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Blocking androgen signaling has been the focus of treatment for advanced and metastatic prostate 
cancer (PC) for the past 70 years (1). First-line androgen deprivation therapy (ADT), either through 
surgical or medical castration (luteinizing hormone-releasing hormone agonists and antiandrogens), 
holds promise for PC patients; however, the disease inevitably progresses to castration resistance (2). 
Second-generation ADT, abiraterone acetate (AA), and enzalutamide (ENZ), have been effective 
for a subset of patients with castration-resistant PC (CRPC) with relatively short median survival 
benefits (~3–5 months) (3–5). Concerted effort in the field, including evidence from our group, 
clearly demonstrates a sustained AR activity in the CRPC tumors including (1) amplification of 
AR, (2) AR mutations, (3) expression of AR splice variants that are constitutively active, (4) altered 
milieu of AR coactivators and corepressors, and (5) intracrine synthesis of androgens to support 
CRPC progression (6, 7).

The addiction of PC to the AR signaling paradoxically creates a therapeutic vulnerability that has 
recently attracted increasing attention. While ADT causes regression of PC, high level of androgen 
can also inhibit PC progression. The concept of cancer suppression using excessive hormone therapy 
was introduced by earlier work from Huggins in 1940: “malignant cells can regress from too little 
or too much hormone” (8). In relation to PC, AR regulates proliferation as well as differentiation of 
prostate epithelial and cancer cells but it has not been established what conditions support one over 
the other. Interestingly activation of AR with excessive hormone (i.e., supraphysiological levels of 
testosterone; SPT) was shown to inhibit growth of CRPC in vitro by negative effects on proliferation 
and increased expression of some of the AR-regulated genes that are expressed in differentiated 
luminal epithelium, e.g., prostate-specific antigen. Multiple preclinical studies demonstrated that 
SPT inhibits growth of PC cells that express AR (9–21), with evidence suggesting that higher levels 
of AR might lead to more pronounced SPT effects in certain phenotypes of CRPC [reviewed in Ref. 
(22)]. However, AR by itself is not necessarily sufficient for the SPT-induced growth inhibition; cel-
lular context (23) and AR-regulated transcriptome in its entirety will need to be assessed to delineate 
the molecular effect of SPT (24). Mechanistically, SPT-induced cell growth inhibition involves (1) 
cell-cycle arrest, (2) disruption of AR-mediated DNA licensing, (3) DNA damage, (4) transcriptional 
repression of AR and its variants, (5) transcriptional reprogramming, (6) cellular quiescence or 
senescence, and (7) induction of apoptosis [reviewed in Ref. (22)]. However, these effects were 
demonstrated exclusively in cell line models, and whether they play a significant biological role in 
SPT-induced tumor inhibition in patients remains to be determined.

Clinical use of testosterone (T) supplementation in PC has been limited and provided contro-
versial results. Two older National Prostatic Cancer Project trials that used T-supplementation to 
normal levels with a goal to enhance the effectiveness of chemotherapy reported disappointing 
results (25, 26). Additional two phase I trials, which did not achieve consistent supraphysiological 
T levels, showed minimally reduced disease progression (27, 28). In contrast, several other studies 
showed that T-supplementation to normal-supraphysiological range (303−2637 ng/dl), specifically 
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in symptomatic hypogonadal PC patients, provided prolonged 
disease control (as measured by sustainably low-PSA level) 
(29–31). In our opinion, the lack of favorable response in some 
of the clinical trials is, at least in part, due to the absence of a 
supraphysiological level of T as well as the unselected patient 
population.

