothes, or elastic sweatband around the head and wrists
(Fig. 3, left panel). The reflective markers were placed accord-
ing to a scheme adapted from the KIT Whole-Body Human
Motion Database (Mandery et al., 2015). To support reliable
gesture capture, we had to modify the number of markers
placed on the hands. Pilot tests had revealed that when
markers are placed too close together (on all finger segments)
differentiation of individual markers often failed in the post-
processing, requiring time-consuming data repair. Therefore,
we defined a simplified model of the hand, placing markers
only on the knuckle and end of the proximal phalanx of the
index and little fingers as well as the metacarpal bone and
proximal phalanx of the thumb (Fig. 3, right panel). The
movements of the middle and ring fingers were inferred from
the adjacent index and little fingers (seeWorkflow: Animation
step below). Reducing the number of markers limits the risk of
unreliable differentiations of markers and estimated 3D-
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positions. Our custom marker set for the hands resembles
Hassemer’s (2016) ‘Minimal Marker Set’, designed specifi-
cally to distinguish gestures depicting (one dimensional)

‘measures’ and ‘shapes’. Hassemer placed markers on the
distal (rather than proximal) joints of the index and little fin-
ger, and at the ring finger knuckle, which gives a better

Fig. 1 Workflow to create experimental stimuli with on animated
characters based on MOCAP recordings. Rectangular boxes represent
the steps involved. Arrows from the box labeled Experimental Design

indicate ways in which the workflow can be customized to support any
experimental designs testing gesture processing

Fig. 2 Approximate positions of IR cameras relative speakers during MOCAP recordings

Behav Res (2020) 52:1339–1354 1343



approximation of the hand as a rigid body compared to the
little finger knuckle. However, the difference in our marker set
is motivated by the intention to capture different ranges of
target movements. The markers in our set were chosen to
capture a broader range of movements than Hassemer, and
the set-up was deemed less likely to be occluded when
speakers closed their fingers or oriented their hands palm-up.
Photos of the speakers fitted with markers were made from
different angles to be used as references in subsequent steps
(seeWorkflow: Character modeling andWorkflow: Animation
step below).

For the MOCAP recordings, speakers were initially en-
gaged in casual conversation in order to accustom them to
the situation and make them comfortable, as well as to reduce
their focus on the markers. This warm-up session also enabled
us to perform equipment checks and minor adjustments. For
each recording speakers were instructed to give route descrip-
tions, describe objects (including infant toys), or retell narra-
tives based on cartoons (including Canary Row frequently
used in gesture studies and described in McNeill & Levy,
1982) or live action movie clips presented on a laptop.
These are all standard tasks used in gesture research that pro-
vide a rich set of MOCAP recordings with a variety of spon-
taneous gestures. The order of the tasks was the same for all
three speakers, but one of them did not complete the whole
sequence due to time constraints.

Workflow: Capture step

Speakers were seated on a chair placed in the center of the
range of the IR cameras, about 150 cm in front of a small table
on which the Xtion 3D sensor and the H4 audio recorder were
placed. Speakers faced a silent confederate addressee seated
about 3 m in front of them. Speakers were at no point explic-
itly instructed (or implicitly prompted) to gesture. They

generally gestured sparsely during the first recordings, but
gradually increased their gesture production over time.

MOCAP 3D marker trajectories, audio, depth maps of the
face, and referential video were recorded in parallel. IR-
cameras and reference video recorded at 100 Hz, audio was
recorded with 16-bit stereo at 44.1-kHz sample frequency, and
depth maps were recorded at 30 Hz. To ensure synchronous
lip facial animation, we used a clapperboard visible to all
cameras with tracked markers attached at hinged clapsticks
at the beginning of each recording. This enabled temporal
alignment of recorded audio, MOCAP data, and reference
video (with a margin of error of 10 ms) during subsequent
processing and rendering. The Qualisys Track Manager soft-
ware (version 2.10, 2015) was used to extract 3D movement
data (series of marker positions) from the 2D frames captured
by the IR cameras. The process relied on the software’s inter-
nal algorithms, but also required some manual adjustment of
threshold values, labeling of markers, and reconstruction of
missing or corrupt data.

