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MOTIVATION In clinical proteomics, targeted proteomics approaches like multiple-reaction monitoring
(MRM) or parallel-reaction monitoring (PRM) are widely used, but their application is often hampered by la-
bor-intensive and error-prone manual data interpretation. Existing computational methods, while helpful,
often demand a substantial degree of manual intervention or decoy-transition approaches, constraining
the throughput and efficiency of clinical proteomics assays. To address these challenges, we developed
DeepMRM, a targeted proteomics data interpretation package that facilitates high-throughput analysis
and enhances the reproducibility and scalability of targeted proteomics in clinical settings.
SUMMARY
Targeted proteomics is widely utilized in clinical proteomics; however, researchers often devote substantial
time to manual data interpretation, which hinders the transferability, reproducibility, and scalability of this
approach.We introduce DeepMRM, a software package based on deep learning algorithms for object detec-
tion developed to minimize manual intervention in targeted proteomics data analysis. DeepMRM was evalu-
ated on internal and public datasets, demonstrating superior accuracy compared with the community stan-
dard tool Skyline. To promote widespread adoption, we have incorporated a stand-alone graphical user
interface for DeepMRM and integrated its algorithm into the Skyline software package as an external tool.
INTRODUCTION

In clinical proteomics laboratories, targeted proteomics ap-

proaches such as multiple-reaction monitoring (MRM; also

known as selected-reaction monitoring [SRM]) or parallel-reac-

tion monitoring (PRM) are widely employed due to their high

sensitivity and reproducibility.1–3 However, researchers often

devote substantial time to manual peak selection, interference

identification, and peak area adjustments to interpret targeted

proteomics data.4,5 This step is prone to human error and may

result in inconsistent outcomes due to subjective evaluations.

The reliance on manual inspection is a major barrier to the trans-

ferability, reproducibility, and scalability of targeted proteomics

in clinical applications.

Numerous computational methods have been developed to

address these challenges. Skyline, the most widely used open-

source software for targeted quantitative proteomics, offers a

graphical user interface (GUI) with a suite of tools for peak pick-

ing, peak integration, and quantitative analysis of the results.5,6
Cel
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For automated absolute quantification, an external calibration

curve method was developed.7 For quality assessment and con-

trol, a decoy-transition approach and machine learning models

have been implemented.4,8,9 Deep learning algorithms have

recently been applied to the peak detection problem and have

demonstrated a substantial improvement in accuracy compared

with conventional methods.10–12 However, existing approaches

still necessitate substantial manual intervention or reliance on a

decoy-transition approach,4 which ultimately constrains the as-

say’s throughput.

We introduce DeepMRM, a targeted proteomics data interpre-

tation package leveraging deep learning algorithms for object

detection specifically designed to substantially reduce themanual

inspection burden, even for noisy and complex data (Figure 1). By

reframing the challenge of finding peaks for targeted peptides as

an object detection task, DeepMRM detects instances of

peak groups within a set of 1D chromatograms, akin to how tradi-

tional object detection models identify object instances of a spe-

cific class within a 2D image. DeepMRM accepts transition
l Reports Methods 3, 100521, July 24, 2023 ª 2023 The Authors. 1
C-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

mailto:sangtae.kim@bertis.com
https://doi.org/10.1016/j.crmeth.2023.100521
http://crossmark.crossref.org/dialog/?doi=10.1016/j.crmeth.2023.100521&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure 1. DeepMRM workflow for detecting

peak groups of targeted peptides

Given the target list and MRM/PRM/DIA data as

input, transition chromatograms of both heavy and

light peptides are fed into the model as 2-channel

heatmap images. Multiscale 1D feature maps are

extracted and processed by two subnetworks: a

classifier for determining whether candidate peak

groups are present and a regressor for detecting

the boundary of candidate peak groups. Detected

peak groups are then examined by a CNN-based

transition classification model to select transitions

unaffected by interference or noise. The abun-

dances of target peptides are estimated based on

peak areas of heavy and light peptides.
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chromatograms of varying lengths and numbers as input, gener-

atingchromatographicpeaksof targetedpeptides, alongwith their

abundances and confidence scores. Detection results and transi-

tion chromatograms are visualized in a GUI, enabling users to re-

view and adjust the results as needed rapidly. The performance

ofDeepMRMwas benchmarked against Skyline and validated us-

ing internal and public datasets generated by different acquisition

methods, such as MRM, PRM, or data-independent acquisition

(DIA) experiments. DeepMRM facilitates high-throughput analysis

of targeted proteomics by automated quantification and quality

control without requiring decoy transitions.

