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Abstract: 
Proteins can interact in various ways, ranging from direct physical relationships to indirect interactions in a formation of protein-protein 
interaction network. Diagnosis of the protein connections is critical to identify various cellular pathways. Today constructing and 
analyzing the protein interaction network is being developed as a powerful approach to create network pharmacology toward detecting 
unknown genes and proteins associated with diseases. Discovery drug targets regarding therapeutic decisions are exciting outcomes of 
studying disease networks. Protein connections may be identified by experimental and recent new computational approaches. Due to 
difficulties in analyzing in-vivo proteins interactions, many researchers have encouraged improving computational methods to design 
protein interaction network. In this review, the experimental and computational approaches and also advantages and disadvantages of 
these methods regarding the identification of new interactions in a molecular mechanism have been reviewed. Systematic analysis of 
complex biological systems including network pharmacology and disease network has also been discussed in this review. 
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Figure 1: Graphical abstract for the study 
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Background: 
The links between proteins in a protein set can make a protein-
protein interaction network (PIN) and all proteins that are involved 
in PINs are spatially or temporally engaged to interact with other 
proteins within the process as well as functioning as indirect 
interacting members of the same pathway [1]. Currently, the 
discovery of protein connections has been assisted by 
developments in both biochemical and computational methods, 
which have produced precious awareness into the fundamental 
building of protein interactions in cellular networks [2]. Until now, 
the original experimental methods, for instance, mass spectrometry 
and proteomics approaches, have been used to identify protein-
protein interaction [3]. However, due to the complexity of the 
problems of analyzing in-vivo PPIs such as protein denaturing and 
possible disruption in the formation of protein complexes, many 
efforts have failed to comprehensively elucidate the molecular 
interactions that facilitate molecular mechanism [4]. Existing 
computational approaches, in addition to experimental methods, 
can assist our understanding of PPIs at various levels. The 
computational approaches may be utilised for comprehensive 
examination or perform a wide scale analysis across large datasets 
(Figure 1). This approach signifies the multifaceted association of 
proteins with PPI links in a protein interaction network and would 
help to comprehend how signalling pathways linked with a disease 
are connected [5]. By using computational methods, it is possible to 
identify comprehensive information about complex diseases such 
as the putative disease target genes, putative drug targets, new 
prognostic biomarkers and understanding the mechanism of 
complex disease by network analysis [6]. Thus, computational 
approach denotes a novel technique for investigating the complex 
impacts of candidate genes that are connected to complex diseases, 
and is also worthwhile in recognizing important drug targets and 
genes in a disease and in complex biological systems [7]. 
 
Experimental methodologies to detect PPI 
Proteins commonly do not perform alone, but conduct their job in 
assisting other proteins and all cellular processes that depend on 
protein-protein interactions (PPIs) [8]. Therefore, identifying and 
characterizing PPIs is essential for understanding life at a molecular 
level. In order to understand the cellular and protein function at 
molecular level, knowledge of PPIs is critical. Many experimental 
methods exist to detect protein-protein interactions [9]. PPIs were 
recognized by utilizing hypothesis driven and the top-down 
methods of biophysics, biochemistry and genetics. New bottom-up 
interaction discovery methods with the progresses in proteomics 
technology, for instance 2D gel electrophoresis associated with the 
mass spectrometry and the yeast two-hybrid system, have been 
established to discover protein interactions at large scale. In 
numerous large-scale protein- protein interaction datasets, 
experimentally tested interactions have been assembled [10]. The 

genetically engineered strains of yeast (Saccharomyces cerevisiae) are 
employed by the Yeast Two-Hybrid (Y2H) system in order to 
classify protein-protein interaction. In order to discover interactions 
through the whole proteome of an organism, the Y2H is dominant 
method that can be applied in a high-throughput mode. It has been 
employed to identify proteome varied interactions in model 
organisms, for instance S. cerevisiae, H. pylori, D. melanogaster and C. 
elegans [11].  
 