Character modeling

We created two 3D characters with skeletal rigs to drive the
animation, and facial blend shapes (specific individual face
models mapped to basic facial expressions, such as mouth
forms for basic phonemes, smile, closed right or left eye,
raised right or left eyebrow, etc.) in Autodesk Character
Generator (www.autodesk.com/products/character-
generator). The anatomy (proportions) of the 3D characters
was then adjusted in Autodesk Maya (www.autodesk.com/
products/maya, version 2014, 2013) to match reference
photos of the speakers. The last step is necessary to correctly
map the recorded markers (from the Capture step) to the
skele ta l r ig wi thout anomal ies generated in the
transformation of animation data (see the Solving step

Fig. 3 a Speaker during recording with optical markers at the outlines (white circles).Dotted outlines indicate markers concealed from the camera in the
current view. b Configuration of optical markers on hands and fingers
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below). The characters were created to match the approximate
age and gender of the recorded speakers (one male, one
female). To address research questions related to the
appearance of the speaker while keeping the gestures
constant across conditions, a wide range of characters can be
created as long as they approximately match the dimensions
of the recorded speakers.

Workflow: Animation step

The process of generating animations on rigged 3D characters
from 3D marker data is called solving. For this we used the
Autodesk MotionBuilder software (www.autodesk.com/
products/motionbuilder, version 2014, 2013). MotionBuilder
has a built-in actormodel of a humanoid body with adjustable
limbs. By mapping 3D markers to the anatomy of the actor
model and its internal model of human kinematics, we enable
the software to estimate the joint rotations causing the cap-
tured marker displacements. For each speaker, an actor was
defined and its body segments were manually transformed
(translation, rotation, and scale) to correctly align with the
marker positions recorded while the speaker was in a T-pose
(i.e., standing upright with both arms raised (abducted) to
point straight out to the left / right). This alignment formed
the basis of the calculation of joint rotations.

In a subsequent step, the MotionBuilder provides numer-
ous possibilities to fine-tune kinetic relations and constraints
of the human body. As an example, it is possible to generate
animation data for the two fingers lacking attached markers
(themiddle finger and the ring finger) by adjusting the weights
of an algorithm that interpolates from the two adjacent tracked
fingers (the index and the pinky). Similarly, recorded or inter-
polated rotations of the proximal phalanges were partly prop-
agated onto the more distal phalanges. The generated anima-
tion scheme was then transferred to the skeletal rig of a pre-
modeled 3D character rig as keyframed (skeletal) joint rota-
tions at 100 frames per second (henceforth, fps). After this,
some orientations of arms and hands were manually fine-
tuned. The resulting series of joint rotations were filtered to
remove jittering with a low-pass Butterworth filter (Autodesk,
2016; Butterworth, 1930). The generated animation data were
exported in the FBX file format (standardized format for 3D
modeling and animation).

Facial animation was generated using the FaceShift Studio
2015 (now discontinued) software. The software used a pre-
recorded training set of specific targets (facial expressions).
Based on depth map data and video captured by the Xtion IR
3D sensor, a weighted combination of the target expressions is
estimated and mapped onto the model as keyframes
representing the weighted combination of blendshapes
(target mesh deformations representing idealized
expressions; Lewis et al., 2014) at a frame rate of 30 fps.
The facial animation data were exported in the FBX file

format. The workflow, particularly the capture step, can be
simplified by generating facial animation from the recorded
speech signal by inferring visemes (lip movements and other
facial expressions associated with specific phonemes; Fischer,
1968) from phonemes detected in the speech signal (e.g.,
Beskow, 2003; Cohen & Massaro, 1993; Edwards et al.,
2016; Pelachaud, Badler & Steedman, 1996). However, it is
worth noting that there is no one-to-one correspondence be-
tween phonemes and visemes. Moreover, readily available
tools mostly support English rather than other languages, in-
cluding the built-in tools available in MotionBuilder.

Unless research calls for the faithful reproduction of facial
expressions beyond visemes, for example affective facial expres-
sions, it is preferable to generate facial expressions from the
speech signal because it does not restrict the direction the speaker
can be facing. Not having to consider the placement of a sensor
or camera to capture a speaker’s face facilitates setups where
speakers direct their speech to more than one addressee or shift
their direction between some artifact in the environment and the
addressee. If capturing facial expressions beyond visemes is a
priority, there are alternatives to FaceShift that use camera and /
or IR sensor input and output animation based on blendshapes or
other facial rigs. Examples include Faceware (www.
facewaretech.com) and f-clone (f-clone.com).

