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Abstract: The aim of this study was to identify novel microRNAs related to obstructive sleep apnea
(OSA) characterized by intermittent hypoxia with re-oxygenation (IHR) injury. Illumina MiSeq
was used to identify OSA-associated microRNAs, which were validated in an independent cohort.
The interaction between candidate microRNA and target genes was detected in the human THP-1,
HUVEC, and SH-SY5Y cell lines. Next-generation sequencing analysis identified 22 differentially
expressed miRs (12 up-regulated and 10 down-regulated) in OSA patients. Enriched predicted target
pathways included senescence, adherens junction, and AGE-RAGE/TNF-α/HIF-1α signaling. In the
validation cohort, miR-92b-3p and miR-15b-5p gene expressions were decreased in OSA patients,
and negatively correlated with an apnea hypopnea index. PTGS1 (COX1) gene expression was
increased in OSA patients, especially in those with depression. Transfection with miR-15b-5p/miR-
92b-3p mimic in vitro reversed IHR-induced early apoptosis, reactive oxygen species production,
MAOA hyperactivity, and up-regulations of their predicted target genes, including PTGS1, ADRB1,
GABRB2, GARG1, LEP, TNFSF13B, VEGFA, and CXCL5. The luciferase assay revealed the sup-
pressed PTGS1 expression by miR-92b-3p. Down-regulated miR-15b-5p/miR-92b-3p in OSA patients
could contribute to IHR-induced oxidative stress and MAOA hyperactivity through the eicosanoid
inflammatory pathway via directly targeting PTGS1-NF-κB-SP1 signaling. Over-expression of the
miR-15b-5p/miR-92b-3p may be a new therapeutic strategy for OSA-related depression.

Keywords: obstructive sleep apnea; microRNA; next generation sequencing; miR-92b; miR-15b;
PTGS1; depression
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1. Introduction

Affecting approximately 25% of men and 13% of women, obstructive sleep apnea
(OSA) is characterized by recurrent episodes of upper airway collapse, which result in
recurring arousals and desaturation during sleep, and lead to sleep fragmentation and
chronic intermittent hypoxia with re-oxygenation (IHR) injury [1]. Significant adverse
consequences of OSA syndrome include neurocognitive dysfunction (Alzheimer’s disease,
depression), stroke, hypertension, heart failure, atrial fibrillation, diabetes mellitus, pul-
monary hypertension, chronic kidney disease, and cancer. OSA was associated with the
increased relative risks of all-cause mortality (pooled hazard ratio: 1.262) [2,3]. Contin-
uous positive airway pressure (CPAP) is the mainstream therapy for OSA, but a recent
meta-analysis of eight randomized controlled trials showed no evidence that CPAP ther-
apy improves cardiovascular outcomes, suggesting that some detrimental pathogenesis
continues despite treatment [4]. The mechanism underlying adverse consequences of
OSA include dysregulation of hypoxia-inducible factor (HIF)-1/2 by chronic IHR feeding
forward production of reactive oxygen species (ROS) in the carotid body chemosensory
reflex pathway [5]. The imbalance between HIF-1α-dependent pro-oxidant and HIF-2α-
dependent antioxidant enzymes promotes maladaptive responses to IHR and end-organ
injury by enhancing pro-inflammatory pathways [6]. IHR exposure activates toll-like recep-
tor/ nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) p65 signaling,
augmenting the expression of inflammatory cytokines and oxidative stress, and leading
to atherosclerotic plaque growth and instability, and hippocampal neuronal damage [7,8].
Therefore, examining the molecular basis of adverse consequences in clinical populations
with OSA and the potential effects on oxidative stress and inflammation can improve our
understanding of the mechanistic underpinnings of OSA-related outcomes.

MicroRNAs (miRNAs) are small non-coding single-stranded RNAs of ~22 nucleotides
in length and regulate up to 60% of the protein-encoding genome. The main mecha-
nism with which microRNA affects protein-coding genes is by interaction with the 3′-
untranslated region of target mRNA, subsequently leading to its degradation or translation
repression [9]. MiRNAs participate in the proper development of the organism and the re-
sponse to stress, including proliferation, apoptosis, cellular development, cellular signaling,
and inflammation. A plethora of miRNAs has been shown to be up-regulated in response
to IHR via directly targeting anti-inflammatory or antioxidant signaling, or their responsive
genes, and possess a positive feedback loop to stabilize the HIF-1α protein, while the down-
regulated miRNAs commonly suppress the expression of HIF-1α or pro-inflammatory
signaling and engage in protective mechanisms against IHR injury. Current studies on
miRNA in OSA are lacking in the validation of the findings in independent and diverse
populations and lacking in consistency between expression changes in OSA patients and in
response to IHR stimuli in vitro. Whole genome miRNA-sequencing allows the discovery
of novel miRNAs, and the identification of biomarkers, predictors, and therapeutic targets
of disease with high accuracy [10].

Here, we examined candidate OSA-related miRNAs in a two-step manner. First,
differences in the expression of miRNAs in peripheral blood mononuclear cells (PBMCs)
were identified by next-generation sequencing (NGS) between OSA patients and healthy
non-snorers. Next, ten candidate miRNAs were selected for validation in an independent
larger cohort of primary snoring (PS) subjects, treatment-native OSA patients, and long-
term CPAP-treated OSA patients. Finally, functional effects of two validated miRNAs
(miR-15b-5p and miR-92b-3p) on oxidative stress, inflammation, and monoamine oxidase A
(MAOA) were examined by a series of in vitro IHR experiments, and their implication in the
treatment of OSA-related depression was investigated. Since prostaglandin-endoperoxide
synthase 1 (PTGS1; COX1), one of the predicted target genes of miR-15b-5p and miR-92b-3p,
has been shown to modulate the nuclear factor kappa B (NF-κB) signaling pathway, which
in turn augments MAOA expression via enhanced binding of Sp1 transcription factor (SP1)
with GC box of the proximal MAOA gene promoter, we hypothesized that both miRNAs
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may regulate PTGS1 via NF-κB-SP1 signaling to modify depression caused by chronic IHR
in OSA [11,12].

2. Materials and Methods
2.1. Participants

The study was approved by the Institutional Review Board of Chang Gung Memorial
Hospital, Taiwan (certificate number: 201509756B0). The study participants were recruited
from the sleep center and pulmonary clinics of Kaohsiung Chang Gung Memorial Hospital
during the period from August 2016 through July 2019. Written informed consent was
obtained from all subjects participating in the study, who were aged 20 years or older.
Exclusion criteria included ongoing infections, any known autoimmune disease, recent
use of an immunosuppressive agent in the past half-year, narcolepsy, morbid obesity
(body mass index, BMI, >34 kg/m2), too old age (>65 years old), and too lean body
weight (BMI < 21 kg/m2). A total of 94 participants were included in the study. Among
them, 10 patients with severe OSA and 6 healthy non-snorers (defined as no OSA-related
symptoms and no snoring history reported by bed partners) were enrolled as discovery
cohort in the miRNA NGS experiments, while 20 subjects with primary snoring (PS, apnea-
hypopnea index, AHI, <5), 45 treatment-naïve patients with severe OSA (AHI ≥ 30.0), and
13 long-term CPAP-treated severe OSA patients (AHI ≥ 30.0, CPAP use ≥4 h/night for
≥12 months) were enrolled as a validation cohort. Adverse consequences of OSA, including
hypertension (baseline blood pressure > 140/90 mmHg), heart disease (including ischemic
heart disease, cardiac dysrhythmia, and congestive heart failure), diabetes mellitus, stroke,
depression (at least 1 of the 2 core symptoms of low mood and loss of interest, or taking
antidepressant medication at Psychiatric Clinic), and chronic kidney disease were recorded.