RESULTS

Overview of DeepMRM
DeepMRM is a robust and highly accurate peak detection model

designed for interpreting targeted proteomics data, comple-

mented with a user interface for visualizing detection results.

DeepMRM takes MRM, PRM, or DIA data and a target list as

input, generating peaks corresponding to targeted peptides,

their abundances, and confidence scores. The workflow con-

sists of four steps (Figure 1; see STAR Methods). First, for

each targeted peptide, transition chromatograms of both heavy

(stable isotope labeled [SIL]) and light (endogenous) peptides are

extracted and converted into 2-channel heatmap images. Sec-

ond, a deep learning-based peak detection model extracts 1D

feature maps at various scales and identifies peak group candi-

dates. Third, another convolutional neural network (CNN)-based

transition classification model examines individual pairs of heavy

and light transitions in the detected peak groups. Transitions un-

affected by interference or noise are selected for calculating the

abundances (peak areas) of target peptides. Lastly, quantifica-

tion results are visualized alongside transition chromatograms

in a GUI, allowing users to swiftly examine candidate peak

groups and transitions selected for quantification and to make

adjustments to their boundaries if necessary (Figure S1).

DeepMRM comprises two neural network models: a peak

detection model for detecting peak groups and a transition clas-
2 Cell Reports Methods 3, 100521, July 24, 2023
sification model for selecting interfer-

ence- and noise-free transitions. The

peak detection model features a modified

architecture of RetinaNet,13 a popular
neural network model for object detection. DeepMRM can

accept transition chromatograms of any length and number as

input as a fully convolutional network. For the backbone convo-

lutional architecture, we modified ResNet-18 to better learn rela-

tionships between transitions of the same peptide, as well as

heavy and light peptides (see STAR Methods). Additionally, to

improve model generalization across different target peptides

and experimental settings unexplored during training, data

augmentation schemes such as resizing, cropping, retention

time shifting, and intensity jittering were incorporated during

training. The transition classification model employs the same

backbone architecture with different kernel sizes.

To train and evaluate DeepMRM, we used liquid chromatog-

raphy (LC)-MRM-mass spectrometry (MS) data derived from tu-

mor tissues of 66 patients with pancreatic ductal adenocarci-

noma (PDAC)14 (see STAR Methods). The MRM assay targeted

153 endogenous peptides and their heavy SIL peptides with

three transitions each. Human experts examined the data using

Skyline6 and manually adjusted the targeted peptides’ peak

boundaries. Additionally, peak quality was assessed using eval-

uation criteria such as equal retention time between heavy and

light peptides, peak shape, intensity ratio consistency across

transitions, and removal of transitions with interferences. A total

of 30,294 peak groups were annotated, with 27,432 peak groups

identified with peak boundaries and 19,230 peak groups

deemed quantifiable.

DeepMRM showed better quantification accuracy
compared with Skyline
We first evaluated DeepMRM’s quantification performance us-

ing a public MRM dataset consisting of two dilution series7

(Table S1; see STAR Methods) and compared it with Skyline.

In this dataset, heavy peptide abundances ranged from 0.1 to

100 fmol, while light peptide abundances remained constant.

Absolute quantification was accomplished using the external

calibration curve method as described in the original paper.7

We evaluated the linear relationship between known and

measured abundances of heavy peptides using Pearson’s



Figure 2. Comparison of DeepMRM and Skyline with or without mProphet

Relative quantification and distribution of the abundance of heavy peptides for (A–D) noisy dataset and (E–H) complex background dataset. There is no difference

between Skyline default and Skyline at FDR 5% in the complex background dataset because mProphet did not filter any results. Red dotted lines represent the

theoretical values according to the heavy peptide abundance. In the boxplots, the centerline, edges, and whiskers represent the median, the first and third

quartile, and 1.53 interquartile range, respectively. Outlier points outside of the whiskers are indicated by dot symbols. The table below the boxplot shows

averaged correlation coefficients, arctangent absolute percentage error over 43 targeted peptides, and the number of peak groups in each quantile box (PCC,

Pearson’s correlation; SPC, Spearman’s rank correlation; MAAPE, mean arctangent absolute percentage error).