The main disadvantages of this Y2H technique are:  it allows to analyze, two 
proteins at the time, the many proteins that are not in their native state as it 
occurs in the nucleus and the interactions do not take into account the 
physiological setting [12]. Mass spectrometry utilizes specific proteins what 
are tagged as “hooks” to refine biochemically whole protein complexes, 
then the purified proteins will be separated and their components identified 
by mass spectrometry [13]. The benefits of utilizing this detection technique 
are that numerous members of a complex can be tagged, providing an 
internal stability check and it identifies protein complexes in their 
physiological condition. In contrast, the drawbacks of this method are that 
the tagging might disrupt the formation of protein complexes and a few of 
the proteins might not exist in the given situations and could be ignored 
[14]. Even though experimental approaches, for example, immune 
precipitation, generated great quality outcomes and these approaches have 
produced big volumes of interaction data, they were extremely time 
consuming and their outcomes of the high-throughput techniques contain a 
great number of false-negative and false-positive relationships [15].  In 
addition to experimental methods, computational methods can explain 
protein-protein interactions at various levels [16].   
 
Computational methods to detect PPI 
Computational methods might emphasize thorough investigation 
or perform a wide scale examination across huge datasets. They 
might deduce whether proteins interrelate via protein sequence and 
genomic analysis. The approaches using protein sequence and 
genomic data contain a study of the absence or presence of genes in 
associated species, gene fusion events, preservation of gene 
neighborhood, interconnected mutations on surfaces of protein, the 
resemblance of phylogenetic trees, co-occurrence of sequence 
domains, functional and co-expression features [17]. Sometimes, 
integration of these features is used to predict new interactions or 
to approximate the validity of PPIs, which are evaluated 
experimentally [18]. Some features such as likeness in the Gene 
Ontology (GO) term annotation, co-expression, sequence and the 
existence of possibly interacting domains of the protein pair under 
many conditions or numerous tissues have been revealed to be 
applicable predictors of protein-protein interactions [19]. For the 
prediction of PPIs, physical docking methods recently were 
revealed to create good outcomes [20]. However, this technique is 
restricted by the computational complication and the tertiary 
configuration of the big number of proteins has not yet been 
identified [21].  
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Table 1: Protein interaction databases 
Databases Descriptions References and URL 
The Database of 
Interacting Proteins 
(DIP) 

DIP is a database that records experimentally determined protein-protein interactions.  It provides the scientific community 
with an integrated set of tools for browsing and extracting information about protein interaction networks.  Tools have been 
developed that allow users to analyse, visualize and integrate their own experimental data with the information about 
protein-protein interactions available in the DIP database. 

[29] http://dip.doe-mbi.ucla.edu/dip/Main.cgi 

IntAct IntAct is an open source database suite for storing and analysing protein-protein interaction data.  The available data 
emanates from published literature and is manually interpreted by expert biologists to a high confidence of detail, 
comprising experimental methods, conditions and interacting domains.  The experimental methods include yeast-2-hybrid, 
mass spectrometry, fluorescence microscopy, co immune precipitation, pull down and others.  PPI network data can be 
import from IntAct directly using IntAct Web Service Client, a plugin of Cytoscape. 

[30] http://www.ebi.ac.uk/intact/ 

The Biomolecular 
Interaction Network 
Database (BIND) / 
(BOND) 

BIND (/BOND) is a database designed to store full descriptions of interactions, molecular complexes and pathways.  It can 
be used to study networks of interactions, to map pathways across taxonomic branches and to generate information for 
kinetic simulations. 

[31] http://bond.unleashedinformat 
ics.com/Action? 

A  Molecular Interaction 
database (MINT) 

MINT is a database designed to store functional interactions data such as enzymatic modifications of one of the partners.  
MINT includes of extracted data from the published literature by expert curators and software that assemble abstracts 
comprising information from interaction and demonstrated them in a user-friendly format.  The interaction data can be 
easily mined and observed graphically through 'MINT Viewer'. 