Another option is to add facial markers to the marker set
described inWorkflow: Preparation step.MotionBuilder has a
built-in tool that can extract blendshape based animation, sim-
ilarly to how body movement is ‘solved’ frommarker data via
the actor model. Deng et al. (2006) describe a method for
generating mappings of marker-based facial MOCAP data to
blendshape animation, based on manually training a genera-
tive model on a few facial expressions. Dutreve, Meyer &
Bouakaz (2008) propose a method for transferring facial ex-
pressions based on ‘feature points’ defined in two or three
dimensions on the faces of a recorded person and a character
model. Three-dimensional marker-based motion capture has
the advantage of not restricting the speaker to face any specific
camera, but the added work in processing the MOCAP data
can be time consuming, depending on the fidelity of expres-
sion needed.

Workflow: Render step 1

Rendering is the process of generating an image (or sequence
of images) from 3D models, applying texture and shading
effects. The basic steps preparing for rendering generally in-
clude defining texture parameters, arranging and setting light
sources, and configuring a virtual camera viewport. In
Workflow Render Step 1, the animation data from the
Solving step were transferred to one of the two 3D characters
using Autodesk Maya (version 2014). The facial animation
data was added in the second rendering step (see Workflow:
Render Step 2).
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In preparation of rendering, the animated 3D characters
were placed in a so-called scene set up with light sources
and viewport properties. First, a spotlight directed at the char-
acter’s torso was placed in the scene. The spotlight was posi-
tioned with a linear drop off from the center, highlighting the
character’s face and gestures while casting a soft shadow on
the hands when resting in the speaker’s lap. This was a simple
way to mask small anomalies in the spatial alignment between
the hands and legs. Secondly, a camera was added to the
scene, placed roughly in the position of the addressee relative
to the speaker, with an angle of view set to 20 degrees. The
characters’main gaze directions were fixed at the center of the
rendering viewport. This gaze direction does not correspond
to the recorded speakers’ actual main gaze directions, but be-
cause the speakers are always moving their heads while speak-
ing, the artificial gaze behavior is not too noticeable.

The rendering generated 1024 x 768 (RGB) images
representing the camera’s view of the 3D characters against a
black background using the built in Maya Hardware Renderer
2.0. Videos in this first rendering process (Render step 1) – before
selection and manipulation of experimental stimuli – were ren-
dered at 100 fps, and composed in Avidemux (version 2.5.2) for
export into the gesture and speech annotation software (see
Workflow: Annotation step below).

Workflow: Annotation step

Next, the recorded reference videos, audio recordings, and ren-
dered videos of the animated characters (without facial anima-
tion) were imported into ELAN, an open-source multimodal
annotation software (Wittenburg, Brugman, Russel,
Klassmann, & Sloetjes, 2006). In preparation for the experiment,
we annotated onsets and durations of dynamic gesture strokes in
the reference video recordings (see section Workflow:
Preparation step). The audio recordingswere annotated indepen-
dently (without video) for the onset of stressed syllables in se-
lected experimental target words. The annotations were exported
from ELAN as comma separated text files (CSV). Other exper-
imental applications of the workflow would require different or
additional annotations such as word class or gesture viewpoint,
for example (McNeill, 1992; Parril, 2010). Note, however, that
features related to gesture kinematics, such as handshapes
(Hassemer, 2016), velocity (Trujillo et al. 2018), or similarity to
gesture prototypes (Müller, Baak, & Seidel, 2009; Schueller
et al., 2017) can be derived from MOCAP data using objective
criteria rather than subjective annotations.

Workflow: Selection step

Audio recordings, reference videos, rendered animations, and
annotation data were examined for the selection of suitable
segments to test implicit detection of asynchrony between
speech and gestures.

To be selected for the experiment, a segment had to meet
the following criteria:

1. The MOCAP-based rendered animations should be of
sufficient quality, and the gesture movements should be
consistent with what was visible in the reference video.
Approximately 10% of the captured frames of the female
speaker, and 5% of the male speaker were discarded due
to the face or one or more fingers being occluded.

2. It should include a target stroke that temporally over-
lapped with a stressed syllable in a target word. More
specifically, the onset of a stressed syllable should occur
within the time interval starting at the stroke onset and
lasting for the duration of the stroke. We applied no fur-
ther criteria (e.g., word class, semantic content, etc.) to the
selection of target words, beyond overlap with a gesture
stroke.