See also Figure S3.
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Figure 3. DeepMRM performances on

MRM, PRM, and DIA datasets

(A and B) (A) Average precision (AP) and recall (RC)

scores for MRM, PRM, and DIA datasets and

(B) scatterplot comparing the results of light/heavy

ratios calculated by peaksmanually annotated and

those by peaks detected by DeepMRM. The scale

of axes is log2. The table below the scatterplot

shows correlation coefficients (PCC, Pearson’s

correlation; SPC, Spearman’s rank correlation)

and mean arctangent absolute percentage error

(MAAPE).

See also Figure S2 and Table S2.
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correlation coefficient (PCC) and Spearman’s rank correlation

coefficient (SPC). Additionally, we calculated the mean arctan-

gent absolute percentage error (MAAPE).15 Quantification re-

sults of Skyline reported in the previous benchmark test7 were

analyzed in two scenarios: original results (denoted as Skyline

default) and results filtered by the mProphet4 scoring model

with a false discovery rate of 5% (denoted as Skyline FDR 5%)

based on decoy transitions. Each technical replicate was treated

as an independent sample in this test, and the quantification

values for the same peptide in technical replicates were consid-

ered separate observations.

DeepMRM demonstrated higher quantification accuracy in

detecting quantifiable peak groups compared with both Skyline

default and Skyline 5% FDR (Figure 2). Although Skyline default

reported the highest number of peak groups, it lacked quality

control, resulting in the lowest correlation coefficients and high-

est MAAPE values. Skyline 5% FDR with the mProphet model

improved quantification accuracy by filtering out 25% of results

in the noisy dataset but did not filter any results in the complex

background dataset, where a relatively small number of peak

groups were considered. DeepMRM detected 85%–90% of

peak groups for targeted peptides in both datasets and exhibited

higher correlation coefficients and lower MAAPE values in quan-

tification results compared with Skyline default and Skyline 5%

FDR (Figures 2D and 2H). Upon visual inspection of the quantifi-

cation results, we observed that DeepMRM outperformed other

methods in accurately determining peak boundaries in noisy ex-

amples and effectively filtering out non-quantifiable transitions or

peak groups from quantification (Figure S3).
Table 1. Comparison between quantification results obtained

using transitions selected based on their quality and those

obtained using all available transitions

All transitions

Selected

transitions

PDAC-MRM PCC 0.993 0.990

SPC 0.991 0.992

MAAPE 0.061 0.055

P100-DIA PCC 0.925 0.955

SPC 0.983 0.983

MAAPE 0.161 0.113
DeepMRM showed robust performance across MRM,
PRM, and DIA data
We evaluated DeepMRMon a hold-out test set ofMRMdata from

PDAC samples (PDAC-MRM) and three external datasets: an

MRM dataset used in an epithelial ovarian cancer study (EOC-

MRM)16 and PRMandDIA datasets employed to profile phospho-

signaling responses (P100-PRMandP100-DIA)17,18 (TableS1; see

STARMethods). In this test, we calculated recall (RC) and average

precision (AP), which are conventional metrics used in the object

detection task.19,20 A detected peak group is considered a true

positive only if it has an Intersection over Union (IoU) greater than

a certain threshold with the manually annotated peak group (i.e.,
4 Cell Reports Methods 3, 100521, July 24, 2023
ground truth). Since chromatogram peaks often have long tails,

whichmay result in large variations in determining peak endpoints,

and these variations do not substantially impact the peak area, we

opted for a less stringent IoU threshold of 0.3 rather than 0.5, a

typical threshold in object detection studies. RC was calculated

for the top 1 and 3 candidates per heatmap image (RC1 and

RC3). Also, to validate the quality of true positive peak groups,

we evaluated PCC, SPC, andMAAPE between the light/heavy ra-

tios obtained by manual annotation and those obtained by

DeepMRM.

DeepMRM exhibited an AP of 98%–99% and an RC of 97%–

99% (Figures 3A and S2; Table S2). The light/heavy ratios esti-

mated by peaks detected by DeepMRM displayed correlation

coefficients of 0.96–0.99 when compared with manually anno-

tated peaks (Figure 3B). MAAPE was in the range of 5%–11%.

The relatively high MAAPE observed in P110-DIA data was

mainly due to many peak groups with light/heavy ratios close

to zero. In particular, more transitions were considered in DIA

data compared withMRM data, which led to relatively larger var-

iations in quantification results depending on transition selection.

