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At present, immunohistochemistry is taken for granted in the establishment of malignant melanoma (MM) diagnosis. In recent
years, molecular diagnosis in dermatopathology has benefited from a vast array of advances in the fields of genomics and
proteomics. Sensitive techniques are available for detecting specific DNA and RNA sequences by molecular hybridization. This
paper intends to update methods of molecular cytogenetics available as diagnostic adjuncts in the field of MM. Cytogenetics
has highlighted the pathogenesis of atypical melanocytic neoplasms with emphasis on the activation of the mitogen-activated
protein kinase (MAPK) signalling pathway during the initiation step of the neoplasms. 20 to 40% of MM families have mutations
in the tumour suppressor gene p16 or CDKN2A. In addition, somatic mutations in p16, p53, BRAF, and cKIT are present in
MM. Genome-wide scan analyses on MM indicate positive associations for genes involved in melanocytic naevi, but MM is likely
caused by a variety of common low-penetrance genes. Molecular dermatopathology is expanding, and its use in the assessment of
melanocytic neoplasms appears to be promising in the fields of research and diagnosis. Molecular dermatopathology will probably
make its way to an increased number of diagnostic laboratories. The expected benefit should improve the patient management.
This evolution points to a need for evolution in the training requirements and role of dermatopathologists.

1. Introduction

In some instances, identifying cutaneous malignant mela-
noma (MM) in routine histopathology may prove to be a
challenging exercise [1–3]. The diagnostic process is ham-
pered by a series of clinical and histopathological limitations
in both the definition of objective criteria and establish-
ment of undisputable diagnostic consensus. Over the past
decades, the development of immunopathology notably
shifted the diagnostic procedure from descriptive morphol-
ogy to molecular histopathology [4–8]. Immunopathology
helps distinguishing some atypical melanocytic neoplasms
and supports refined MM staging [9–18]. In recent years,
other progresses were made beyond regular microscopy in
the fields of molecular biology and molecular morphology
for the detection of pathogenic mutations expressed in
DNA, RNA, and proteins. Such sensitive procedures applied
to MM help in the diagnosis, classification, and outcome
prediction, as well as in selecting and monitoring therapy
[19–24]. Of note, mutations altering a protein due to amino

acid substitution have to be distinguished from mutations
occurring in a given amino acid and corresponding to silent
mutations or polymorphism.

The aim of this paper was to revisit recent insights in mo-
lecular dermatopathology shedding some light on the path-
ogenesis and diagnosis of MM. The accent will be on mo-
lecular cytogenetics referring to the molecular structure and
the function of chromosomes. The covered techniques are
currently used for research or diagnostic purposes.

2. Complementary Sampling Methods

Two special sampling methods are particularly suited for
some methods used in molecular dermatopathology.

Laser cutting dissection helps isolating circumscribed
cell populations under the microscope in an attempt at
increasing homogeneity of isolates based on morphological
criteria [25, 26].

Tissue microarrays correspond to an ordered set of
minute tissue cores (roughly 0.6 mm in diameter) obtained
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from a variety of specimens and embedded in a single paraf-
fin block. For comparative purposes, immunohistochemistry
and a range of downstream molecular methods are conve-
niently applied to tissue microarrays [18, 27]. For instance,
tissue microarrays from different MM samples at different
stages of progression were used to disclose distinct molecular
alterations [27]. In this field, immunohistochemistry on
tissue microarrays has identified osteopontin expression as
the first feature acquired during the initial step of MM
invasion [27].

3. Molecular Morphology and
Biology at a Glance

3.1. In Situ Hybridization. In situ hybridization (ISH) pro-
vides morphological demonstration of specific DNA and
RNA sequences in tissue sections, single cells, or chromo-
some spreads. ISH relies on labelled single- or double-
strand DNA or RNA sequences containing complementary
sequences that hybridize to cellular DNA or RNA under
appropriate conditions to form stable hybrids. The optimal
probe length for ISH results in maximized tissue penetration
and high hybridization rate. It averages 50–300 bases.