3. The target stroke should be surrounded by at least one
other gesture.

4. There should be some temporal separation between the
target gesture and preceding or following gestures.

In total, 16 segments from recordings of two of the
speakers were selected (seven with a female speaker), all of
which included a gesture (unrelated to the target word) pre-
ceding the target gestures, and half of which additionally in-
cluded a subsequent gesture. The mean duration of the 16
videos was 9.51 s (SD 1.8 s).

To maintain a consistent link to naturally produced ges-
tures, the first criterion regarding MOCAP data quality would
have to be fulfilled. However, to address other research ques-
tions, criteria need to be adapted in accordance with the type
of gesture and manipulation in focus. It is of course also pos-
sible to select rendered videos of entire recordings instead of
short segments, if the focus is on how gestures affect compre-
hension at a global level.

Workflow: Manipulation step

To create stimuli for an experiment addressing the implicit
detection of speech–gesture asynchrony (see section
Experiment), we needed to shift the target gesture strokes in-
dependently from audio track and facial animations.

We defined three experimental conditions: (1) Original
synchrony (G-SYNC) between gesture and speech (i.e., over-
lap between target gesture stroke and a stressed syllable of the
target word); (2) target stroke onset advanced by 500 ms,
resulting in the target stroke occurring before the stressed
vowel in the target word (G-ADV); 3) target stroke delayed
by 500 ms, resulting in the target stroke occurring after the
stressed vowel in the target word (G-DELAY). Themagnitude
of the temporal shifts (500 ms relative to the original synchro-
ny) was selected to be within the tolerated offsets (600 ms)
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observed in explicit detection studies (Kirchhof, 2014), but
above the offsets (200 ms) observed to yield effects on ERPs
(Obermeier & Gunter, 2014).

Three versions of each of the 16 selected segments were
created by prolonging or shortening the temporal duration of
intervening phases between the target stroke and the preceding
and succeeding strokes. The durations of target strokes, as
well as onsets and durations of preceding/succeeding strokes,
were kept intact (Fig. 4). To apply the manipulations system-
atically, we implemented a script in Autodesk Maya that read
the annotation files (see Workflow: Annotation step) and
shifted the target strokes.

Examples of videos including synchronized, advanced, and
delayed gestures can be found in the online supplementary
materials:

https://lu.box.com/s/i50n2poq2edriv4pqduoklwutp5kb6sc
https://lu.box.com/s/uu1jmbdhvrel51k2ic4ed6dnh6w5w56a
https://lu.box.com/s/ns2etws5lz5efd20r8dq6rl0jl33k47u
The 3D animation data allow for a range of other ki-

nematic manipulations related to relevant research ques-
tion about speech–gesture integration. The conceptually
most basic one, to eliminate specific gestures within nat-
ural sequences, requires somewhat more elaborate kine-
matic manipulations, but can still fairly easily be imple-
mented by speeding up, slowing down and blending

together surrounding gestures. Manipulation of hand con-
figurations could be implemented by replacing or blend-
ing recorded finger movements with hand configurations
conforming to predefined classes. Manipulations related
to gesture space or deictic features might require
recalculating joint rotations by inverse kinematics (see
an example of such an implementation in Ballester
et al., 2015).

Workflow: Rendering step 2

Based on the temporal settings for the manipulation of the
intermediate gesture phases in the Experimental
Manipulation step, the video frames of the final experimental
stimuli (animations of the 3D characters) were rendered in
Autodesk Maya. After minor adjustments of the light sources
and viewport settings, and addition of (non-manipulated) lip
sync and facial animation data to the character, the frames
(1024 x 768 images) were rendered at 25 fps. Down sampling
to 25 fps was made to avoid video lag during the experiment
presentation of the video material (see below), where audio-
visual synchrony obviously is a central factor. After that, the
audio tracks and the rendered images weremixed and encoded
using the Avidemux video editor (version 2.5.2).