If these low-ratio peak groups are excluded (e.g., <0.05), the

MAAPE decreased to 0.07.

Toconfirm theeffectivenessof thedata augmentationschemes

on model performance, we trained the DeepMRMmodel without

data augmentation. From the comparisons with and without

augmentation, we concluded that the accuracy and robustness

were improved by data augmentation (Table S3). Furthermore,

we examined DeepMRM’s performance in selecting good
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transitions used for quantification. Our analysis revealed that

quantification results using transitions selected by DeepMRM

were better aligned with the reference results obtained from

manually selected transitions compared with those obtained us-

ing all available transitions with a decrease of up to 4.8% in

MAAPE (Table 1). These findings demonstrate the effectiveness

of the transition classification model in selecting transitions free

of interference and noise.

Windows desktop application and integration into
Skyline
DeepMRM is packaged as a Windows desktop application,

streamlining the detection task and visualization of results. The

GUI in the desktop application enables users to examine detec-

tion results and input transition chromatograms swiftly. Addition-

ally, it allows for loading multiple samples together, simplifying

the comparison of results for a target peptide. The desktop appli-

cation supports the community standard format for MS data

(mzML21) and proprietary formats like Thermo RAW and Sciex

WIFF. In addition to the standalone desktop software, we have

integrated the DeepMRM algorithm into the Skyline software

package as an external tool.

The running time of DeepMRM (excluding time for chromato-

gram extraction) is a few seconds (<10 s) per sample on a Win-

dows computer with a 3.8 GHz CPU (AMD Ryzen) and 32 GB

memory (Table S4). Although using a GPU can further decrease

the running time for data with a high number of transitions and

longer chromatogram lengths (e.g., PRM or DIA data), the differ-

ence is not substantial in practice.

DISCUSSION

DeepMRM is a robust and highly accurate peak detection model

for interpreting targeted proteomics data featuring a user inter-

face for visualizing detection results. Designed to minimize hu-

man intervention in data interpretation, DeepMRM accepts tar-

geted MS data and a target list as input and provides

quantification results and confidence scores. Also, the GUI en-

ables users to swiftly examine the results and make necessary

corrections. We demonstrated that DeepMRM outperformed

the community standard tool Skyline in quantification accuracy

and exhibited robust accuracy across MRM, PRM, and DIA da-

tasets. Importantly, DeepMRM does not require decoy transi-

tions, which can limit assay throughput. With automated quanti-

fication and quality control, we anticipate that DeepMRM will

facilitate high-throughput analysis of targeted proteomics.

Limitations of study
To enhance the applicability and accuracy of DeepMRM,we have

planned several improvements. First, DeepMRM currently re-

quires stable isotope-labeledpeptides toquantify target peptides.

We aim to expand the model to enable label-free quantification

without heavy peptides. Second, isotopic peak cluster patterns

in high-resolution PRM/DIA data are not currently utilized. We

anticipate that incorporating the learning and utilization of these

patterns will improve detection accuracy. Finally, DeepMRM has

been designed and trained for targeted proteomics data interpre-

tation.Weareworking onadaptingDeepMRMto identify peptides
in untargeted DIA data without prior transition information on tar-

geted peptides. These developments will enhance the versatility

of DeepMRM for various proteomics studies.
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KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Biological samples

Tumor samples from human pancreatic

ductal adenocarcinoma patients

Seoul National University

Hospital (SNUH) and Supplemental

table of Hyeon et al.14

https://www.nature.com/articles/

s43018-022-00479-7#Sec34

Deposited data

PDAC-MRM This paper MassIVE: MSV000089914; K-BDS:

PRJKA2103083

P100-PRM Abelin et al.17 MassIVE:MSV000079524

P100-DIA Vaca Jacome et al.18 MassIVE:MSV000085540

Two-dilution series Nasso et al.7 PeptideAtlas:PASS00456

Software and algorithms

DeepMRM This paper Zenodo: https://doi.org/10.5281/

zenodo.7964403; GitHub: https://github.

com/bertis-informatics/deep-mrm
RESOURCE AVAILABILITY

Lead contact
Further information and requests for resources and reagents should be directed to and will be fulfilled by the lead contact, Sangtae

Kim (sangtae.kim@bertis.com).

Materials availability
This study did not generate new unique reagents.