[32] 
http://mint.bio.uniroma2.it/mint/Welcome.do 

 
Reactome 
 

Reactome is a peer-reviewed resource of human biological pathways.  The complete set of possible reactions organizes its 
reactome by enter the genetic profile of an organism. Reaction is the basic module of the Reactome database then the 
reactions are grouped into causal strings to procedure pathways.  The involving applications have been developed to enter 
custom data and interpretation by expert biologists, and to allow visualisation to construct an interactive pathway network. 

[33] http://www.reactome.org/ 
 

Human Protein 
Reference Database 
(HPRD) 

HPRD is an open source based on technologies for protein features in various aspects of human proteins comprising post-
translational modifications enzyme-substrate links, disease associations and PPI.  The details were derived manual accurate 
reading of the scientific literature by expert biologists and also protein sequence analyses by bioinformatics approaches. 

[34] http://www.hprd.org/ 

MIPS The MIPS or mammalian protein-protein interaction database (MPPI) is a new high-quality resource which stores 
experimental protein interaction data in mammals. The data is based on published experimental studies that has been 
analysed by human expert curators.  It provides a flexible and powerful web interface with full dataset for download toward 
various scientific targets. 

[35] http://mips.helmholtz-
muenchen.de/proj/ppi/ 

SMART (a Simple 
Modular Architecture 
Research Tool) 
 

SMARTanalysis the domain structures of proteins and provides the documentation and annotation of genetically the 
domains. The domains which are grouped in more than 500 domain families are widely annotated in order to phyletic 
distributions, tertiary structures, functional class and functionally important residues. Each domain found in a non-
redundant protein database as well as search features are collected in an associated database system.  

[36] http://smart.embl-heidelberg.de/ 

Kyoto Encyclopaedia of 
Genes and Genomes 
(KEGG) 

KEGG is the reference knowledge base that integrates current knowledge on molecular interaction networks such as 
pathways and complexes, information about genes and proteins generated by genome projects and information about 
biochemical compounds and reactions.   

[37] http://www.genome.jp/kegg/ 

InterPro InterPro is a resource that provides functional analysis of protein sequences by classifying them into families and predicting 
the existence of domains and main sites. To organize proteins in this way, InterPro procedures predictive models, 
represented by several different databases. The databases that make up the InterPro Consortium contain PROSITE, HAMAP, 
Pfam, PRINTS, ProDom, SMART, TIGRAFAMs, PRISF, SUPERFAMILY, CATH, Gene30 and PANTHER. 

 
[38] http://www.ebi.ac.uk/interpro/ 

Gene Ontology (GO) The GO Consortium is the set of model organism and protein databases and biological research communities actively 
involved in the development and application of the Gene Ontology. 

[39] http://geneontology.org/page/go-database 

BioGRID BioGRID is an online interaction repository with data compiled through comprehensive curation efforts. This database 
contains protein and genetic interaction from major model organism species. All interaction data are freely provided via 
search index and available by downloading in a wide variety of standardized format. 

[40] http://thebiogrid.org/ 

Pathway Commons Pathway Commons collects publicly available pathway information from various organisms. It allows convenient access to a 
comprehensive store of biological pathways from multiple resources presented in a common language for gene and 
metabolic pathway analysis. 

[41] http://www.pathwaycommons.org/about/ 

BioCyc The BioCyc is a collection of genomes and metabolic pathways which are represented by multiple pathways. The included 
data is generated by software that predict the metabolic pathways of completely sequenced organisms. BioCyc also 
integrates protein feature and Gene Ontology information from other bioinformatics databases, such as from UniProt. 

[42] http://biocyc.org/ 

Pfam The Pfam database provides a large collection of protein families, each output results by multiple sequence 
alignments and hidden Markov models (HMMs). 

[43] http://pfam.xfam.org/ 

GEO (Gene Expression 
Omnibus) 

GEO is an international public source that stores freely microarray, next-generation sequencing, and other forms of high-
throughput functional genomics data submitted by the research community. GEO fallows three main aims: archive high-
throughput functional genomic data; collect and well-annotated data from the research community; provide to researchers to 
query, review and download gene expression profile of interest. 