2.2. Polysomnography and CPAP Titration Study

All the patients with sleep-disordered breathing underwent overnight polysomnog-
raphy examination by using Sandman SD32+TM Digital Amplifier (Embla, Broomfield,
CO, USA) at the sleep center of Kaohsiung Chang Gung Memorial Hospital. Sleep stage
scoring was performed by trained technicians according to standard criteria [13]. The
nocturnal hypoxic load was evaluated in terms of mean SaO2, nadir SaO2, the number
of dips >4% of basal SaO2%//h (oxygen desaturation index, ODI), and the percentage of
total minutes of recording time with SaO2 <90 % (%time <90% SaO2) [14]. A subset of OSA
patients underwent CPAP titration study with a manually titrated machine (GoodKnight
420E, Nellcor Puritan Bennett, CA, USA) to get an optimal pressure before starting their
treatment with auto-adjusted positive airway pressure machines at home. The Epworth
Sleepiness Scale (ESS) recorded at the PSG exam was used to measure sleep propensity in
every study participant [15].

2.3. Blood Collection and RNA Isolation

Fresh venous blood 20 mL was collected from each participant on awakening and im-
mediately transferred to a tube containing 3.2% sodium citrate (1:10 dilution). PBMCs were
isolated by Ficoll-Hypaque gradient centrifugation (HISTOPAQUE®-119, Sigma-Aldrich,
Inc., Burlington, MA, USA), and then stored in RNAlater (Ambion Inc., Austin, TX, USA)
at −80 ◦C until RNA isolation. A miRNeasy Mini Kit column-based system (Qiagen,
Valencia, CA, USA) was used for isolation of total RNA, and treated with DNase. RNA
samples were run on an RNA 6000 Nano Gel System (Agilent Technologies Inc., Santa
Clara, CA, USA) using an Agilent 2100 Bioanalyzer (Agilent) to determine the quality of
RNA. Only samples with A260/A280 ratios of 1.9 to 2.1 and RNA integrity number ≥ 8
were used for further analysis.

2.4. Whole Genome microRNA Profiles and Analysis by NGS

The pooled RNA libraries were subject to NGS assay to determine miRNA expression
profiles. Illumina MiSeq platform was adopted for the profiling job. The RNA libraries



Antioxidants 2021, 10, 1854 4 of 25

were first prepared in accordance with the TruSeq Small RNA Sample Preparation protocol
(Illumina) followed by sequencing with the MiSeq platform. Read counts for miRNAs were
estimated with sRNAnalyzer for case and control miRNA sequencing datasets [16]. A total
of 311 miRNAs with median read counts larger than 5 were used to identify differentially
expressed miRNAs. The read counts were then normalized by Partek® Genomics Suite®.
Twenty-two miRNAs with absolute fold change larger than 2 or less than 0.5 and p-value
less than 0.05 were identified as differentially expressed miRNAs with Partek® Genomics
Suite®. All the sequencing reads are publicly available on the NCBI website with an
accession number of GSE174245.

2.5. Prediction of microRNA Target and Pathway Enrichment

Validated microRNA target databases, miRecords (v4) [17], miRTarBase (v7) [18] and
TarBase (v8) [19] were queried by using R package multiMiR (v2.3.0) [20] to retrieve their
targets in the format of Entrez gene ID. To obtain a gene list for pathway enrichment, we
intersected the predicted target genes of 22 miRNAs and preserved the genes found in equal
or more than three microRNAs, which resulted in 4238 genes. We further highlighted these
genes in the pathway maps with IPA [21]. In over-representative analysis, the gene sets
from the Gene Ontology database [22,23] and Kyoto Encyclopedia of Genes and Genomes
(KEGG) database [24–26] were used. For the Gene Ontology database, the gene sets were
acquired from R package org.Hs.eg.db (v3.12.0) and GO.db (v3.12.1). We only kept gene sets
with gene sizes between 10 and 500. The hypergeometric tests were applied separately on
the three ontology classes, biological process, molecular function, and cellular component.
The p-values were corrected with Benjamini and Hochberg method [27] to control the false
discovery rate. We defined the significant pathways with a false discovery rate-adjusted
p-value less than 0.00001 for the biological process and 0.05 for both molecular function
and cellular component. For each ontology class, we curated the significant pathways into
multiple sub-categories and drew the pie chart. For the KEGG database, we use the R
package clusterProfiler (v3.16.1) [28] to conduct enrichment analysis. Based on the current
version of clusterProfiler, the latest gene sets were pulled from the KEGG database server
at the time we performed the analysis (19 April 2021). The dynamic change of the KEGG
database can be found on the website (https://www.kegg.jp/kegg/docs/statistics.html,
accessed on 3 November 2021). The statistical tests were performed using the function
enrich KEGG with default parameters.

2.6. Analysis of miRNAs by Quantitative Reverse-Transcriptase Polymerase Chain Reaction
(RT-PCR) in an Independent Validation Cohort

cDNA was generated from 2 µL of purified total RNA using the TaqMan Advanced
miRNA cDNA Synthesis kit (Thermo Fisher Scientific, Waltham, MA, USA). Additionally,
1 pM of the synthetic C. Elegans oligo, cel-miR-39 was added to the isolated total RNA.
This sequence does not exist in humans and was used as an exogenous control. All qPCR
reactions were normalized to their corresponding cel-miR-39 Ct values. Quantitative RT-
PCR was performed for each sample using 2.5 µL of diluted cDNA, TaqMan Advanced
miRNA Assays (Supplementary Table S1; Thermo Fisher Scientific, Waltham, MA, USA),
and Applied Biosystems™ TaqMan™ Fast Advanced Master Mix (Thermo Fisher Scientific,
Waltham, MA, USA) under fast cycling conditions. All TaqMan assays quantitative RT-
PCR was carried out using the ABI 7500fast Real-Time PCR System (Applied Biosystems).
Real-time PCR cycling conditions consisted of 95 ◦C for 20 s, followed by 40 cycles of 95 ◦C
for 3 s and 60 ◦C for 30 s. All miRNA fold expression changes were determined by the
2−∆∆CT method.

2.7. Determination of Target Gene mRNA Expressions of Isolated PBMCs Using Quantitative RT-PCR

To determine the expressions of the predicted target genes, the gene expressions of
the TNFSF13B, VEGFA, AMOT, NOX4, CXCL5, LEP, PTGS1, ADRA2A, ADRB1, GABRA4,
GABRB2, GABRB1, TNF-α, TGF-β1, and NF-κB1 genes were analyzed using quantitative
RT-PCR in a 96-well format. The housekeeping gene GAPDH was chosen as an endoge-

https://www.kegg.jp/kegg/docs/statistics.html
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nous control to normalize the expression data for each gene. All PCR primers (random
hexamers) were designed and purchased from Roche according to the company’s protocols
(www.roche-applied-science.com, accessed on 13 June 2019), and their sequences are given
in Supplementary Table S2. RNA samples were treated DNA-free to remove contaminating
genomic DNA. A total of 300 ng RNA was used for the synthesis of first-strand cDNA with
QuantiTectReverse Transcription Kit (QIAGEN, Germany). A total of 5 µL of the reverse
transcription reaction was added to 5 µL of the master mix (QIAGEN, SYBR Green PCR
kit; Roche, Germany). The PCR reactions with 45 cycles of amplification were run in a
Roche LightCycle 480 machine. A single real-time PCR experiment was carried out on each
sample for each target gene because the Roch Light CyclerQuantiFast R system has shown
high reproducibility. Relative expression levels were calculated using the ∆∆Cq method
with the median value for the control group as the calibrator.

2.8. In Vitro IHR Stimuli in Cell Culture Models

Human monocytic cell line THP-1 cells obtained from ATCC (1 × 106 cells/mL)
were suspended in a culture dish containing RPMI 1640 medium. Human umbilical vein
endothelial cells (HUVECs) purchased from Lonza (Basel, Switzerland) were cultured in
Clonetics Endothelial Cell Growth Media supplemented with the BulletKit containing
bovine brain extract, epidermal growth factor, hydrocortisone, gentamicin, amphotericin B,
2% fetal bovine serum, 1% penicillin/streptomycin and ascorbic acid. Human SH-SY5Y
neuron cells purchased from ATCC (® CRL-2266™) were cultured in ATCC-formulated
MEM/F12 (1:1) growth medium supplemented with 10% fetal bovine serum, 1x non-
essential amino acids, 1 mM sodium pyruvate, 1.5 g/L sodium bicarbonate, and 1%
penicillin/ streptomycin. Cells were exposed to IHR or normoxic conditions in custom-
designed, incubation chambers which were attached to an external O2–CO2 hand-driven
controller. IHR protocol consists of a 25-min hypoxic period (0% O2 and 5% CO2) and
35 min of the re-oxygenation period (21% O2 and 5% CO2) per cycle, 8 cycles /day for
3 days, which has been shown to achieve an episodic decrease in culture medium SaO2 by
30–40% [29].