Data and code availability
d PDAC-MRM dataset has been deposited to the MassIVE proteomics repository and K-BDS repository, and it is publicly avail-

able as of the date of publication. Accession numbers are listed in the key resources table.

d All original code has been deposited at Zenodo and is publicly available as of the date of publication. DOIs are listed in the key

resources table. The source codealso canbeaccessedat https://github.com/bertis-informatics/deep-mrm, and theDeepMRM

desktop application is available for download at https://github.com/bertis-informatics/deep-mrm/releases. The DeepMRM

external tool for Skyline can be downloaded from Skyline Tool Store at https://skyline.ms/skyts/home/software/Skyline/

tools/begin.view.

d Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon request.
EXPERIMENTAL MODEL AND STUDY PARTICIPANTS DETAILS

PDAC tissue samples were collected from patients who underwent surgery at Seoul National University Hospital (SNUH) fromMarch

2010 to December 2016, following the procedures as previously described.14 The patients included in the study were diagnosed with

various stages of pancreatic cancer including IA, IB, IIA, IIB, or III. The age of patients ranged from 35 to 87, with a male-to-female

ratio of 57:43. Ethical approval was obtained from the Institutional Review Board at Seoul National University Hospital (SNUH 1705-

031-852). In brief, tissues were collected following a standardized operation procedure in the operating room for minimized cold

ischemic time then immerged in liquid nitrogen and stored at �80�C until sampling.

METHOD DETAILS

Cryopulverization, protein extraction and digestion of PDAC tissue samples
66 PDAC patient tissue samples were cryopulverized, lysed and tryptic digested as previously described.22 Briefly, cancer tissues

werewashed in PBS buffer to eliminate blood contamination then cryopulverizedwith aCryoprep device (CP02, Covaris). Lysis buffer

(4% SDS in 0.1 M Tris-HCl (pH 7.6) with phosphatase inhibitor (04906837001, Roche)) was added to the obtained tissue powder to
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perform lysis using a probe sonicator (Q55 Sonicator, Qsonica). After removal of debris from centrifugation at 16,000 g for 10min, the

supernatant lysate protein concentration was measured with Pierce BCA assay kit (Thermo Scientific) according to the manufac-

turer’s instructions for protein quantification. 500 mg of the measured protein was digested through amodified filter-associated sam-

ple preparation (FASP) method. In brief, reduction was performed on the proteins with SDT buffer (4% SDS in 0.1 M Tris-HCl, pH 7.6,

and 0.1 M DTT) at 37�C for 45 min at 300 rpm then sequentially boiled for 10 min at 95�C. Bath sonication was performed for 10 min,

then the reduced proteins were centrifuged at 16,000 g for 5 min where the supernatants were transferred to a Microcon device YM-

30 filter (MRCF0R030, Millipore Corporation). For detergent removal, the filters were added 200 mL of 8 M urea in 0.1 M Tris-HCl (pH

8.5) then centrifuged at 14,000 g for 30min. This step was repeated three times. Alkylation was performed by adding 100 mL of 50mM

iodoacetamide in 8M urea to each filter with incubated for 25 min at room temperature in dark then centrifuged at 14,000 g for 30 min

200 mL of 8 M urea was added followed by centrifugation at 14,000 g for 30 min for wash, which was repeated four times. 100 mL of

50mMNH4HCO3washwas then performed twice for buffer exchange. Collection tubes were exchanged, then trypsin (V5111, Prom-

ega) was added with an enzyme-to-protein ratio of 1:50 (w/w) to each filter for overnight incubation at 37�C. Second digestion was

sequentially performed for 6 h with additional trypsin (enzyme-to-protein ratio of 1:100). Peptides were eluted with centrifugation at

14,000 g for 20 min, then added 60 mL of 50 mM NH4HCO3 twice to rinse. Peptide concentration was measured using Pierce BCA

assay kit then vacuum-dried (concentrator plus, Eppendorf).

Synthesis and purification of stable isotope labeled peptides
Stable isotope labeled (SIL) peptides were synthesized and purified for spiking to conduct LC-MRM experiments of 66 PDAC patient

sample tissues. 153 peptides selected based frommass spectrometry data of a previous PDAC proteogenomic study.14 For peptide

selection, adequacy for LC-MRM experiments were considered such as sequence length to be 7–25 amino acids, having no missed

cleavages and exclusion of methionine along with its importance as a PDAC marker. Selected peptides were stable isotope labeled

on their lysine or arginine at C-terminus with 13C6 lysine or 13C6 arginine analogs, respectively. The purity of the SIL peptides was

higher than 95% which then the purified peptides were amino acid analyzed by AAA-MS method23 for absolute quantification.