Fig. 4 Schematic representation of an example configuration for the three
experimental conditions (G-SYNC, G-ADV, G-DELAY). In the G-ADV
and G-DELAY conditions, the durations of intervening gestures phases

(retraction, rest, and preparation) between the target stroke and the
preceding/succeeding strokes were modulated
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Experiment (Presentation step & Measurement step)

The experiment aimed to examine whether participants detect
speech–gesture asynchronies when such asynchronies appear
embedded in a sequence of connected discourse (an ecologi-
cally valid setting). We used a behavioral method similar to
previous studies focused on explicit perception of asynchrony
(Kirchhof, 2014; Leonard & Cummins, 2011), but designed to
probe implicit perception using stimuli with animated charac-
ters created in the approach outlined above. We ask the fol-
lowing questions:

1. Is asynchrony implicitly perceived as unnatural when ges-
ture strokes are temporally shifted away from their origi-
nal location?

2. Is implicit perception of speech–gesture asynchrony af-
fected by the nature of the relationship between the ges-
ture and the speech signal? That is, is it affected by wheth-
er target strokes overlap with non-target words or with
pauses?

Participants

We recruited 32 native Swedish speakers (18 female), aged
18–57 years (M = 28, SD = 10). Each participant was
rewarded a cinema ticket voucher for their participation.

Materials

The experimental stimuli consisted of 64 short videos of one
of two animated characters (one female) speaking and gestur-
ing. The animated characters were generated from motion
capture recordings of two Swedish speakers. The 64 videos
were based on 16 original selected sequences from the motion
capture material, each sequence presented in four different
versions, corresponding to three experimental conditions (G-
SYNC, G-ADV, G-DELAY, seeWorkflow: Experimental ma-
nipulation step) and one control condition where a pitch mod-
ulation had been added to the original G-SYNC condition
during a few non-target words (Audio distorted, A-DIST).
A-DIST was included to control that participants did not at-
tend to one modality exclusively. In addition, in the 32 videos
where gestures had been temporally shifted (the conditions G-
ADV and G-DELAY), we noted what the shifted gesture
strokes overlapped with in speech in their new location, that
is with a non-target word (25/32) or filled or unfilled pauses
(7/32).

Design and tasks

The experimental task was a naturalness judgement task.
Participants had to watch videos of 3D animated characters,

and answer the question “To what degree do you think the
video you just saw was based on a real speaker or generated
by a computer program?” Participants responded using a
mouse on visual analog scales (VAS) on the screen in front
of them. The scales consistently (without counterbalancing)
ranged from left to right ‘completely computer generated’ (0)
to ‘completely human’ (1). The subjective judgments of the
speakers in the videos as being computer or human generated
was used as a metric of whether asynchrony affected partici-
pants’ perception of asynchrony, assuming that (implicit or
explicit) perception leads to ‘less human’ and therefore ‘more
computer generated’ (0) ratings. Participants were presented
each of the 16 videos in one version (condition) only, with
combinations of video and condition counterbalanced over all
participants. All participants were thus exposed to all four
conditions (four videos per condition), because we predicted
large variance of individual participants’ distribution of VAS
responses. We preferred a mixed factorial design over a pure
within-subject design in order to avoid repetition of the same
video, which would risk drawing explicit attention to the
manipulation.

We also devised a second, explicit introspective task where
participants were asked to assess how important 12 different
properties (Table 1) had been for their judgements of videos as
‘computer generated’. Participants again responded using a
left-right VAS ranging from ‘not at all important’ (0) to ‘ex-
tremely important’ (1). The task probed whether participants
were able to explicitly pinpoint aspects of unnaturalness in the
videos with regard to the manipulated target gestures, specif-
ically speech–gesture asynchrony. All the properties and cor-
responding VAS (directly below the corresponding property)
were presented on-screen at the same time, in two columns
with six items in each. Each VAS covered approximately
25%, or 40 cm, of the screen. Only item 11 (“How important
was [...] the person’s hand movements?”) was related to the
manipulations and relevant for the current study. All other
items were fillers and excluded from analysis.

Procedure

Before starting, participants signed a consent form and
were informed that any collected data were to be treated
anonymously and that they were free to leave the exper-
iment at any time. For the experimental task, they were
instructed to indicate their ratings on a horizontal VAS
following each video. If a participant asked the experi-
menter about what they should look at specifically, they
were instructed to just go with their general impression.
They first performed a practice trial, watching a video
with synchronized speech and gestures.