2.9. Transfection with miRNA-15b-5p Mimic/miR-92b-3p Mimic

miR-15b-5p/miR-92b-3p mimic (final concentration, 10/25 nM) was synthesized by
GenePharma, and was incubated in cells with Lipofectamine 2000 (Invitrogen, Carlsbad,
CA, USA) for 6 h to over-express the gene expression level of miR-15b-5p/miR-92b-3p
using the HiPerFect transfection reagent (QIAGEN, Hilden, Germany). The efficiency of
the transfection was detected by quantitative RT-PCR.

2.10. Reporter Constructs, Mutagenesis and Luciferase Reporter Assay

For the luciferase reporter assay, we utilized pmirGLO Dual-Luciferase miRNA Target
Expression Vector (pmirGLO) (Promega, Madison, WI, USA). Since there were miR-92b-3p
binding sites in PTGS1 3′ un-translated region (3′ UTR), two plasmid constructs, PTGS1
wild type (miR-92b-3p binding site at position 3267 to 3273) and PTGS1 mutation type
were created. For the luciferase reporter assay, we co-transfection the pmirGLO plasmids
using the lipofectamine 3000 reagent (Thermo, Waltham, MA, USA) and different doses
of miR-92b-3p mimic (0, 5, 10, 25, and 50 nM) using the HiPerFect transfection reagent
(Qiagen, Hilden, Germany). The luciferase activity was measured using the Dual-Glo®

Luciferase Assay System (Promega, Madison, WI, USA).

2.11. Measurement of Cell Apoptosis by Flow Cytometry Analysis

Cell apoptosis rates were evaluated by flow cytometry using an Annexin V/Propidium
iodide (PI) apoptosis detection kit (BD Biosciences, Franklin Lakes, NJ, USA). Following
treatment, cells were washed twice with PBS, re-suspended in binding buffer, and incubated
with 5 µL FITC-Annexin V and 5 µL PI for 15 min at room temperature. Staining cells

www.roche-applied-science.com


Antioxidants 2021, 10, 1854 6 of 25

were analyzed using the FACScan flow cytometry system (Becton Dickinson, San Diego,
CA, USA).

2.12. Measurement of Intracellular Reactive Oxygen Species (ROS)

A fresh stock of 0.1 µM solution of H2DCFDA (catalog no. D6883; Sigma, USA)
was added to the cells at a density of 1 × 106 cells/mL. Cell-associated mean fluorescent
intensity was measured by flow cytometry in the FL1 channel at excitation and emission
wavelengths of 488 and 535 nm, respectively, using the CytomicsTM FC500 (Beckman
Coulter, Brea, CA, USA).

2.13. Measurement of MAO Catalytic Activity

The MAO catalytic activity assay was used according to the manufacturer’s instruc-
tions (MAK136, Sigma, USA). Briefly, SH-SY5Y cells were lysated and incubated with
clorgyline (MAO-A inhibitor), pargyline (MAO-B inhibitor), or both together (provided
with the kit) in triplicate, for at least 10 min in the dark microplate to allow the inhibitor to
interact with the enzyme. MAO assay mix (assay buffer, p-tyramine, HRP enzyme, and dye
reagent) was then added to the samples and incubated the reaction for 20 min at room tem-
perature. The microplate was read in a multimode microplate readers-fluorescence analyzer
at room temperature with excitation/emission wavelengths of 530/585 nm, respectively.

2.14. Measurement of Cell Viability by WST-1

WST-1 reagent (Roche, Mannheim, Germany) diluted 1:10 in a growth medium was
added into THP-1 cells grown in a 96-well plate (104 cells/well) for the last 1 h accord-
ing to the manufacturer’s instructions. The number of viable cells was determined via
optical density measurement using a microplate reader at 450 nm, with 600 nm as a
reference wavelength.

2.15. Immunofluorescence Stain

The preparation of cell cultures for immunofluorescence was performed using Millicell
EZ 8-well glass slides (Merck Millipore) and SH-SY5Y cells were seeded at 5 × 104 on EZ 8-
well glass slides. The cells were washed with phosphate-buffered saline (PBS) and fixed for
15 min at room temperature in 4% paraformaldehyde in PBS at pH 7.4. After removing the
paraformaldehyde, the cells were rinsed three times in PBS and permeabilized for 10 min
in 0.1% Triton X-100 in PBS. The permeation solution was removed and the cells were
again washed three times with PBS, followed by blocked in 5% Fetal Bovine Serum (FBS)
for 60 min at room temperature and incubated overnight at 4 ◦C with primary anti-COX1
antibodies (Abcam, ab109025) (1:25); anti-NF-kB1 antibodies (Sigma, HPA027305) (1:100);
anti-SP1 antibodies (Millipore, 07-645) (1:250); anti-MAO-A antibodies (Abcam, ab126751)
(1:50) and ROS (H2DCFDA, 2′,7′-Dichlorofluorescein diacetate) (Sigma, D6883) 0.1uM. The
cells were then incubated for 1 h at room temperature with the secondary antibody of
DyLightTM 488 Donkey anti-rabbit IgG (BioLegend, 406404). DAPI (Sigma, F6057) was
used to label the nuclei. Fluorescence images were acquired using Olympus DP80. The
images for each cell were counted under five randomly selected 200X fields using Image
J software.

2.16. Statistical Analysis

Data were expressed as the mean ± standard deviation. Independent Student T-test
or Mann–Whitney U test was used for comparing continuous values of two experimental
groups, where appropriate. ANOVA test followed by post hoc analysis with Bonferroni
test was used for comparing mean values of more than two experimental groups in case of
normal and homogeneous data, while Brown-Forsythe test followed by post hoc analysis
with Tamhane’s T2 test was used in case of normal and non-homogeneous data. Categorical
variables were analyzed using the Chi-square test. Pearson’s correlation was used to
determine the relationship between selected variables. Stepwise multiple linear regression
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analysis with all potential co-variables, including age, sex, BMI, AHI, ESS, history of
smoking, history of alcoholism, and co-morbidities, entered in a single step was used
to adjust p-values in the subgroup analyses. A p-value of less than 0.05 is considered
statistically significant.

3. Results
3.1. 22 Differentially Expressed miRs in OSA Patients Versus Healthy Non-Snorers in the NGS
Discovery Experiment

Demographic, sleep, and biochemistry data of the discovery cohort are shown in
Table 1. There was no difference between case and control groups in terms of age, gender,
smoking history, alcoholism history, BMI, and co-morbidity. Whole genome NGS anal-
ysis and heatmap clustering (Figure 1A) identified 22 differentially expressed miRNAs
in 16 treatment-naïve OSA patients versus eight healthy non-snorers (12 up-regulated,
Figure 2A–L: miR-10a-5p (MIMAT0000253), miR-16-1-5p (MIMAT0000069), miR-18a-5p
(MIMAT0000072), miR-106a-5p (MIMAT0000103), miR-146b-5p (MIMAT0002809), miR-
148b-3p (MIMAT0000759), miR-223-5p (MIMAT0004570), miR-335-5p (MIMAT0000765), miR-
374b-5p (MIMAT0004955), miR-421-3p (MIMAT0003339), miR-let-7a-1-3p (MIMAT0004481),
and miR-let-7a-1-5p (MIMAT0000062); and 10 down-regulated, Figure 3A–J: miR-15b-5p
(MIMAT0000417), miR-133a-1-3p (MIMAT0000427), miR-145-5p (MIMAT0000437), miR-
150-5p (MIMAT0000451), miR-26b-3p (MIMAT0004500), miR-29c-5p (MIMAT0004673), miR-
326-3p (MIMAT0000756), miR-4433b-3p (MIMAT0030414), miR-574-3p (MIMAT0003239),
miR-92b-3p (MIMAT0003218); all fold changes >2 or <0.5, transcript per million >1000, all
p-values < 0.05). We used several computational databases for the target predictions of
the 22 miRNAs and identified 1996 individual genes. To evaluate the biological role of
the differentially expressed miRNA target genes, we performed a Gene Ontology (GO)
classification enrichment analysis (Figure 1B–D). Enriched predicted target pathways of the
22 candidate miRNA genes included cell senescence, p53, Estrogen Receptor Signaling ad-
herens junction, MSP-RON signaling in cancer cells pathway, HGF Signaling, and HOTAIR
signaling (Supplementary Table S3). We also performed (KEGG) pathways enrichment
analysis for differentially expressed miRNA target genes. The significant KEGG pathways
and their genes are shown in Table 2. Here, we highlight some of the pathways with
potential biological significance in OSA, such as cellular senescence, adherens junction,
AGE-RAGE signaling pathway in diabetic complications, TNF-α signaling pathway, insulin
resistance, and HIF-1 signaling pathway. Based on potential biological significance, we
further constructed gene networks for two pathways: (1) cell senescence (Figure 4) and
(2) HIF-1α signaling (Supplementary Figure S1).