Optimization of MRM conditions, LC-MRM-MS experiments, and analysis
MRM conditions were optimized for peptide amount, collision energy for either of the 2+ and 3+ precursor ions and retention time of

the 153 target peptides. If a peptide had similar intensity for 2+ and 3+ precursor ions, both transitions were included in the target list

yet only one precursor with higher intensity and less interference was selected for quantitation afterward.

For each of 66 PDAC patient tissues, three replicates of the corresponding tissue peptide samples, each spiked with the SIL

peptide mixture, were analyzed by LC-MRM-MS experiments. A home-built dual online nano-flow LC system24 (Ultimate 3000

NCP-3200RS, Thermo Fisher Scientific) coupled with Agilent 6495C triple quadruple mass spectrometer platform at the Center

for Proteogenome Research was used for LC-MRM-MS experiments. The injection amount of PDAC tissue peptide was 5 mg. Dy-

namic MRM was performed with a time window 3–5 min for the three best y-ion transitions of the 153 targets excluding y1 and y2

ions. The spray voltage of 2500 V, drying gas flow of 5 L/min, and gas temperature of 225�C were used. Both Q1 and Q3 resolutions

were set to Unit, collision energies were set at 10–40 according to their previously optimized values, and a cycle time of 800 ms was

used. Columnsweremanufactured in-housewith Jupiter C18, 3 mm, 300 Å particles to 75 mm3 50 cm (Phenomenex), and the column

temperature was kept at 60�C. A 60min gradient (10%–40%solvent B over 47min, 40%–80%over 5min, 80% for 6min, and 10% for

2 min, 400 nL min�1) was used for each experiment. Solvent A was 0.1% formic acid in water, and solvent B was 0.1% FA in aceto-

nitrile (ACN). The resultant 198 LC-MRM-MS data were analyzed with Skyline version 21.1.0.146,6 and the transitions were manually

examined with evaluation criteria such as equal retention time between heavy and light peptides, peak shape, intensity ratio consis-

tency across transitions, and removal of transitions with peak interference. For quantifiable peptides, the ratios of light/heavy pep-

tides were determined based on peak areas. All transition lists are uploaded to MassIVE (identifier: MSV000089914) along with the

raw data.

Benchmark datasets
We obtained four datasets comprising LC-MRM/PRM/DIA-MS experiments, which were utilized for evaluation (Table S1).

EOC-MRM, P100-PRM, and P100-DIA

Three external datasets were retrieved from the MassIVE repository,25 comprising of an MRM dataset for biomarkers in epithelial

ovarian cancer (EOC-MRM) samples16 (MassIVE identifier: MSV000084048), a PRM validation dataset of approximately 100 phos-

phopeptides (P100-PRM) samples, produced for the Library of Integrated Network-based Cellular Signatures (LINCS) project17

(MassIVE identifier: MSV000079524), and a DIA data of the same phosphoproteomics samples (P100-DIA) that was utilized to assess

the accuracy of the Avan-Garde (AvG) tool against expert manual curation18 (MassIVE identifier: MSV000085540). For all these data-

sets, Skyline files generated during the quantification analysis were obtained.

Dilution series datasets (noisy and complex background)

MRM datasets, previously generated to benchmark quantification algorithms in a study,7 were obtained from the PeptideAtlas re-

pository (Dataset identifier: PASS00456). These datasets were produced from two dilution series in which 43 SIL peptides were

spiked under varying sample and acquisition conditions. Specifically, the complex background dataset was created with a complex

background, while the noisy dataset was generated under suboptimal conditions without background. In these datasets, the
e2 Cell Reports Methods 3, 100521, July 24, 2023
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abundances of heavy peptides ranged from 0.1 to 100 fmol, while the abundance of light peptides remained constant. The quanti-

fication analysis results from the benchmark study were also acquired from https://github.com/saranasso/Ariadne.