The stimuli were projected on a 160 x 120 cm projector
screen 2 m in front of the seated participants, showing the
animated speaker life sized (cf. Gullberg & Holmqvist,
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2006). Participants wore headphones throughout the ex-
periment with the volume identically set for all partici-
pants. They watched videos on the screen and responded
using a mouse by clicking on analog scales centered on
the screen with approximately 50% horizontal extension
(80 cm). After participants had rated the 16 videos in the
experimental naturalness judgment task, they proceeded
to complete the introspection task.

Analysis

All analyses were performed in R (version 1.0.136, R Core
Team, 2016). We performed mixed-model linear regression
analyses using the lmerTest package (Kuznetsova, Brockhoff
& Christensen, 2017) and calculated coefficients of determi-
nation (marginal and conditional R2; Nakagawa& Schielzeth,
2013) using the MuMIn package (Barton, 2013).

Results

Experimental naturalness judgement task: implicit
ratings of naturalness

The data from the experimental naturalness judgement
task (n = 512) was analyzed using mixed model linear
regression (Eq. 1), with fixed factors temporal shift of
target gestures (synchronized, 500 ms before, 500 ms af-
ter) and speech content overlapping with target gestures
(target word, non-target word, pause). In addition, non-
experimental fixed factors were auditory distortion (0,1);
presence of additional gestures (before, before and after);

speaker identity (female, male); and video duration. The
model included participant and video ID as random inter-
cepts, and random slopes for temporal shift by participant
and speech overlap by participant.

Rating∼gesture shiftþ verbal overlap

þ auditory distortionþ video durationþ speaker

þ other gesturesþ 1jparticipantð Þ þ 1jvideoð Þ
þ gesture shiftjparticipantð Þ
þ verbal overlapjparticipantð Þ þ ε ð1Þ

The mixed-model linear regression revealed no significant
effect of temporal shift of target strokes relative to speech,
whether advanced (β = .057, t = .838, p = .403) or delayed
relative to target words (β = .013, t = 0.195, p = . 845).
Further, there was no effect of gesture strokes overlapping
with non-target words compared to overlapping with target
words (β = -.026, t = – .382, p = .703). However, we did find
a significant negative effect of strokes overlapping with
pauses compared to strokes overlapping with target words
(β = – 0.158, t = – 2.150, p = .033). That is to say, videos that
contained gestures that overlapped with pauses were deemed
to be less natural.

Turning to non-experimental factors, there was no effect of
auditory distortion in control condition A-DIST (β = – .028, t
= 1.039, p = .300), of other gestures occurring before and after
(as compared to only before) (β = .049, t = 1.071, p = .306), of
speaker identity (β = – .028, t = – 0.607, p = .555), or of video
duration (β = – .001, t = – .150, p = .883). The overall fit of the

Table 1 The 12 items in the introspective task

M SD

Item When judging videos as ’computer generated’
I did so based on:

0.36 0.29

1 ... the person’s appearance 0.59 0.31

2 ... the person’s voice 0.53 0.24

3 ... the person’s posture 0.31 0.33

4 ... what the person said 0.45 0.26

5 ... the person’s speech rate 0.58 0.28

6 ... the person’s prosody 0.42 0.26

7 ... the person’s lip movements 0.54 0.27

8 ... the person’s facial expressions 0.48 0.27

9 ... the person’s gaze 0.55 0.27

10 ... the person’s head movements 0.7 0.23

11 ... the person’s hand movements 0.56 0.33

12 ... the person’s stiffness 0.36 0.29

Translated from Swedish. The third column includes the mean ratings of the importance of different properties for “unnatural” judgements. 0 = not at all
important, 1 = extremely important
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regression was estimated bymarginal R2 = .0359 (only includ-
ing fixed factors) and conditional R2 = .364 (including fixed
and random factors). Figure 5 illustrates the results with
regards to experimental conditions and speech–gesture stroke
overlap. These results indicate that shifting target strokes
500 ms in either direction has no impact on how natural
(humanlike) the animations are perceived to be, as long as
the target strokes overlap with some spoken content.

Introspection task

Table 1 summarizes the subjective ratings of importance of
different properties of the speaker. To examine whether the
implicit ratings of naturalness were related to the explicit

ratings of the importance of hand movements, we performed
a Kendall's rank correlation between the responses to item 11
(the importance of hand movements) and the implicit ratings
of naturalness. Because the analysis of the experimental task
only revealed a significant effect of shifting target strokes to
overlap with pauses (and no general effect of temporal shifts),
we included only the implicit ratings of naturalness to the
videos with a stroke overlapping a pause (in total 56 observa-
tions). We found a significant negative correlation (Kendall's
τ – .217, p = .021, z = – 2.316). In other words, the more
important a participant rated hand movements to be as a basis
for their judgements, the more likely they were to have judged
gestures during pauses as unnatural.