Primed in situ (PRINS) labelling relies on a primer-
mediated DNA synthesis carried out in situ on tissue sec-
tions. The technique starts with annealing an oligonucleotide
DNA primer adjacent to the DNA region of interest. This
molecular structure serves as a primer for the Tag polymerase
incorporating the four nucleotides dATP, dGTP, dCTP, and
the labelled dUTP which is conveniently revealed using im-
munohistochemistry. These ISH and PRINS methods are
used for localizing DNA sequences and specific mRNA in
cells and tissues, as well as visualizing chromosomes allow-
ing interphase cytogenetics and detection of specific mRNA.
Thus, HIS and PRINS methods were developed using chro-
mosome-specific probes or oligonucleotides for the detec-
tion of numerical and structural chromosome aberrations
in interphase nuclei in both fresh and formalin-fixed tissue
sections.

3.2. Chromosomal G Banding Method. Chromosomal G
banding (CGB) detects gross aberrations in chromosomes
under microscopic examination [18, 28]. Cell cultures from
fresh MM sampling are followed by stabilization of mitotic
figures in metaphase. Enzyme digestion followed by histo-
chemical staining reveals CGB. Of note, subtle chromosomal
aberrations including point mutations, small insertions, and
deletions, as well as discrete rearrangements are not disclosed
using the CGB method [24].

3.3. FISH Method. Fluorescence in situ hybridization (FISH)
relies on hybridization of fluorescent complementary DNA
probes recognizing specific genes or DNA oligonucleotides
[29]. The method is performed on fresh or formalin-fixed
tissue sections, as well as on nuclei spreads and DNA mi-
croarrays. The number of spots per nucleus is indicative
of the copy number of the scrutinized chromosome locus.
Sequences of the whole genome, centromeres, telomeres,
and specific gene regions are conveniently used as probes.

A translocation is detected by a spot splitting into two parts,
or by different fluorescent probes that hybridize on each of
the translocated genes.

FISH helps identifying mutated cells including those in
the apparently normal skin at distance from the MM [30].
Recent FISH variants were developed in various ways [24,
31]. FISH allows detecting subtle chromosome aberrations
in MM including four targeted genes, namely, CEP6, RREB1,
MYB and CCND1 [32–35].

One pitfall of the FISH method results from the partial
entrapping of the nuclei volume in the tissue sections caus-
ing technical omission of chromosome segments. Hence, a
number of nuclei must be scrutinized for ensuring a reliable
assessment of the copy number of the probe [36].

3.4. CGH Method. Comparative genomic hybridization
(CGH) compares DNA from a melanocytic neoplasm to
DNA from a normal reference tissue of the same patient.
The CGH method is conveniently performed using fresh or
formalin-fixed tissue. The DNA labelled with different fluo-
rochromes is subsequently hybridized on normal metaphase
chromosomes or on arrays of small spots of DNA [24]. Data
are expressed as a gain or loss of copy number [37]. CGH
has identified some genome aberrations and imbalance in
MM [38], but only when genome aberrations are enough
represented in neoplastic cells [31]. CGH is mainly used in
research settings [38, 39] where it helps identifying genomic
signatures distinguishing different MM types [40–42]. Of
note, Spitz naevi (melanocytomas) [43] contain genetic ab-
errations corresponding to single 11 p gains [19, 38]. MM
arising in congenital melanocytic naevi shows CGH pat-
terns comparable to regular MM, while atypical nodules
(melanocytomas) contain numerical aberrations of entire
chromosomes, which are seen only in a minority of MM [44].