[44] http://www.ncbi.nlm.nih.gov/geo/ 

 
PPI datasets 
Experimentally detected PPIs are collected in several publicly 
available databases that are curated by experts and make the PPI’s 
supporting evidence easily available. Typically, these databases 
provide meta-data such as the study in which the interaction has 
been described and which techniques have been utilized to 
measure the interaction. These databases apply diverse 
mechanisms to display and query the data. These databases include 
HPRD [22], BioGRID [23], MINT [24] and IntAct [25]. It has been 
revealed that the human proteome takes account of about 300 000 
PPIs out of a potential 4300 000 000 PPIs. This approximation does 

not represent the numerous variations in interacting pairs due to 
post-translational modifications and alternative splicing. A number 
of databases have been recognized and developed to fill this gap by 
predicting PPIs. Furthermore, human diseases and other traits are 
being probed by genome-wide screens. For example, several recent 
studies demonstrate genome-wide screening endeavors to 
recognize somatic mutations in several cancer types [26]. Location 
of genes or proteins into a pathway context can yield evidence 
about the links among these genes and has the potential to create 
hypotheses about the mechanism(s) of relating these genes to 
phenotypes [27]. Reliable pathway databases are essential for such 
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an analysis. Overall, the prediction of PPIs by databases are based 
on various types of evidence including presence of fusion evidence, 
co-occurrence evidence, experiment evidence, text mining and co-
expression evidence [28]. Currently there are several existing 
protein-protein interaction databases that focus on experiment or 
predict evidence as exemplified in Table 1.   
 
PPI network 
The network of interactions amid proteins is the skeleton that forms 
the properties of each living cell. Most processes rely on the ability 
of proteins to recognize and bind each other, whether it is 
enzymatic pathways or cascades of signal transduction. New 
experimental methods have enhanced attention on these networks, 
resulting in a fast growth in accessing data on protein interactions 
from numerous species. Some devices are needed to layout and 
display the network data, because of the great number of 
interactions present in PPI databases [45].  
 
Visualization Tools 
Recently, in order to construction of protein-protein interaction 
network, different visualization tools have been developed. Table 2 
shows the different tools and the access links.  
 
Table 2: Common tools for visualization protein interaction network    

Visualization tools URL 
Cytoscape [46] http://www.cytoscape.org/ 
NAViGaTOR [47] http://ophid.utoronto.ca/navigator/ 
Biolayout [48] http://www.biolayout.org/ 
Medusa [49] https://sites.google.com/site/medusa3visualization/ 
Arena3D [50] http://www.arena3d.org/ 

 
These visualisation tools were compared based on essential features 
for protein-protein interactions analysis.  Each visualisation tool has 
its strengths and limitations.  Among these visualisation tools, 
Cytoscape is the most popular graph viewer for PPI network and is 
applied to analyze protein interaction information, expression and 
metabolic profiles. It contains several applications as plug-ins that 
make the software appreciable regarding various scientific 
purposes. Another superiority of Cytoscape among other 
visualization tools is the integration with several well-known 
databases such as IntAct, DIP, KEGG, etc. It allows one to represent 
even large PPI map of thousands of interactions. It performs several 
layout algorithms and demonstrates a wide range of interaction 
network analysis from basic to advanced options. In Cytoscape, a 
large number of plugins implement all types of functionality 
ranging from aforementioned PPI databases to high-level network 
algorithms. For instance, one of the important aspects of protein 
interactions analysis is the attributes and annotation of proteins 
that Cytoscape provides users to download annotations such as 
Gene Ontology (GO) [51].  
 