Table 1. Demographic, sleep, and biochemistry data of the discovery and validation cohorts.

Discovery Cohort Validation Cohort

OSA
Patients
N = 16

Healthy
Subjects

N = 8
p Value

Primary
Snoring
N = 20

Treatment-
Naïve
OSA

Patients
N = 45

OSA
Patients
on CPAP

N = 13

p Value

Age, years 55.2 ± 14.8 47.9 ± 13.6 0.242 44.6 ± 12.6 48.5 ± 120.9 50.6 ± 7.5 0.248
Male Sex, n (%) 12 (75) 8 (100) 0.121 12 (60) 34 (75.6) 11 (84.6) 0.252

BMI, kg/m2 27.3 ± 3.7 25.0 ± 3.2 0.144 25.1 ± 3.6 26.4 ± 3.4 27.3 ± 2.9 0.173
AHI, events/hour 44.5 ± 24.5 NA 2.7 ± 1.8 54.8 ± 19.2 62.5 ± 23.3 <0.001
ODI, events/hour 25.8 ± 27.5 NA 0.8 ± 0.2 41.9 ± 24.7 44.9 ± 29.4 <0.001

Mean SaO2, % 95.0 ± 2.4 NA 96.1 ± 1.6 93.7 ± 2.5 93.7 ± 2.5 0.001
Nadir SaO2, % 78.5 ± 13.2 NA 89.1 ± 3.7 70.4 ± 15.8 72.5 ± 13 <0.001
Snoring index,
counts/hour 359.3 ± 278.4 NA 129.7 ± 147.6 374.7 ± 200.1 315.2 ± 189.5 <0.001

Smoking, n (%) 7 (43.8) 3 (37.5) 0.77 4 (20) 11 (24.4) 4 (30.8) 0.78
Alcoholism, n (%) 0 (0) 0 (0) 1.0 0 (0) 0 (0) 1 (7.7) 0.138

Cholesterol, mg/dl 212.1 ± 58.6 183.2 ± 41.5 0.346 186.7 ± 41.8 200.1 ± 38.6 188.4 ± 38.6 0.375
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Table 1. Cont.

Discovery Cohort Validation Cohort

OSA
Patients
N = 16

Healthy
Subjects

N = 8
p Value

Primary
Snoring
N = 20

Treatment-
Naïve
OSA

Patients
N = 45

OSA
Patients
on CPAP

N = 13

p Value

Triglycerides, mg/dl 158 ± 89.8 75.6 ± 29.1 0.071 118.7 ± 71.4 170.1 ± 82.6 143.8 ± 66.6 0.063
Hypertension, n (%) 4 (25) 2 (25) 1.0 3 (15) 17 (37.8) 8 (61.5) 0.023

Diabetes mellitus, n (%) 1 (6.3) 1 (12.5) 0.602 1 (5) 7 (15.6) 1 (7.7) 0.419
Heart disease, n (%) 2 (12.5) 0 (0) 0.296 2 (10) 2 (4.4) 1 (7.7) 0.686

Stroke, n (%) 1 (6.3) 1 (12.5) 0.602 1 (5) 0 (0) 0 (0) 0.23
COPD, n (%) 2 (12.5) 1 (12.5) 1.0 2 (10) 2 (4.4) 2 (15.4) 0.386
CKD, n (%) 0 (0) 0 (0) 1.0 1 (5) 0 (0) 0 (0) 0.23

Depression, n (%) 6 (37.5) 1 (12.5) 0.204 8 (40) 12 (26.7) 2 (15.4) 0.298

BMI = body mass index; AHI = apnea hypopnea index; ODI = oxygen desaturation index; SaO2 = oxygen saturation; COPD= chronic
obstructive pulmonary disease; CKD = chronic kidney disease.

Table 2. Enriched Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways for predicted target genes of the 22
differentially expressed miRNA.

ID Description Gene
Ratio *

Bg
Ratio #

Adjusted
p Value q Value Excluded miRNA

hsa04218 Cellular senescence 85/1996 156/8105 1.19 × 10−13 7.06 × 10−14 hsa-miR-29c-5p
hsa04390 Hippo signaling pathway 83/1996 157/8105 1.77 × 10−12 1.05 × 10−12 hsa-miR-29c-5p
hsa04110 Cell cycle 69/1996 124/8105 6.62 × 10−12 3.94 × 10−12 22 miRs involved
hsa04520 Adherens junction 44/1996 71/8105 1.27 × 10−9 7.53 × 10−10 hsa-miR-29c-5p

hsa04933 AGE-RAGE signaling pathway in
diabetic complications 54/1996 100/8105 1.06 × 10−8 6.28 × 10−9 22 miRs involved

hsa04150 mTOR signaling pathway 74/1996 155/8105 1.06 × 10−8 6.28 × 10−9 hsa-miR-29c-5p
hsa04350 TGF-beta signaling pathway 51/1996 94/8105 1.6 × 10−8 9.49 × 10−9 22 miRs involved

hsa04141 Protein processing in endoplasmic
reticulum 78/1996 171/8105 2.97 × 10−8 1.76 × 10−8 hsa-miR-29c-5p

hsa04115 p53 signaling pathway 42/1996 73/8105 3.89 × 10−8 2.31 × 10−8 hsa-miR-29c-5p
hsa04510 Focal adhesion 87/1996 201/8105 6.84 × 10−8 4.06 × 10−8 hsa-miR-29c-5p
hsa04068 FoxO signaling pathway 63/1996 131/8105 7.04 × 10−8 4.18 × 10−8 hsa-miR-29c-5p

hsa04550 Signaling pathways regulating
pluripotency of stem cells 67/1996 143/8105 8.35 × 10−8 4.96 × 10−8 22 miRs involved

hsa04120 Ubiquitin mediated proteolysis 64/1996 140/8105 4.24 × 10−7 2.52 × 10−7 hsa-miR-29c-5p
hsa01522 Endocrine resistance 49/1996 98/8105 4.95 × 10−7 2.94 × 10−7 hsa-miR-29c-5p
hsa04010 MAPK signaling pathway 112/1996 294/8105 1.37 × 10−6 8.13 × 10−7 22 miRs involved

hsa04668 TNF signaling pathway 53/1996 112/8105 1.38 × 10−6 8.17 × 10−7
hsa-miR-29c-5p,

has-miR-4433b-3p,
hsa-miR-574-3p

hsa04152 AMPK signaling pathway 55/1996 120/8105 2.85 × 10−6 1.69 × 10−6 hsa-miR-574-3p
hsa04810 Regulation of actin cytoskeleton 87/1996 218/8105 3.01 × 10−6 1.79 × 10−6 22 miRs involved

hsa04211 Longevity regulating pathway 44/1996 89/8105 3.01 × 10−6 1.79 × 10−6
hsa-miR-29c-5p,

has-miR-4433b-3p,
hsa-miR-574-3p

hsa04151 PI3K-Akt signaling pathway 128/1996 354/8105 4.15 × 10−6 2.47 × 10−6 22 miRs involved