3.5. Gene Microarray Method. Gene microarrays also named
DNA chips allow scrutinizing RNA and microRNA (miRNA)
expression, as well as detecting DNA mutations and poly-
morphism [45–47]. The method is applicable to fresh or
formalin-fixed tissue [47]. The procedure involves immobi-
lization of specific DNA sequences on a solid platform, to
which complementary labelled DNA hybridizes. The labelled
DNA is obtained from reverse transcription of mRNA ex-
tracted from the test tissue. The immobilized DNA corre-
sponds to either oligonucleotides or complementary DNA
[24]. Following the hybridization process, the labelled spots
are scrutinized. The complexity of the multiple data requires
adequate statistical analysis and computerized mathematical
models.

Gene microarray signatures were offered for molecular
classification of MM and naevi in diagnostic dermatopathol-
ogy [47]. In such screening, 36 different gene signatures were
found between melanocytic naevi and MM.

3.6. PCR and RTP-CR Methods. The PCR (polymerase chain
reaction) substrate corresponds to DNA or RNA (reverse
transcriptase, RT-PCR), extracted from fresh or formalin-
fixed tissue. The method corresponds to a chemical reaction
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driven by cyclic changes in temperature leading to a specific
and exponential amplification of small fragments of the tar-
get DNA or RNA over a short period of time. PCR was ap-
plied to the identification of MM micrometastases [48] using
selected markers including me20m, PLAB, SPP1, CAPG, and
CTSB [24, 26, 49].

While immunohistochemistry improves the sensitiv-
ity of metastasis detection by 10–45% compared with
regular histopathology, RT-PCR for MM-related marker
gene expression, like tyrosinase and Melan A-Mart-1, was
reported to increase the detection of suspected occult metas-
tases up to 70% [24]. Indeed, RT-PCR is expected to detect
one MM cell out of 106-107 non-MM cells, while immuno-
histochemistry probably detects one MM cell in about 104-
105 non-MM cells [21]. The relevance of PCR detection of
MM micrometastases in lymph nodes was, however, chal-
lenged because of the apparent lack of prognostic value of
the findings [50]. Indeed, in addition to the identification
of MM micrometastasis within sentinel lymph nodes, the
size and location of the metastasis should be assessed [51].
Thus, the role of nonmicroscopic methods to investigate the
sentinel lymph node remains doubtful. In such procedure, a
histopathological assessment of the location, size, and nature
of the suspected MM cells is lacking and misinterpretation
of nodal nevus cells as metastasis may occur. This drawback
might be overcome by using highly specific methods detect-
ing only MM cells [52], but the size and location of the
micrometastases remain unassessed.

In situ PCR-based amplification of the target nucleic acid
sequences may be performed before performing ISH. In situ
PCR is performed on cells or tissues are fixed and perme-
abilized respecting the morphology and allowing access of
the PCR probes to the intranuclear sequences that have to
be amplified. Cell suspensions or tissue sections are overlaid
with PCR reagents, sealed off with a coverslip, and submitted
to thermal cycling. The PCR products are detected using PCR
probes (indirect in situ PCR) or through direct detection of
labelled nucleotides incorporated into PCR products (direct
in situ PCR).

3.7. MLPA Method. Multiplex ligation-dependent probe am-
plification (MLPA) is based on annealing up to 45 probes
each consisting of two oligonucleotides that hybridize next to
each other on a specific chromosome region [53]. In addition
to target-specific sites, both oligonucleotides, contain a uni-
versal PCR primer. In addition, one oligonucleotide contains
a so-called stuffer sequence showing a probe-specific length.
After ligation of the hybridized adjacent oligonucleotides the
probe is amplified using PCR primers. As each probe has a
unique length due to the stuffer sequence, electrophoresis
conveniently separates and quantifies the amount of PCR
product indicating the DNA copy number [24]. Mutation-
specific MLPA combines copy number detection and hot-
spot mutations in a single assessment [54].

3.8. HRMA Method. High-resolution melting analysis
(HRMA) is based on the DNA dissociation after heating at
high resolution. This procedure allows for the detection of
single-base pair sequence variations [55]. This rapid method

detects hot-spot mutations and possibly identifies mutated
cells when present in at least 5% of a background of cells
showing wild-type DNA [56].