DeepMRM model
Data preprocessing

Given the input data, which includes the LC-MSdata and the target list, DeepMRMbegins by extracting transition chromatograms for

targeted precursor ions and subsequently transforms them into heatmap images with two channels. The entire transition chromato-

grams for targeted peptides are extracted unless reference retention times with time windows are provided. Linear interpolation is

applied to all transition chromatograms, ensuring they share the same length and a scanning interval of 0.5 s. All the chromatograms

are concatenated, with the horizontal and vertical axes representing the transition index and retention time, respectively. Conse-

quently, two concatenated matrices (i.e., a two-channel heatmap image) are generated: one channel for light transition chromato-

grams and another for heavy transition chromatograms. The dimensions of heatmap images correspond to [2, number of transitions,

length of chromatograms]. Lastly, as part of the preprocessing step, each transition pair is scaled from 0 to 1.

Model architecture

DeepMRM comprises two neural network models: a peak detection model for identifying peak groups and a transition classification

model for selecting interference- and noise-free transitions.

Peak detectionmodel. The architecture of our peak detectionmodel is based on RetinaNet, a widely-used neural networkmodel for

object detection.13 The network comprises a backbone network for extracting features and two small sub-networks. The first sub-

network classifies the presence of peak groups on the extracted features; the second sub-network performs peak boundary

regression.

We chose ResNet18 as the backbone network andmodified it to accommodate the peak detection problem. First, the kernel size of

conv1 is changed from 7x7 to 1x7, and the stride and padding sizes are adjusted accordingly. In the first convolutional layer, grouped

convolutions are applied so that the heavy and light channels are convolved separately. Before the first residual block, an adaptive

average pooling layer is inserted such that the height of the feature map becomes one. The kernel and padding sizes in the subse-

quent residual blocks are adjusted to 1x3 and 0x1, respectively. As a result, all the feature maps generated by the backbone are one-

dimensional vectors.

Both sub-networks also employ convolutional layers with a kernel size of 1x3 and a padding size of 0x1. Since the regressor needs

to predict only two points for a peak boundary rather than four points for a bounding box, the final output channel size is altered to

twice the number of anchors. The anchors are generated with a single scale for feature level. The classifier subnetwork is configured

for a binary classification problem: {background versus peak group}.

Transition classification model. A CNN-based classification model is developed to select transitions unaffected by interference or

noise from the detected peak groups. This model takes a pair of transitions as input and classifies whether the pair is quantifiable by

considering factors such as peak shape similarity, retention time match, light/heavy ratio similarity, and interference. The transition

classification model is a binary classifier that is applied to the backbone architecture used in the peak detection model, with the only

difference being that the kernel size of the first convolutional layer (conv1) is changed to 2x7.

Transition selection

Once peak groups are identified by the peak detection model, noise- and interference-free transitions are selected using the tran-

sition classification model. This model evaluates the quantitative feasibility of transition pairs. To assess the quantitative feasibility

of each transition, a representative transition profile is generated as a reference chromatogram. All pairs of available transitions

are evaluated by the transition classification model. Quantifiable transitions are then combined to create the representative transition

profile. If no quantifiable transition pairs are found, the representative transition profile is created by summing all transitions. To

reduce the computational cost, only up to six transitions with the highest peak heights are considered. As a last step, each transition

is paired with the representative transition profile and assessed using the transition classification model for its quantitative feasibility.

The classification model’s confidence score is considered a transition quality score.

Abundance calculation

Upon selecting the quantifiable transitions, the target peptide’s abundance (peak area) is calculated. If there are fewer than two quan-

tifiable transitions, the peak area is computed using all transitions. The average of the transition quality scores of the selected tran-

sitions is reported as a quantification confidence score. The peak area is calculated using the trapezoidal numerical integration

method.

Data augmentation

To enhance the robustness and applicability of DeepMRM, a data augmentation strategy is employed during model training.

Augmentation methods include random resizing, cropping, intensity jittering, retention time shifting, and transition rescaling. The

retention time shift destroys the alignment of the light and heavy transition peaks, and the transition rescaling makes the light/heavy

ratio across transitions inconsistent. During the augmentation, the label data is also transformed accordingly. All these augmentation

methods are applied prior to generating the heatmap image.

Training

The in-house dataset (PDAC-MRM) was split into training, validation, and test sets at a ratio of 8:1:1. Themodel was trained using the

Adamoptimizer with default parameters (lr = 1.e�3, b1 = 0.9, b2 = 0.999). The training was performed onNVIDIA GeForce 3090GPUs
Cell Reports Methods 3, 100521, July 24, 2023 e3
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for 100 epochs with a batch size of 512. The learning rate was decreased by 0.5 every 10 epochs. The training was stopped when

there was no improvement over 50 epochs.