hsa05202 Transcriptional mis-regulation in
cancer 78/1996 192/8105 4.62 × 10−6 2.74 × 10−6 hsa-miR-29c-5p,

hsa-miR-574-3p
hsa04722 Neurotrophin signaling pathway 53/1996 119/8105 1.01 × 10−5 6.01 × 10−6 22 miRs involved
hsa05417 Lipid and atherosclerosis 83/1996 215/8105 2.01 × 10−5 1.19 × 10−5 hsa-miR-29c-5p
hsa04071 Sphingolipid signaling pathway 52/1996 119/8105 2.38 × 10−5 1.42 × 10−5 hsa-miR-4433b-3p
hsa04530 Tight junction 68/1996 169/8105 2.9 × 10−5 1.72 × 10−5 hsa-miR-29c-5p

hsa04919 Thyroid hormone signaling
pathway 52/1996 121/8105 4.14 × 10−5 2.46 × 10−5 22 miRs involved

hsa04144 Endocytosis 92/1996 252/8105 7.94 × 10−5 4.72 × 10−5 22 miRs involved

hsa04710 Circadian rhythm 19/1996 31/8105 8.95 × 10−5 5.32 × 10−5
hsa-miR-223-5p,
hsa-miR-29c-5p,
hsa-miR-574-3p

hsa04310 Wnt signaling pathway 65/1996 166/8105 1.13 × 10−4 6.69 × 10−5 hsa-miR-29c-5p
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Table 2. Cont.

ID Description Gene
Ratio *

Bg
Ratio #

Adjusted
p Value q Value Excluded miRNA

hsa04910 Insulin signaling pathway 55/1996 137/8105 2.02 × 10−4 1.2 × 10−4 hsa-miR-29c-5p,
hsa-miR-574-3p

hsa05010 Alzheimer disease 124/1996 369/8105 2.32 × 10−4 1.38 × 10−4 22 miRs involved

hsa04210 Apoptosis 54/1996 136/8105 3.08 × 10−4 1.83 × 10−4 hsa-miR-29c-5p,
hsa-miR-574-3p

hsa04066 HIF-1 signaling pathway 45/1996 109/8105 4.05 × 10−4 2.4 × 10−4 22 miRs involved

hsa04340 Hedgehog signaling pathway 27/1996 56/8105 4.85 × 10−4 2.88 × 10−4 hsa-miR-29c-5p,
hsa-miR-574-3p

hsa04015 Rap1 signaling pathway 75/1996 210/8105 8.14 × 10−4 4.84 × 10−4 hsa-miR-4433b-3p

hsa04935 Growth hormone synthesis,
secretion and action 47/1996 119/8105 9.53 × 10−4 5.66 × 10−4 22 miRs involved

hsa04657 IL-17 signaling pathway 39/1996 94/8105 9.53 × 10−4 5.66 × 10−4
hsa-miR-223-5p,
hsa-miR-29c-5p,
hsa-miR-574-3p

hsa04962 Vasopressin-regulated water
reabsorption 21/1996 44/8105 2.797 × 10−3 1.662 × 10−3 hsa-miR-223-5p,

hsa-miR-4433b-3p

* Gene ratio stands for the number of genes involved in this pathway among miRNA target genes over the number of miRNA target
genes. # Bg ratio stands for the number of all genes of this pathway over the number of the genes of all pathways in Gene Ontology
(biological function).
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Figure 1. Peripheral blood mononuclear cell (PBMC)-derived microRNA (miRNA) profiling and Gene Ontology (GO)
analysis. (A) Heatmap illustrating miRNA expression profiling between 16 OSA patients and eight healthy non-snorers (red:
increased miRNA expression; green: reduced miRNA expression). GO analysis was used to assess (B) molecular functions,
(C) cellular components, and (D) biological processes. The classification shows the top-ranked significant GO terms.
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Figure 2. Twelve up-regulated microRNAs identified by next-generation sequencing in the comparison between OSA
patients and healthy non-snorers in the discovery cohort. Normalized read counts of the (A) miR-10a-5p, (B) miR-16-1-5p,
(C) miR-18a-5p, (D) miR-106a-5p, (E) miR-146b-5p, (F) miR-148b-3p, (G) miR-223-5p, (H) miR-335-5p, (I) miR-374b-5p, (J)
miR-421-3p, (K) miR-let-7a-1-3p, and (L) miR-let-7a-1-5p genes were increased in OSA patients versus healthy non-snorers.

3.2. Down-Regulated miR-15b-5p/miR-92b-3p in Treatment-Naïve OSA Patients Versus either PS
Subjects or OSA Patient on CPAP Treatment in the Validation Cohort

Ten candidate miRs with potential biological or functional relevance, including miR-
335-5p, miR-148b-3p, miR-223-5p, miR-16-1-5p, miR-let-7a-1-5p, miR-4433b-3p, miR-15b-5p,
miR-92b-3p, miR-133a-1-3p, and miR-145-5p, were selected for further verification and
validation. Demographic, sleep, and biochemistry data of the validation cohort are
shown in Table 1. There was no difference between case and control groups in terms
of age, gender, smoking history, alcoholism history, BMI, co-morbidity, and blood choles-
terol/triglyceride/glycohemoglobin (HbA1c) levels, but the proportion of hypertension
was higher in the OSA on CPAP group and there were significant differences in sleep param-
eters, such as AHI, ODI, and nadir SaO2. In the validation cohort, miR-15b-5p expression
was decreased in treatment-naïve OSA patients (3.1 ± 5.8-fold change, Figure 5A) versus
either PS (54.9 ± 95.4 fold change, adjusted p = 0.001) or OSA on CPAP (21.1 ± 29.2 fold
change, adjusted p < 0.001) group. In treatment-naïve OSA patients and PS subjects, miR-
15b-5p expression was negatively correlated with AHI (R = −0.346, p = 0.005, Figure 5B),
ODI (R = −0.278, p = 0.025, Figure 5C), and arousal index (R = −0.269, p = 0.03), and
positively correlated with nadir SaO2 (R = 0.246, p = 0.048) and mean SaO2 (R = 0.261,
p = 0.036). Likewise, miR-92b-3p expression was decreased in treatment-naïve OSA pa-
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tients (2.8 ± 8.2-fold change, Figure 5D) versus either PS (43.8 ± 97.7 fold change, adjusted
p = 0.004) or OSA on CPAP (15.4± 21.1 fold change, adjusted p < 0.001) group. In treatment-
naïve OSA patients and PS subjects, miR-92b-3p expression was negatively correlated with
AHI (R = −0.289, p = 0.02, Figure 5E), and positively correlated with mean SaO2 (R = 0.248,
p = 0.047, Figure 5F).
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Figure 3. Ten down-regulated microRNAs identified by next-generation sequencing in the comparison between OSA
patients and healthy non-snorers in the discovery cohort. Normalized read counts of the (A) miR-15b-5p, (B) miR-133a-1-3p,
(C) miR-145-5p, (D) miR-150-5p, (E) miR-26b-3p, (F) miR-29c-5p, (G) miR-326-3p, (H) miR-4433b-3p, (I) miR-574-3p, and
(J) miR-92b-3p genes were decreased in OSA patients versus healthy non-snorers.
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Figure 4. Gene pathway representation of interactions between gene target predictions of the 22 differentially expressed
microRNAs. The most significant KEGG pathway of cellular senescence is identified by over-representation analysis with
the gene list derived from the validated target genes of the 22 miRNAs (see Section 2). The FDR-adjusted p-value of the
pathway is 1.2 × 10−13. Predicted target genes are shown in red letters and boxes with red lines.