NAViGaTOR is a simpler and more user-friendly tool that enables 
to visualize huge data groups as protein interaction network in 2D 
and 3D view.  Its particular advantage is the ability to extract data 

directly from I2D [52] and cPATH [53].  In addition, it allows data 
to be imported in BIOPAX, XML, GML, PSI-MI, and tab-delimited 
text format, which are the common formats to process protein 
interaction network.  The common exported formats of the 
interaction network are SVG, PDF, JPEG, BMP, Pajek, and TIFF 
format. The protein-protein interactions that are represented in the 
network panel can be modified, for example it can be differentiated 
in shape or colour of the nodes. NAViGaTOR also enables to 
consider multiple network panels at the same time, therefore the 
multiple interaction networks can be compared.  Furthermore, the 
protein nodes can be transferred from one interaction network to 
another by copy and paste.  NAViGaTOR is also able to extract 
protein data from various databases such as GO directly and the 
retrieved data can be saved in the created protein interaction 
network. The network can be filtered and classified in different 
colours and node sizes automatically according to GO information 
after the GO info are inserted into the network.  Proteins within a 
biological network can be subgrouped according to different 
functions or features.   
 
Pajek is an older tool that is able to create 2D and pseudo 3D view 
for protein interaction network. Pajek is limited in integrating with 
any database and provides only flat file format that is not 
compatible with most of the XML formats. Therefore the achieved 
data from different databases should first be converted into Pajek 
file format and then imported to visualize. These limitations have 
restricted the utilization of Pajek by users. 
 
Gephi is another visualization tool that is able to process huge data 
sets in 3D interaction network view. Similar to Cytoscape, Gephi 
also provides several applications, namely plug-ins to analyse the 
network toward different scientific purposes. However, as common 
PSI-MI files are not supported by Gephi, the imported file format 
should be converted to formats that are supported by Gephi. On 
the other hand, the outputs of various protein databases are not 
compatible with Gephi. These limitations make difficulties for users 
to apply Gephi. Biolayout Express 3D is a powerful network 
visualisation tool that enables users to map interaction network in 
2D and 3D view.  Although using of Biolayout is easy and useful in 
analysing large data sets, it does not integrate with protein 
databases and are not supported by plug-ins. Moreover, the 
customised modification of nodes is allowed but cannot be saved 
for future use.   
 
Medusa is a simple, open source visualisation tool that is designed 
to construct protein-protein interaction networks from the STRING 
database [54]. It provides 2D view for biological network and the 
advantage of this tool is its ability to change background images 
that can be inserted by users. It is a Java application and does not 
require installing onto an operating system. However, it is not able 
to analyse the huge data and is designed for analysing the small 
datasets.  
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Similar to Medusa, Arena3D is also a simple tool that does not 
require installation.  The difference between these two tools is 
Arena3D projects network in multiple layers in a 3D space. This 
feature allows user to view biological networks in a less complex 
and more comprehensible way by classifying the proteins 
according to locations, diseases, structures and pathways in 
different layers.  However, similar to Medusa, Arena3D possesses 

its own input file format, thus the saved data should be converted 
to the Arena3D supported file format.  The comparison is 
summarised in Table 3. After taking all the strengths and 
limitations of each visualisation software into consideration, 
Cytoscape is judged to be the best as the main analysis tool 
throughout the study.   

 
Table 3: Comparisons of Visualization Tools in Several Features Including Database Integration, Data Input Format, Export File Format, and Layout Algorithm 

Features Arena3D Biolayout Cytoscape NAViGaTOR Pajek Gephi Medusa 
Plug-ins × × √ × × √ × 
Auto merge numbers of networks (no modification on original input file) × × √ √ × × × 
Mark nodes according to GO annotations × × √ (plug-ins) × × × × 
GO annotations × × √ (plug-ins) √ × × × 
 
Database Integration        
IntAct × × √ (plug-ins) × × × × 
NCBI × × √ (plug-ins) × × × × 
APID2NET × × √ (plug-ins) × × × × 
cPath × × √ (plug-ins) √ × × × 
GO × × √ (plug-ins) √ × × × 
 
Data Input Format        
Text delimited data × √ √ √ × × √ 
GML × × √ √ × √ × 
PSI-MI XML × × √ √ × × × 
SIF × √ √ × × × × 
BIOPAX × × √ √ × × × 
XGMML × × √ × × × × 
Text √ √ √ √ × × √ 
 