With advanced understanding of the biology and AR 
involvement in CRPC progression, leveraging the active AR 
signaling to explore therapeutic opportunity has recently received 
renewed attention in clinical settings. Dr. Denmeade’s group at 
John Hopkins University pioneered a therapy termed “bipolar 
androgen therapy” (BAT) as a treatment for PC patients. With 
BAT treatment, PC patients receive intermittent T injections at 
doses shown to produce a spike in serum T to supraphysiologi-
cal levels, followed by a decline to below normal at the end of a 
28-day treatment cycle (32). This cycling strategy was developed 
based on the most common molecular hallmark of CRPC–over-
expression of AR (33) and the potential growth inhibitory effect 
of SPT in AR-overexpressing PC. Rapidly cycling of T from 
SPT (~1,500  ng/dl) to below normal T levels (~150  ng/dl) was 
expected to blunt the adaptive changes in AR expression, thereby 
delaying the emergence of resistance. In these proof-of-principle 
BAT trials, one in CRPC showed radiographic response rates of 
~50% in men (32), and one in hormone-sensitive PC showed 
favorable PSA responses (34). Promising results of these trials led 
to a new clinical trial, in which asymptomatic CRPC patients that 
progressed on AA or ENZ receive BAT, and after progression on 
BAT the patients are re-challenged with AA or ENZ. This trial 
aims to evaluate the efficacy of BAT in patients who progressed 
on secondary ADT and assess whether BAT re-sensitizes CRPC 
to secondary ADT. Recent data from this trial showed a PSA50 
response in 9/30 ENZ-resistant patients on BAT, and, importantly, 
15/21 patients who progressed on BAT showed a PSA50 response 
upon ENZ re-challenge (35). These results are encouraging. 
However, additional analyses and larger number of patients are 
needed to correlate tumor/radiographic vs. PSA responses in 
individual patients. One of the reasons is that PSA changes do not 
necessarily associate with tumor regression in advanced CRPC. 
PSA, an AR-regulated gene, is highly sensitive to AR activation/
inhibition and can rise upon SPT and decline upon ADT. PSA 
response might not faithfully reflect radiographic responses in 
advanced CRPC which growth often does not rely solely on AR 
signaling [e.g., FGF signaling (36)].

Bipolar androgen therapy shows great clinical promise in a subset 
of patients. However, universal to all cancer treatment modalities, 
not all patients respond to this treatment and resistance to BAT 
develops. Therefore, there is an opportunity to improve this therapy. 
It is notable that a critical step in drug development, determining the 
optimal dosing schedule, was bypassed in the clinical development 
of BAT. Despite the clinical efficacy of BAT, there were by far no 
clinical data to support the hypotheses that cycling SPT (i.e., BAT) 
mitigates the development of resistance or that BAT represents the 
optimal mode for administering SPT. Notably, several preclinical 
studies have consistently demonstrated that SPT delivered on a 
continuous basis inhibits the growth of PC cells (13, 20, 21). While 
several small clinical trials of continuous T administration in men 
with CRPC have been carried out, they did not achieve SPT levels.

Cycling or not cycling—that is the question. While we currently 
do not have sufficient evidence whether BAT results in better clinical 
outcome than continuous SPT, it is possible that long-term continu-
ous SPT and BAT could alter AR signaling differently. One would 
anticipate that continuous SPT might trigger more pronounced dif-
ferentiation, potentially causing a change from a “low-T” oncogenic 
AR transcriptome to that of a more differentiating SPT transcriptome 
(24). Meanwhile, BAT might provide better efficacy if cell-cycle 
relicensing effects and DNA damage are the critical mechanism of 
action (37, 38). While BAT was associated with improved quality of 
life (34, 35), this effect diminished over the course of a cycle of BAT, 
presumably due to T levels falling below normal range. It is possible 
that quality of life metrics will be better with continuous SPT but 
there also might be increase in negative side effects. While T therapy 
has been reported to be generally safe, with a small subset of patients 
experiencing severe cardiovascular-related complications (27–32, 
39–42), continuous SPT has not been tested and monitoring will 
be essential. Careful evaluation of effects of BAT vs. continuous SPT 
on tumor progression, as well as any potential health benefits or side 
effects will be required to make final decision.

Interestingly, cycling of ADT, intermittent ADT, has been 
evaluated in PC extensively since its introduction in mid-1980s. 
However, intermittent ADT was not found to be inferior to con-
tinuous ADT with respect to the overall survival but it was shown 
to improve patients’ quality of life, and therefore it is thought to 
be a viable option for patients who experience significant adverse 
effects of continuous ADT [for review see Ref. (43, 44)]. In addi-
tion, intermittent AA therapy has been recently shown to delay the 
development of resistance from 16.5 (continuous treatment) to 
27 months (45). Whether the intermittent therapy diversifies the 
residual tumor clones or re-sensitize the residual clones to a therapy 
that formerly failed remains scientifically and clinically important.

In summary, we will need to seek answers to multiple important 
questions before unleashing the full potential of SPT therapy in CRPC: 
(1) which mode of SPT, BAT or continuous SPT, represents the opti-
mal administration regimen for tumor growth inhibition; (2) what 
population of patients will benefit from SPT therapy; (3) is there a way 
to prolong the treatment response; and (4) what are the mechanisms 
of resistance, as these will be diverse in different tumor phenotypes. 
To address these questions, systematic preclinical trials will need to 
be performed, and pre-treatment and on-treatment clinical specimens 
will be essential to identify mechanisms of SPT action and biomarkers 
that predict SPT response.
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