3.3. Up-Regulated PTGS1 in Treatment-Naive OSA Patients and Depression in the
Validation Cohort

To determine the target genes related to miR-15b-5p and miR-92b-3p, the common
targets and pathways of both miRs regulated by hypoxia were explored by the genes
intersection option using the ingenuity pathway analysis (IPA) and miRbase database. The
results identified several miR-15b-5p-regulated targets (three direct targets: TNFSF13B,
VEGFA, AMOT), miR-92b-3p-regulated targets (two direct: NOX4, CXCL5), and common
targets and pathways (Supplementary Table S4, Supplementary Figure S2) regulated by
both miRs (seven direct: LEP, PTGS1, ADRA2A, ADRB1, GABRA4, GABRB2, GABRB1; three
indirect targets: TNF-α, TGF-β1, NF-κB1). Some of them were involved in pro-inflammatory,
angiogenesis, or pro-oxidant responses and thus selected for further evaluation in both
clinical samples and in vitro experiments. In the validation cohort, PTGS1 (COX1) gene
expression was increased in treatment-naïve OSA (18.1 ± 30.7 fold change, Figure 5G)
versus either PS (1.6 ± 2.3 fold change, adjusted p = 0.007) or OSA on CPAP (5.4 ± 5.9-fold
change, adjusted p = 0.024) group. PTGS1 gene expression (24.2± 41.3 versus 3.3± 3.2-fold
change, adjusted p = 0.002, Figure 5H) was increased in all sleep-disordered breathing
patients with depression versus those without depression. GABRB2 (R = 0.307, p = 0.003,
Figure 5I) and ADRB1 (R = 0.753, p < 0.001, Supplementary Figure S3) gene expressions
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were positively correlated with HbA1C, and the latter was negatively correlated with nadir
SaO2 (R = −0.432, p < 0.001, Supplementary Figure S3). TNFSF13B gene expression was
positively correlated with snoring index (R = 0.309, p = 0.003, Supplementary Figure S3).
LEP gene expression was negatively correlated with nadir SaO2 (R =−0.327, p = 0.001, Sup-
plementary Figure S3), and positively correlated with %TSaO2 < 90% (R= 0.498, p < 0.001,
Supplementary Figure S3) and HbA1C (R = 0.641, p < 0.001, Supplementary Figure S3).
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Figure 5. Down-regulated miR-15b-5p/miR-92b-3p genes and corresponding changes of their predicted target genes in the
validation cohort. MiR-15b-5p gene expression was (A) decreased in treatment-naïve OSA patients versus either PS subjects
or OSA patients on long-term CPAP treatment, and negatively correlated with (B) apnea hypopnea index (AHI) and (C)
oxygen desaturation index. miR-92b-3p gene expression was (D) decreased in treatment-naïve OSA patients versus either
PS subjects or OSA patients on long-term CPAP treatment, (E) negatively correlated with AHI, and (F) positively correlated
with mean oxygen saturation (SaO2) during total sleep time. PTGS1 gene expression was (G) increased in treatment-naïve
OSA patients, and (H) further increased in those with depression. (I) ADRB1 gene expression was negatively correlated
with nadir SaO2.

3.4. MiR-15b-5p Over-Expression Reversed IHR-Induced Apoptosis, ROS Production, and Target
Gene Up-Regulations

IHR treatment in vitro resulted in down-regulation of both the miR-92b-3p and miR-
15b-5p genes, while miR-15b/5p and miR-92b-3p transfection resulted in efficient over-
expression of both miRs (Supplementary Figure S4). Transfection with miR-15b-5p mimic
at 25 nM in THP-1 cells reversed IHR-induced early apoptosis (percentage of Annexin
V(+) PI (−) cells, Figure 6A), and IHR-induced up-regulation of its predicted target genes,
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including PTGS1 (Figure 6B), GABRB2, ADRB1, LEP, GARG1, TNFSF13B, and VEGFA
(Supplementary Figure S5). Transfection with a miR-15b-5p mimic in HUVEC reversed
IHR-induced ROS production (H2DCFDA incorporation, MFI, Figure 6C), IHR-induced
early apoptosis (percentage of Annexin V(+) PI (−) cells, Figure 6D), and IHR-induced
up-regulation of the NF-κB1, TNF-α, and TGF-β genes (Figure 6E–G). Transfection with a
miR-15b-5p mimic in SH-SY5Y cells reversed IHR-induced ROS production (percentage of
H2DCFDA, Figure 6H), late apoptosis (percentage of PI(+) Annexin V(+) cells, Figure 6I).

3.5. MiR-92b-3p Over-Expression Reversed IHR-Induced Apoptosis, ROS Production, and Target
Gene Up-Regulations

Transfection with miR-92b-3p mimic at 25 nM in THP-1 cells reversed IHR-induced
early apoptosis (Annexin V protein expression, MFI, Figure 7A) and up-regulations of
the CXCL5 and ADRB1 genes (Supplementary Figure S6. Transfection with a miR-92b-3p
mimic in HUVEC reversed IHR-induced up-regulation of the NF-κB1 (Figure 7B), PTGS1
(Figure 7C), TNF-α, and TGF-β (Supplementary Figure S6) genes. Transfection with a
miR-92b-3p mimic in SH-SY5Y cells reversed IHR-induced ROS production (percentage
of H2DCFDA, Figure 7D), early apoptosis (Annexin V expression, MFI, Figure 7E), and
MAOA hyperactivity (percentage of normoxic condition, Figure 7F), while MAOB activity
was not altered.
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Figure 6. MiR-15b-5p over-expression reversed intermittent hypoxia with re-oxygenation (IHR)-induced apoptosis, oxida-
tive stress, and up-regulation of its target genes. Transfection with a miR-15b-5p mimic in THP-1 cells reversed IHR-induced
(A) early apoptosis and reversed IHR-induced up-regulation of its predicted target mRNA, (B) PTGS1. Transfection with
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miR-15b-5p in HUVEC reversed IHR-induced (C) reactive oxygen species production, (D) early apoptosis, and up-regulation
of its predicted target genes, including (E) NF-κB1, (F) TNF-α, and (G) TGF-β. Transfection with a miR-15b-5p mimic in
SH-SY5Y cells reversed IHR-induced (H) ROS production and (I) late apoptosis. * p < 0.05, compared with normoxic (NOX)
condition. # p < 0.05, compared with IHR condition.
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Figure 7. MiR-92b-3p over-expression reversed intermittent hypoxia with re-oxygenation (IHR)-induced apoptosis,
monoamine oxidase (MAO)-A hyperactivity, and up-regulation of its target mRNAs through directly targeting PTGS1. Trans-
fection with a miR-92b-3p mimic in THP-1 cells reversed IHR-induced (A) early apoptosis. Transfection with miR-92b-3p in
HUVEC reversed IHR-induced up-regulation of its target genes, including (B) NF-κB1, and (C) PTGS1. Transfection with
miR-92b-3p in SH-SY5Y cells reversed IHR-induced (D) ROS production, (E) early apoptosis, and (F) MAOA hyperactivity.
(G) The wild-type sequence and mutated sequence of putative miR-92b-3p binding sites in the 3′untranslated region of
PTGS1 are shown. (H) The direct binding between miR-92b-3p and PTGS1 was confirmed using luciferase reporter gene
assays. * p < 0.05, compared with normoxic (NOX) condition. ** p < 0.01, compared with normoxic (NOX) condition.
*** p < 0.001, compared with NOX condition. # p < 0.05, compared with IHR condition.

3.6. MiR-92b-3p Negatively Regulated PTGS1 in a Direct Manner

Analyses above suggested a negative correlation between miR-92b-3p expression and
PTGS1 expression. Hence, we assumed that miR-92b-3p might be directly targeting PTGS1,
and this assumption was supported by a bioinformatics analysis using the TargetScan
software. Analysis based on the dual-luciferase reporter assays further revealed that the
pmirGLO luciferase activity altered in the wild-type PTGS1 3′-untranslated regions but
remained unchanged in the mutant site of the PTGS1 3′-untranslated region (Figure 7G–H),
which indicates that it was the target binding site for miR-92b-3p.
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3.7. Knockdown of PTGS1 or Overexpression of miR-15b-5p/miR-92b-3p Alleviates IHR-Induced
Neuron Cell Injury, Oxidative Stress, and MAOA Hyperactivity via Mediating
NF-κB1-SP1 Signaling