Export File Format        
Image file √ √ √ √ √ √ √ 
xml  × × √ × × × 
Pajek √ × × × √ × √ 
gml × × √ √ × × × 
PSI-MI × × √ √ × × × 
Arena3D √ × × × × × √ 
text √ × × √ × × × 
sif × √ √ × × × √ 
svg × × √ √ √ √ × 
tiff × × × √ × × × 
pdf × × √ √ × √ × 
GraphViz × × × × × × √ 
Medusa format √ × × × × × √ 
VRML √ × × × √ × × 
 
Layout Algorithm        
Multi-threaded 
grid-variant layout algorithm 

× × × √ × × × 

Spring Embedded algorithms √ √ √ × √ × √ 
Fruchterman-Rheingold layout algorithm √ √ × × √ × √ 
Lanczos algorithm × × × × √ × × 
Force Atlas algorithm × × × × × √ × 
Distance Geometry layout √ × × × × × √ 
Simulated Annealing Algorithm √ √ √ × × × × 
Circular layout √ × √ √ √ √ √ 
Hierarchiral layout √ × √ × × × √ 
Yifan's Hu Multilevel layout × × × × × √ × 

 
Network topological analysis to discover essential proteins in 
PINs: 
In a network, the interactions amongst proteins are exhibited in the 
formal context of graph theory. A network graph comprises a set of 

nodes and a set of edges that link the nodes. Several research 
questions associated with the function of single or groups of 
interacting proteins can be answered with the help of PPI networks 
[55]. Essential proteins for a biological event play a complex role in 
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the development of process and discovery of their features is an 
interesting research subject in proteomics. A protein’s essentiality 
has been used in numerous medical and biological researchers in 
recent years. Currently, essential proteins are recognized based on 
gene knockout experiments, which can be expensive and time 
consuming when the biological experiments are done on a large-
scale basis. Computational methods can supply the knowledge of 
social network analysis, graph mining and biological information. 
The absence or dysfunction of essential proteins would create an 
adverse disruption to the topological stability of the network as in 
the case of PIN biological lethality. This laid the foundation where 
computation methods based on topological features are developed 
to better detect essential proteins [56]. Protein-protein interaction 
networks of different species interestingly have many common 
topological features. PPI networks are also said to have a power-law 
degree distribution defined as: P(x) = Cx- α, where C = e and P(x) is a 
probability that a selected node has exactly x value (degree node). α 
is the degree exponent which defines some properties of the 
network. Degree exponent values for most of the known networks 
in nature are between two and three. It is recognized that networks 
with a degree exponent larger than three do not have features of 
scale-free networks [57].  
 
Four factors: shortest paths, degree (connectivity), betweenness 
centrality (BC), and closeness centrality (CC), are established on the 
properties of each node in a PPI network and were adopted to 
analyze general mathematical properties of the PPI networks and to 
search topologically important and essential proteins [58]. Degree 
(or connectivity) informs how many links a node has to other nodes 
and the degree dissemination is acquired via counting the number 
of nodes with a specified degree and dividing by the total number 
of nodes. The degree distribution discloses comparatively 
fewerstrongly associated nodes, which are branded as hubs, and 
they play a key role as a local property in the network [59].  
 
Betweenness centrality (BC) was computed to get non-hub proteins 
which still play significant parts as a global property, as the BC is a 
valuable tool for identifying bottlenecks in a network. For node k, 
BC is described as:  
 

b(k) = Σi,jbi→(k) = Σi,j(gki→j / gi→j), 
 
where gi→j is the number of shortest geodesic paths from node i to 
node j, and gki→j is the number of geodesic paths among gi→j from 
node i to node j that cross node k [60]. Another significant aspect of 
bottleneck protein nodes and hub is that they are prospective drug 
targets. 
 