Confidence score

DeepMRM comprises a peak detection model and a transition classification model, which compute and report two confidence

scores: peak group confidence score and quantification confidence score. The peak group confidence score is calculated by a

peak detection model using a sigmoid function to estimate the probability of a peak group being present within the candidate bound-

ary region.

The quantification confidence score is determined by evaluating the quality of selected transitions for quantification. Each transi-

tion’s quality is assessed by comparing it to a representative transition profile to determine if it contains interference or noise and if its

retention time, peak shape, and heavy/light ratio are sufficiently similar for quantification. Details on creating the representative tran-

sition profile are described in the transition selection section. Then, the average quality score of the selected transitions for quanti-

fication is reported as the quantification confidence score.

Benchmark test
Data preparation

All mass spectrometry files were converted to mzML format using ProteoWizard’s msConvert toolkit.26 Then, pyOpenMS library was

utilized to extract chromatograms from the mzML files. Before extracting chromatograms, all PRM and DIA spectra were centroided,

and a 20ppm extraction window was set. In the case of the P100-DIA dataset, a retention time window of 20 min was used, with the

reference retention time specified in the spectral library. For other MRM and PRM datasets, the complete transition chromatograms

acquired for the targeted peptides were extracted and utilized as input for DeepMRM.

The boundary of peak groups, list of transitions, and annotation information about quantitative transitions (if available) were ex-

tracted from Skyline files for three external datasets. In the case of P100-PRM dataset, the quantification results were filtered and

normalized using an in-house downstream analysis protocol by the original authors.17 Since the filtered quantification results

were not available, we employed Skyline’s ‘‘dotp’’ score of 0.7 to exclude unreliable measurements. This filtering process removed

2,117 out of 13,629 peak groups. We manually inspected the excluded peak groups and observed that most lacked light or heavy

peptide signals. For P100-DIA, we evaluated DeepMRM using the AvG open curation dataset.

Evaluation

We evaluated DeepMRM’s performance in two major tasks. The first task is identifying peak groups relevant to the target peptide in

the given chromatograms (i.e., object detection task). Since object detection involves searching for the target object from various

combinations of location and scale, the precision-recall curve is typically used rather than the ROC curve commonly used for clas-

sification tasks.20 A detected peak group is considered a true positive only if it has an Intersection over Union (IoU) greater than a

certain threshold with themanually annotated peak group (i.e., ground truth). Here, we calculated and reported the average precision

(AP) metric averaged across all recall levels ranging from 0 to 1. AP can summarize the precision-recall curve as a single value. We

also calculated recall considering only the top 1 or 3 candidates per input image at a certain IoU threshold (RC1 and RC3). Recall can

measure the detection model’s ability to identify all peak groups (actual positive instances). Chromatogram peaks often have long

tails, which may result in large variations in determining the end of peaks. Since this variation does not significantly affect the

peak area, we used a less stringent IoU threshold of 0.3 rather than 0.5, a common threshold in object detection studies.

The second task involves selecting the transitions unaffected by noise and interference from the detected peak groups and esti-

mating the abundance (peak area) of the targeted peptides. We evaluated how well the estimated abundance matched the manually

calculated or ground truth abundances (if available). We calculated the linear relationship between the known and measured abun-

dances of targeted peptides using Pearson’s correlation coefficient (PCC) and Spearman’s rank correlation coefficient (SPC). Addi-

tionally, we calculated the mean arctangent absolute percentage error (MAAPE).15 For the two-dilution series dataset with available

ground truth abundance, the abundance of the peak group with the highest score was considered. For other benchmark datasets,

the abundance of true positive peak groups was taken into account.

Confidence score threshold

In the benchmark experiments, only peak groups with a peak group confidence score of 0.05 or higher were considered, and only

quantification results with a quantification confidence score of 0.01 or higher were considered.

QUANTIFICATION AND STATISTICAL ANALYSIS

All statistical analysis was performed in Python 3.9 with numpy and scipy libraries. More information on statistical tests used are out-

lined in the method details above, and also indicated in the figure legends.
e4 Cell Reports Methods 3, 100521, July 24, 2023
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