Finally, we tried to validate whether PTGS1 is linked to the protective effects of
miR-15b-5p/miR-92b-3p on IHR-induced injury. SH-SY5Y cells were transfected with
Si-PTGS1, miR-15b-5p/miR-92b-3p mimic, and negative control. IHR treatment resulted
in down-regulation of the miR-15b-5p (Figure 8A) and miR-92b-3p (Figure 9A) genes and
up-regulation of the PTGS1 gene (Figures 8D and 9D) in SH-SY5Y cells, while transfec-
tion with miR-15b-5p mimic, miR-92b-3p mimic, and PTGS1 SiRNA resulted in efficient
over-expression or knock-down of the genes. Either PTGS1 knock-down or miR-15b-
5p/miR-92b-3p over-expression at a concentration of 25 nM reversed IHR-induced cell
viability decrease (WST1 percentage of normoxic condition, Figures 8B and 9B), MAOA
hyperactivity (Figures 8C and 9C), and SP1/NF-κB1 up-regulation (Figure 8E–F and
Figure 9E–F), while MAOB activity was not altered. Immunofluorescence staining results
further confirmed that IHR resulted in over-expressions of PTGS1 (Figure 10A)/NF-kB1/SP1
(Supplementary Figure S7), MAOA hyperactivity (Figure 10B), and over-production of ROS
(Supplementary Figure S7), all of which were significantly reversed with the knock-down
of PTGS1.
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Figure 8. Over-expression of miR-15b-5p or knockdown of PTGS1 reversed intermittent hypoxia with re-oxygenation
(IHR)-induced cell injury and MAOA hyperactivity via targeting NF-κB1/SP1 signaling. Transfection with either PTGS1
SiRNA or miR-15b-5p mimic in SH-SY5Y neuron cells reversed IHR-induced (A) down-regulation of miR-15b-5p, (B) cell
injury, (C) MAOA hyperactivity, and up-regulations of (D) PTGS1, (E) NF-κB1, and (F) SP1. * p < 0.05 compared with
normoxic (NOX) condition. # p < 0.05 compared with IHR condition.



Antioxidants 2021, 10, 1854 17 of 25Antioxidants 2021, 10, x FOR PEER REVIEW 19 of 26 
 

 

Figure 9. Over-expression of miR-92b-3p or knockdown of PTGS1 reversed intermittent hypoxia with re-oxygenation 

(IHR)-induced cell injury and MAOA hyperactivity via targeting NF-κB1/SP1 signaling. Transfection with either PTGS1 

SiRNA or miR-92b-3p mimic in SH-SY5Y cells reversed IHR-induced (A) down-regulation of miR-92b-3p, (B) cell injury, 

(C) MAOA hyperactivity, and up-regulations of (D) PTGS1, (E) NF-κB1, and (F) SP1. * p < 0.05 compared with normoxic 

(NOX) condition. # p < 0.05 compared with IHR condition. 

Figure 9. Over-expression of miR-92b-3p or knockdown of PTGS1 reversed intermittent hypoxia with re-oxygenation
(IHR)-induced cell injury and MAOA hyperactivity via targeting NF-κB1/SP1 signaling. Transfection with either PTGS1
SiRNA or miR-92b-3p mimic in SH-SY5Y cells reversed IHR-induced (A) down-regulation of miR-92b-3p, (B) cell injury,
(C) MAOA hyperactivity, and up-regulations of (D) PTGS1, (E) NF-κB1, and (F) SP1. * p < 0.05 compared with normoxic
(NOX) condition. # p < 0.05 compared with IHR condition.
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In this study, we identified differentially expressed miRNAs associated with OSA on 

a genome-wide scale and validated two miRNAs along with corresponding changes in 

Figure 10. PTGS1 (COX1) knock-down reversed intermittent hypoxia with re-oxygenation (IHR)-induced up-regulation
of MAOA hyperactivity. Representative micrographs of immunofluorescence staining in SH-SY5Y neuron cells with or
without the knock-down of PTGS1 under IHR versus normoxic (NOX) conditions are given for (A) COX1, and (B) MAOA.
IHR resulted in over-expressions of COX1, and MAOA hyperactivity, both of which were reversed with the knock-down
of COX1. DAPI (blue) is used for staining the nuclei. Localizations of the two molecules are indicated in green. All the
micrographs are a merge of the two stainings. Quantified values are stratified based on the response to IHR stimuli and
PTGS1 SiRNA transfection. Kruskal–Wallis test with post-hoc analysis was used for comparisons between four groups.
* p < 0.05. ** p < 0.01.
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4. Discussion

In this study, we identified differentially expressed miRNAs associated with OSA
on a genome-wide scale and validated two miRNAs along with corresponding changes
in their target genes in an independent cohort. The 22 differentially expressed miRs
regulate important genomic pathways, such as cellular senescence, cell cycle, and adherens
junction, while the validated miR-15b and miR-92b regulate pro-inflammatory, pro-oxidant,
adrenergic signaling, and GABAergic signaling. The present study demonstrated that miR-
15b-5p and miR-92b-3p were down-regulated in both the treatment-naïve OSA patients and
the IHR-exposed THP-1/HUVEC/SH-SY5Y cell models, while both miR-15b-5p mimic and
miR-92b-3p mimic reversed IHR-induced ROS production, apoptosis, MAOA hyperactivity,
and up-regulations of their target genes. In addition, the inverse expression patterns of miR-
92b-3p and PTGS1 suggest their direct interaction, which has been verified through dual-
luciferase reporter assays. Furthermore, either miR-15b-5p/miR-92b-3p over-expression or
PTGS1 knock-down reversed IHR-induced up-regulations of the PTGS1/NF-κB1/SP1 genes.
Thus, miR-92b-3p might play anti-inflammatory, antioxidant, and MAOA-inhibiting roles
in the progression of OSA and the development of depression by regulating PTGS1 via
NF-κB1/SP1 signaling.

Among the 22 differentially expressed miRNAs identified by NGS, miR-106a-5p, miR-
574-3p, and miR-145-5p have been shown to be dysregulated in OSA patients in previous
studies, while miR-26b-3p, miR-15b-5p, miR-16-5p, miR-29c-5p, miR-145-5p, miR-133a,
and miR-223 gene expressions found to be skewed in response to IHR stimuli in vitro or
in animal models [30–32]. In accordance with our findings, miR-145-5p has been demon-
strated to be down-regulated in OSA patients and protect animals from aortic remodeling
through targeting Smad3 in chronic intermittent hypoxic canine models [33,34]. Pathway
analysis demonstrated that the 22 differentially expressed miRNAs are related to distinct
molecular pathways associated with cellular senescence, cell cycle, adherens, tight junction,
atherosclerosis, TGF-β signaling, TNF-α signaling, insulin resistance, Alzheimer’s disease,
and HIF-1α signaling, all of which have been found to play a role in the development
of adverse consequences of OSA. Accordingly, recent studies have shown that OSA may
exacerbate vascular senescence via oxidative stress-related pathways through exosomes,
accelerate chromosomal aging as evidenced by shortened telomere length, and trigger
a senescence-like phenotype in pre-adipocytes [35–38]. Abnormal activity of the core
cell-cycle machinery represents a driving force of tumorigenesis, while OSA has been
recognized as a risk factor for cancer growth and aggressiveness mainly through HIF-1α
signaling, which controls the synthesis of molecules with effects on inflammation, immune
surveillance, and cell proliferation [39]. OSA is independently associated with impaired
endothelial function and atherosclerosis through inflammation, oxidative stress, autonomic
nervous system activation, and platelet activation [40,41]. Specifically, up-regulations of the
miR146b, miR-421, miR-10a, miR-106a, miR-18a, miR-374b, miR-223, and miR-335 genes are
implicated in the progression of atherosclerosis, cancer, oxidative stress, ischemic stroke, or
insulin resistance, while down-regulations of the miR-150, miR-29c, miR-133a, and miR-145
genes are implicated in protection from heart failure, cancer, or insulin resistance [6,42,43].