Discussion

We have outlined an approach using motion capture recordings
of real speakers and their gestures to animate characters with a
view to create a viable experimental platform for testing multi-
modal information processing. We have described a workflow
for creating such animated characters to create controlled stimuli
suitable to experimentally examine effects of asynchrony on
speech–gesture processing. We have presented first, how we
configured the MOCAP setup and instructed speakers; second,
how MOCAP recordings were used to create animated charac-
ters; third, how these were manipulated to implement the exper-
imental conditions and finally rendered.

We have also presented an experiment testing detection of
speech–gesture asynchrony implici t ly. We asked
partcipants to rate how natural they perceived videos, some
in which the natural timing of one gesture had been either

Fig. 5 a Effects of experimental conditions on implicit detection of
naturalness (0 = not natural; 1 = natural). G-SYNC: original speech–
gesture timing, G-ADV: gesture advanced by 500ms; G-DELAY: gesture
delayed by 500 ms, A-DIST: parts of audio track distorted during non-
target words. b Effects of speech–gesture stroke overlap with target, non-

target words, or speech pauses on implicit detection of naturalness (0 =
not natural; 1 = natural). G-SYNC: original speech–gesture timing; G-
ADV: gesture advanced by 500 ms; G-DELAY: gesture delayed by 500
ms

Fig. 6 Ratings of videos where shifted strokes overlap with pauses
plotted against the subsequent ratings of the importance of “hand
movements” for identification of “computer generated” videos
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advanced or delayed 500 ms, finding no significant effect of
asynchrony except in the cases where the shifted gesture
strokes ended up overlapping with a pause in speech.
According to the Phonological Synchrony Rule (McNeill,
1992), gestural strokes that are delayed relative to their lexical
or conceptual affiliate are rare in speech. Our findings are
partly in line with previous results that have measured the
threshold for explicit detection of asynchrony (Kirchhof,
2014). Although Wang & Neff (2013) found that gestures
delayed by as little as 200 ms affected ratings of naturalness
negatively, this was only the case when videos with differently
manipulated gestures were presented side by side. This indi-
cates some differences in boundary conditions for implicit and
explicit perception of asynchrony. The current finding, that
gesture strokes performed during pauses were perceived as
less natural, is commensurate with the observation that natural
gestures typical co-occur with speech and not with pauses (cf.
Gullberg, 1998; Graziano & Gullberg, 2018). These results
raise interesting questions concerning other recent findings
suggesting that speech–gesture asynchrony may affect pro-
cessing (Habets et al., 2011) and learning (Pruner, Popescu,
& Cook, 2016) detrimentally.

‘Hand movements’ were rated as quite important for judg-
ing the naturalness of the videos, compared to the included
fillers and correlated with judgements of gestures during
pauses as unnatural. This could indicate that participants ac-
tually explicitly perceived gestures as unnatural (at least when
occurring during pauses). Note, however, that we have no
indication that participants were explicitly reacting to the
timing of gestures specifically. Ratings of naturalness gener-
ally tended to the center of the VAS scale (somewhere be-
tween completely computer generated and completely hu-
man). Even the ratings of the videos presented in the G-
SYNC condition averaged little over 50%, which is surprising
because they were completely based on a real speaker.
However, this may be caused by the unspecific formulation
of the question; we avoided any explicit explanation of what
computer generated might mean. We wanted a quantifiable
measure of perceptions of something as being ‘off’ that did
not require being able to specify what.

Obviously, the current results must be treated with caution
because the sample is small, but they do indicate that there is
more to investigate in this domain. For future studies of the
implicit effects of gestures on reception, it would be advisable
to control for, or at least be aware of, possible perceptual
effects of strokes during pauses. At the very least, they high-
light that the multitude of methods used to study these issues
generate different findings, and that more studies – perhaps
using the experimental platform outlined here - could be use-
ful in resolving them.