4. Germline and Somatic MM Mutations

Multiple naevi associated with increased MM risk predom-
inantly occur in families with p16 or CDKN2A mutations
[57]. However, searching for p16 or CDKN2A mutations is
not clinically relevant in other MM patients as the probability
of detecting a mutation is small [58]. The prevalence of fa-
milial p16 mutations is related to the number of MMs
in relatives [57]. More than 30 different p16 mutations
have been reported so far [58]. Globally, p16 mutations are
present in 25–40% of MM families with more than 2 MMs,
while the proportion of p16 mutations is lower in families
with 2 MMs only [59]. In addition, individuals with multiple
primary MM are more likely to have p16 mutations [60].

The p16 gene produces two different polypeptides,
namely, the p16/INK4a and the p14/ARF proteins. Both of
them participate in the control of the cell cycle of prolifer-
ation. According to the exon mutation, the p16 and/or p14
functions are altered. Indeed, most MMs are unrelated to
germline p16 mutations especially in the nonfamilial MM.
Many other common MM genes of lower penetrance are
probably involved in MM. These mutations increase with
the progression of the disease [61]. Multiple dysplastic naevi
are a marker of MM risk and susceptibility to other cancers
as well [62]. MM is therefore likely to share cancer genes
with other neoplasms because MM is common in the family
cancer syndromes. Individuals with BRCA2 and BRCA1
mutations have an increased risk of MM on the skin and eyes
[63].

Genetic aberrations in cutaneous MM correlate with spe-
cific phenotypes [64]. Of note, the progression from a mel-
anocyte to a MM cell is supported by a series of morphologi-
cal changes, and a series of currently unravelled genetic aber-
rations. Both the mitogen-activated protein kinase (MAPK)
signalling pathway and the PTEN/AKT pathway are involved
in the growth control of melanocytes [65]. Activation of these
pathways following somatic mutations in the RAS and
RAF genes might represent one of the initial steps in the
development of melanocytic naevi [66]. The BRAF oncogene
on chromosome 7Q34 is commonly mutated in over 70% of
MMs [67], but this mutation is absent in giant congenital
melanocytic naevi [68]. MM with multiple naevi and BRAF
mutation occur more frequently at a younger age and
on intermittently sun-exposed sites [69]. By contrast, p53
mutations are more common in lentigo maligna or MM
developed on chronically sun-exposed sites of older patients
showing prominent actinic damage [70]. Distinct somatic
gene mutations such as at the cKIT locus were identified in
other MMs, particularly on the mucosa, palms, and soles
[71], and in hyperpigmented MM [15]. Genes potentially
involved in MM metastases include those involved in the
MAPK pathway, such as BRAF and RAS. New MM therapies
targeting the BRAF and cKIT pathways call for genotyping
MM in order to select the proper patients [71–76].
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Blue naevi, Spitz melanocytomas, congenital melanocyt-
ic naevi, and uveal MM do not or rarely contain BRAF mu-
tations [68]. By contrast, they contain other mutations such
as in the NRAS or HRAS genes [77]. In addition, somatic
mutations of GNAQ in the RAS-like domain were found
in both uveal MM and blue naevi [78]. Similarly to BRAF
mutations, the RAS and GNAQ mutations may cause MAPK
activation and form an alternative route for melanocytic
neoplasia [55]. Even if all these mutations seem to represent
early events in the development of melanocytic neoplasms,
they do not cause melanocytic progression towards MM.

5. Conclusion

Most of the molecular methods available in dermatopathol-
ogy currently remain research-based approaches. In such
setting, molecular diagnosis appears increasingly important
for predicting the biological behaviour of MM. New markers
correlating with poor prognosis have been reported. It ap-
pears that MM is a genetically heterogeneous neoplasm with
different risk phenotypes and genotypes.
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