Closeness centrality (CC) is the opposite of the network diameter, 
described as the medium number of hops (jumps) via the shortest 
geodesic paths from node k to all other nodes. The diameter 
symbolizes the capability of two nodes to interconnect with each 

other: if the diameter (the larger CC) is smaller, the predictable path 
between them will be shorter. Thus, a big CC shows that the node is 
near to the topological center of the network [61]. By computing the 
length of all the geodesics from or to the vertices in the network, the 
shortest path (geodesics) is calculated. In order to see how many 
average steps were needed, the average shortest path was 
computed, to connect two randomly chosen nodes in the network 
[62]. 
 
Functional analysis, clustering and drug discovery: 
Proteins usually do not function alone but carry out their task with 
assistance from other proteins. Functional analysis represents 
functional groups of the protein that are involved in a protein 
interaction network. A common analysis of PPI networks is to 
identify the unknown function of a protein according to the known 
functions of its interaction partners. The underlying presumption is 
based on the states that two proteins that interact likely share a 
common function (9). This principle underlies many protein 
annotation tools. For example, the popular gene function prediction 
tool GeneMANIA is implemented as a web server and a Cytoscape 
plugin [63]. ClueGo program allows us to integrate several 
ontology sources because in each source, for each gene, there is a 
large amount of information. ClueGo can extract the non-
redundant biological information for a large cluster of genes using 
GO, KEGG, BioCarta, REACTOME and Wiki Pathways. Functional 
network is an interaction network that represents functional 
relationship between the nodes of the network. Network modules 
recommend that the contributing proteins perform together closely, 
for instance in cellular pathways or protein complexes.Therefore, 
the modular organization of large PPI networksis exploited by 
numerous methods to envisage proteins that act together in 
functional sub networks. The identification of groups of proteins 
that closely interact has been made possible by many network 
clustering tools. With high clustering coefficients, generally a big 
network is looked over for modules and more interactions are 
molded inside the module than to proteins outside the module. 
Within a clique, a maximum coefficient is attained that is an 
entirely linked graph neighborhood and Cytoscape plugin. For 
example, Allegro MCDE is a graph clustering algorithm which is 
capable of efficiently identifying these structures [64].  
 
Functional protein interaction networks of several diseases, namely 
“Network Pharmacology” as a novel approach is applied to study 
disease network such as Alzheimer’s disease [65], cancer [66], and 
metastasis [67] by constructing and analyzing the protein 
interaction network using wet-lab data derived from the protein 
interaction databases [68]. The analysis of the network 
pharmacology can help in the study of drug discovery and to better 
understand their possible side effects and toxicity, because the 
protein-targets do not function alone and carry out their task in 
connectivity with other proteins [69,70]. Protein interaction 
approach and topological analysis of the network has been applied 
to discover drug targets for treatment leishmania infection [71]. 
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Protein networks have been applied in order to compare “disease” 
versus “normal” states and also to determine general characteristics 
of the proteins involved in disease [72]. Constructing and analyzing 
the protein network associated with several diseases can help to 
find new proteins involved in disease progress. Some studies have 
revealed that disease proteins are more interconnected than 
nonessential proteins in protein networks [73]. Other studies have 
shown that the proteins neighbor to disease proteins tend to 
interact with other proteins associated with that disease [74]. 
Further attempts have also shown that connectivity changes in the 
protein interaction network from healthy to diseased states can be 
valuable for predicting novel appropriate drug targets [75, 76]. 
 