The proposed approach has several advantages, making it
possible to design implicit experimental tasks; that is, tasks
where gesture kinematics can be manipulated without

attention being drawn to gestures any more than in a natural
listening situation. The current study serves as an example,
where we could gauge participants’ perception of speech–
gesture asynchrony without explicit instruction or focus on
gestures and their timing; without presenting gesture–word
pairs in isolation; and without concealing speakers’ faces.
Instead, the stimuli were arguably ecologically valid approx-
imations of what it is like listening to and watching a natural
speaker. We recognize, of course, that animated characters are
not real people. The claims of ecological validity should there-
fore be understood as meaning approximations of realistic
sequences of speech and gestures. The experimental manipu-
lations per se might not conform to typical patterns in natural
production (e.g., delayed gestures), but to be able to precisely
implement and test them in realistic contexts allows us to
better pinpoint the real-world effects of following the natural
patterns.

The approach is general enough to be applicable to other
research questions and experimental designs. It does not rely
on concealing faces, the skills of an animator, or performance
of an algorithm for gesture synthesis. As illustrated in Fig. 1,
the workflow is designed to enable reuse of recorded material.
The stimuli described here are reusable to study other effects,
such as uptake of gestural information and other manipula-
tions on the same animation sequences are possible (see
Workflow: Manipulation step). Like ECAs, our MOCAP-
driven animated speakers allow for extensive control over
how stimuli are presented. Appearances of speakers or set-
tings, distance or angle to speakers are all variable. They can
also easily be integrated in virtual reality settings, which con-
stitute a developing research tool with great promise
(Bailenson & Yee, 2005; Blascovich et al., 2002; Bohil,
Alicea & Biocca 2011; Sanchez-Vives & Slater, 2005).
Compared to video recordings, digitally animated speakers
can be presented in three dimensions and positioned so that
their gaze and gestures are directed towards the listener.
Characters exhibiting realistic behavior, including gestures,
recreated from MOCAP recordings can potentially increase
listeners ‘social presence’ (Schuemie, 2001) in the communi-
cative situation.

Obviously, the approach also has its limitations given the
time investment of working with marker-based MOCAP. In
cases where high spatial and temporal resolution of gestural
form (kinematic features) is not a priority, marker-less tools
such as Microsoft Kinect may be preferable (e.g., Trujillo
et al., 2018). However, the multiple cameras used for
marker-based MOCAP increases the range of possible move-
ment and orientation of recorded speakers, whereas the Kinect
requires speakers to face the general direction of the sensor for
optimal function.

Recent development in methods based on training artificial
neural networks promise to make both facial and gestural
MOCAP faster and more accessible (e.g., the Radical
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commercial application: getrad.co; Bansal, Ramanan &
Sheikh, 2018; Chan et al., 2018; Suwajanakorn, Seitz &
Kemelmacher-Shlizerman, 2017).

For the testing of top-down models of speech–gesture pro-
duction, ECAs and gesture synthesis may be more suitable
(Leiva, Martín-Albo & Plamondon, 2017; Kopp, 2017; Xu,
Pelachaud & Marsella, 2014). Further, the approach is not in
its current form well suited to recreate and modulate gestures
of avatars in real-time. The FaceBo framework is one example
of an application of MOCAP technology for experimental
research purposes that is moving more in this direction
(Lugrin et al., 2016). Despite these limitations, we argue that
our approach takes an important step towards allowing us to
study speech–gesture integration using stimuli that are more
representative of real-world multimodal language
comprehension.

Conclusions

We have presented a methodological workflow allowing us to
precisely manipulate individual gestures in longer, ecological-
ly valid, sequences of gestures based on MOCAP recordings.
Using the workflow, we were able to experimentally study
implicit effects of speech–gesture asynchrony in a novel par-
adigm, finding that addressees do not implicitly detect
speech–gesture asynchrony of 500 ms in either direction un-
less manipulated gestures align with pauses. We have also
outlined how the workflow can be adapted in other studies
related to gesture processing that require both experimental
control and ecological validity. The approach thus holds great
promise for gesture studies, in both video and virtual reality
paradigms.

Open Practices Statement The stimulus material created with
the described method and used in the experiment is available at
https://lu.box.com/s/9mvmf4b2uu92z7k4710402m2gqwc8coo.
The data can be made available as a tab separated values may be
made available by contacting the corresponding author. The
experiment was not preregistered.
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