In the current study, miR-15b-5p and miR-92b-3p were down-regulated both in the
two independent cohorts of OSA patients and in response to IHR stimuli in vitro, and able
to counteract oxidative stress-related cell apoptosis. In line with our findings, miR-15b
has been shown to inhibit angiogenesis in proliferative diabetic retinopathy via targeting
VEGFA, inhibit vascular smooth muscle cells in peripheral artery disease via targeting
IGF1R, counteract senescence-associated mitochondrial dysfunction in skin aging via
targeting SIRT4, and suppress Th17 Differentiation in multiple sclerosis by targeting
O-GlcNAc [42–45]. In contrast, miR-15b has been found to augment cell apoptosis in
Parkinson’s disease via targeting the GSK-3β/β-catenin signaling pathway, contribute to
depression-like behavior in mice by affecting synaptic protein levels and function in the
nucleus accumbens, deteriorate cardiomyocyte apoptosis in myocardial infarction via tar-
geting Bcl-2/MAPK3, and contribute to extra-cellular matrix degradation in intervertebral
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disc degeneration via targeting SMAD3 [46–49]. In accordance with our findings, miR-92b-
3p can suppress angiotensin II-induced cardiomyocyte hypertrophy via targeting HAND2,
protect astrocyte neurons against oxygen and glucose deprivation, promote spinal cord neu-
rite growth and functional recovery through the PTEN/AKT pathway [50–52]. In contrast,
miR-92b can promote the progression of liver fibrosis by activating JAK/STAT pathway via
targeting CREB3L2 and limiting the production of intermediate cortical progenitors [53,54].
The role of miR-92b and miR-15b in IHR injury characterized by OSA remains unclear. Our
results revealed that miR-15b-5p/miR-92b-3p mimic can inhibit ROS production, MAOA
activity, and apoptosis in vitro. Here, from searching the miRBASE web, we found PTGS1
may be a direct downstream target gene of miR-92b-3p. The dual-luciferase report gene
assay determined that PTGS1 was the functional target of miR-92b-3p in HUVEC, and the
gain-of-function/loss-of-function and immunofluorescence stain evaluation in SH-SY5Y
cells confirmed the targeted relationship between miR-15b-5p/miR-92b-3p and PTGS1
through the NF-κB1-SP1 signaling pathway.

The pooled prevalence of depression in OSA patients is 35%, and OSA patients are at
twice the risk of developing depression during follow-ups than those without OSA [55,56].
Elevated MAOA activity has been pointed out as a mechanism implicated in depression
through producing ROS and catalyzing levels of all the three major monoamines (serotonin,
norepinephrine, and dopamine) in the brain [57]. Irreversible MAO inhibitors have the
potential to treat resistant depression, atypical depression, and bipolar depression, but are
often reserved as back-line medicines because of their side effects [58]. Increased enzyme
activity of PTGS1 and PTGS2 has been implicated as another mechanism in depression, and
herb drugs reducing arachidonic acid levels through inhibiting PTGS1/2 could be used to
treat depression in the chronic unpredictable mild stress rat model [59]. Previous studies
have shown that miRNAs participate in a series of important pathophysiological processes
of depression, but none have been investigated in OSA-related depression [60]. For the
first time, we found that miR-15b-5p/miR-92b-3p mimics could inhibit MAOA activity
through directly targeting PTGS1 via NF-κB1/SP1 signaling and may be developed as new
drug targets for depression treatment in OSA patients. Our study examined the previously
untouched area of the effect of miR-15b/miR-92b on OSA-related depression in vivo
and in vitro. Clinical data showed that both miR-15b-5p and miR-92b-3p were down-
regulated in OSA patients, while their common target gene, PTGS1, was up-regulated,
particularly in those with depression. In vitro experiments showed that miR-15b/miR-92b
targeting of PTGS1-NF-κB1-SP1 signaling selectively inhibits MAOA activity. To validate
the result, we confirmed a reduction of MAOA activity and ROS production by using
the immunofluorescence method with the knock-down of PTGS1 under normoxic and
IHR conditions. Our findings indicate that miR-15b-5p/miR-92b-3p mimics may alleviate
the neuronal damage and MAOA hyperactivity caused by chronic IHR via inhibiting
neuroinflammation and oxidative stress. Since this report is an initial study on the role
of miR-15b/miR-92b in MAOA activity for the development of OSA-related depression,
a limitation should be acknowledged. The underlying mechanism of PTGS1, the miR-
15b/miR-92b common targeting protein, involved in the pathogenesis of depression, is still
ambiguous. Notwithstanding that limitation, this study does correlate miR-15b/miR-92b
under-expression and PTGS1 over-expression with MAOA hyperactivity, oxidative stress,
and augmented apoptosis of neuron cells in OSA-related depression. Our study sheds
considerable light on the direction for developing a therapeutic approach for alleviating
OSA-related depression and provides a potential target.

5. Conclusions

Our NGS experiment identified a selective cluster of miRNAs that regulates relevant
biological pathways underlying disease severity and adverse consequences in OSA. Next,
we validated that miR-15b-5p/miR-92b-3p and their target mRNA, PTGS1, were substan-
tially decreased and increased, respectively, in OSA both in vivo and in vitro, while PTGS1
were further increased in OSA patients with depression and in response to IHR stimuli.
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Moreover, we demonstrated a critical role of miR-15b-5p/miR-92b-3p in apoptosis, oxida-
tive stress, and MAOA activity of neurons by regulating the PTGS1-mediated eicosanoid
inflammatory pathway via NF-κB1-SP1 signaling (Figure 11A,B). Hence, targeting the
MAOA-related PTGS1 signaling pathway by miR-15b-5p/miR-92b-3p could provide a
novel therapeutic avenue for treating OSA-related depression.
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Figure 11. The proposed interplay between miR-15b-5p/miR-92b-3p and their target genes in the intermittent hypoxia
with re-oxygenation (IHR) model of obstructive sleep apnea (OSA). (A) These interactions contribute to the development
of depression by IHR-induced MAOA hyperactivity and IHR-induced oxidative stress/apoptosis/inflammation in OSA
patients. (B) A schematic diaphragm depicts the protective effect of miR-15b-5p/miR-92b-3p mimics on IHR-induced
oxidative stress and cell apoptosis through inhibiting MAOA via targeting PTGS1-NF-κB-SP1 signaling in OSA-related
depression. IHR augments PTGS1, which increases the NF-κB expression that in turn activates MAOA gene transcription
through augmenting the binding of SP1 to the promoter region of the MAOA gene. Down-regulation of miR-15b-5p/miR92b-
3p in response to chronic IHR in OSA leads to MAOA hyperactivity, oxidative stress, and cell injury through targeting
PTGS1-NF-κB1-SP1 signaling. MAOA = monoamine oxidase A; PTGS1 = prostaglandin-endoperoxide synthase 1; NF-κB1
= nuclear factor kappa B subunit 1; SP1 = Sp1 transcription factor.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/antiox10111854/s1, Supplementary Figure S1. The KEGG pathway of HIF-1 signaling is
identified by over-representation analysis with the gene list derived from the validated target genes
of the 22 OSA-related miRNAs; Supplementary Figure S2, Predicted direct and indirect target genes
of miR-15b-5p and miR-92b-3p based on IPA and miRbase database; Supplementary Figure S3. Cor-
relations of the predicted target gene expressions of miR-15b-5p/miR-92b-3p with sleep parameters
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and blood sugar control; Supplementary Figure S4, Transfection efficiency of miR-15b-5p mimic
and miR-92b-3p mimic in human umbilical vein endothelial cells (HUVEC); Supplementary Figure
S5. MiR-15b-5p over-expression reversed intermittent hypoxia with re-oxygenation (IHR)-induced
up-regulations of its target genes; Supplementary Figure S6. MiR-92b-3p over-expression reversed
intermittent hypoxia with re-oxygenation (IHR)-induced up-regulations of its target genes; Supple-
mentary Figure S7. PTGS1 (COX1) knock-down reversed intermittent hypoxia with re-oxygenation
(IHR)-induced up-regulation of NF-κB/SP1, and oxidative stress; Supplementary Table S1, Probe
sequences of the ten selected microRNAs and exogenous control Caenorhabditis elegans microRNA;
Supplementary Table S2, Primer sequences of the predicted target mRNAs used for quantitative
reverse-transcriptase polymerase chain reaction; Supplementary Table S3, Enriched ingenuity path-
way analysis for predicted target genes of the 22 differentially expressed miRNA; Supplementary
Table S4, Enriched ingenuity pathway analysis pathways for the intersection of the predicted target
genes of miR-15b-5p and miR-92b-3p.
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