Disease network could explain the important molecular function of 
the disease in order to find the potential drug targets. In a disease 
network, the ideal drug target must be essential in diseased cell and 
inhibiting their function should be less knotty in the whole 
functional system. Accordingly the potential targets are placed in a 
strategic point in the disease [77]. Using biological network, 
different algorithms and methods are being developed in order to 
identify potential drug targets. Some of these approaches provide 
quantitative analysis to recognize essential proteins for the 
“information flow” within a disease network [78]. Other strategies 
identify nodes as potential drug targets that block a specific 
pathway, but do not affect other processes; these targets rewire 
their signaling network using modular protein switches. Some 
methods try to identify the ideal drug targets from the standpoint 
of efficacy and side effects. In this way, the nodes, namely 
“bridging nodes”, are those nodes in the network which are less 
essentially involved in connecting or bridging modular sub regions 
of a network and may be potential targets [79]. Other approaches 
are also investigated for pathogen cases in order to remove a 
pathogen. The targets for these diseases are hub proteins of the 
pathogen interaction, which are lost in the host organism [80]. Some 
disease mechanisms can affect multiple genes or can bypass the 
block of a single target. Therefore, the identification of multiple 
targets for these diseases network is necessary. The most common 
carcinomas will not be treated by simple targets and the 
understanding of involute mechanisms is highly required to study 
their inhibition through a combination of drugs. In these cases, it 
has been reported that the partial interruption of an interesting 
small number of targets can be more affected than the full 
inhibition of a single target [81]. 
 
Assess the quality of molecular interaction: 
As described above, the PPIs are detected by a high- throughput 
technology like Y2H or TAP/MS, Small- Scale single protein 
studies, or computational predictions. Their outcomes contain a 
great number of false-negative and false-positive relationships. 
Therefore, assigning confidence score to individual interaction is a 
requirement for quality assessment of the interactions. 
 

Confident experimental and physical interactions: 
MINT is a PPI database that provides a score that represents the 
reliability of each interaction based on a heuristic integration of the 
available evidence into combined experimental evidence [24]. To 
derive a high-confidence network of literature-curated interactions, 
protein complexes from iRefWeb were converted into pairwise 
interactions using matrix expansion and MINT-inspired score was 
used to determine high-confidence pairs. The represented MINT-
inspired score was assigned based on MINT (MI) score, and for 
detecting the high confidence of PPIs, the following procedure has 
been applied; 1) Take all relevant protein-interaction pairs from 
iRefWeb, whether from binary interactions or from the matrix-
expansion of complexes; 2) Exclude interactions that are supported 
by less than 3 publications or are not conserved in any species; 3) 
Retain pairs with an MI-score of at least 0.431 [82]. 
 
Confident predicted and functional protein interactions: 
PPIs were built using six separate prediction parameters: 
Neighborhoods, Co-occurrence (phylogenetic profiles), Fusion, Co-
expression, Experimental Interactions, and Text-mining. Each of 
these parameters has its own score (raw) of measurements such as 
intergenic distances, Euclidean distances, fusion z-score, Pearson 
correlation coefficient, various experimental score (e.g. qualitative 
binary score), and log-odds score. Each raw score was 
benchmarked using the KEGG database. PPIs that occurred on the 
same metabolic KEGG map were considered to be true positive and 
those that occurred on a different map were not. Due to the 
sigmoidal correlation between raw score and fraction of PPIs on the 
same KEGG map, STRING fits those correlations to the hill-
equation to derive the confidence score. STRING derived scores 
correspond to the probability of finding the PPI within the same 
KEGG pathway or map [54]. Different scores on the same bench 
mark provide a platform of comparisons among the scores and 
equivalent scores can be calculated. This equivalency mapping 
helps to combine the scores into a single score, which express 
higher confidence and gives higher coverage (number of predicted 
PPI) at a specific accuracy. STRING uses a score combiner based on 
the product of probabilities using the following formula: 

S = 1-πNi(1 - Si) 
with Si the probability score for database i, S the combined score 
and N the total number of databases to be combined. The combined 
scores were further rescaled into the confidence range from 0.0 to 
0.1 combining all the scores. Those indicate: <0.400 (low 
confidence), 0.400-0.700 (medium confidence) and >0.700 (high 
confidence) [83].  
 
Conclusion: 
Discovery of the protein connections is critical to understand the 
cellular pathway. Due to the difficulties in analyzing vivo PPI’s, the 
protein interaction databases and computational tools are being 
developed to construct and analyze protein interaction networks. 
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New protein detection and drug target discovery regarding 
therapeutic strategies are conceivable, surprisingly, through in-
depth analysis of the network pharmacology and disease networks. 
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