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Abstract
In sequential analysis, hypothesis testing is performed repeatedly in a prospec-
tive manner as data accrue over time to quickly arrive at an accurate conclusion
or decision. In this tutorial paper, detailed explanations are given for both
designing and operating sequential testing. We describe the calculation of exact
thresholds for stopping or signaling, statistical power, expected time to signal,
and expected sample sizes for sequential analysis with Poisson and binary type
data. The calculations are run using the package Sequential, constructed in R
language. Real data examples are inspired on clinical trials practice, such as the
current efforts to develop treatments to face the COVID-19 pandemic, and the
comparison of treatments of osteoporosis. In addition, we mimic the monitoring
of adverse events following influenza vaccination and Pediarix vaccination.
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1 INTRODUCTION

The regular practice for hypothesis testing is to conduct a single analysis based on a single data sample. Alternatively,
with sequential hypothesis testing, one prospectively performs multiple hypothesis tests. Each test is performed when
new data—that is, new observations—arrive, while guaranteeing the overall significance level by the end of the analysis.

The sequential approach is essential for many applications when it is urgent to reach a conclusion or decision, such
as in post-market medical product safety surveillance, or when it is unethical to continue a clinical trial when there is
clear evidence of benefit or harm affecting one group.

Usually, the sequential analysis is based on monitoring a test statistic in comparison to a lower and an upper signaling
threshold at each of the multiples sequential looks at the data. The sequential analysis is stopped as soon as the test
statistic crosses one of the thresholds. Classical methods for sequential analysis are Wald’s sequential probability ratio test
(SPRT),1,2 Pocock’s test,3 O‘Brien-Fleming’s test,4 and Wang-Tsiatis’ method.5 For post-market safety surveillance, recent
methods are the maximized sequential probability ratio test (MaxSPRT),6 and the conditional MaxSPRT (CMaxSPRT).7

Instead of thresholds given in the scale of a test statistic, sequential testing can be based on alpha spending functions.8
The alpha spending function is a non-decreasing function taking values in the [0, 𝛼] interval, where 𝛼 is the significance
level. Therefore, the alpha spending function dictates, in advance, the amount of Type I error probability to be spent at
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each of the multiple tests. This way, as an adaptive design, no matter the frequency at which the chunks of data arrive, or
the cumulative sample size available at each test, the alpha spending function enables to find the thresholds accordingly.

Statistical performance evaluations and critical values calculations for sequential testing are usually obtained through
asymptotic theory and/or normal distribution approximations.8 Recent developments have shown that exact calculations
are possible for many applications.9-11 This is the approach of the present tutorial, which is devoted to offer practi-
cal examples on designing and conducting sequential hypothesis testing with binary and Poisson data. For this, we
present step-by-step calculations accompanied with explanations on the underlying theory and proper interpretations of
illustrative data analysis results.

The calculations for the illustrative examples are run with the R Sequential package.12 R Sequential is an easy-to-use
tool for both the design and the practical implementation of sequential analysis. All calculations are exact, based on
iterative numerical procedures, rather than using asymptotic theory, computer simulations, or normal distribution
approximations.

For either Poisson or binary 0/1 data, this tutorial covers the following topics:

• Data frequency: The number of new observations in each new data arrival does not have to be known a priori. We
show how to perform sequential testing for continuous, group or mixed group-continuous sequential analysis with
unpredictable data frequency.

• Probability model: For Poisson data, the expected counts may either be known or estimated from historical data with
some uncertainty in the estimates. The binary model can be used for different studies where a dichotomous endpoint is
monitored, including placebo-controlled two-arm clinical trials, self-controlled designs, and matched cohort designs.

• Alternative hypothesis: Unlike Wald’s SPRT, here we use a composite alternative hypothesis. Both one and two-tailed
tests are supported.

• Signaling thresholds: Signaling thresholds are calculated using Pocock’s statistic, O‘Brien-Fleming’s statistic,
Wang-Tsiatis statistic, and Wald SPRT statistic, as well as any user specified alpha spending function. Conversely, we
give examples on how to calculate the alpha spending implied by any of these test statistics.

• Optimal alpha spending function: For a user-specified alpha level, relative risk and statistical power, we exemplify
the usage of alpha spending functions that minimizes expected time to signal or expected sample size. This is done for
both with or without an added requirement on the maximum length of surveillance. The optimal solution is obtained
using the method proposed by Reference 13.

• Statistical performance metrics: Exact calculations are illustrated for statistical power, expected time of surveillance
given that the null hypothesis is rejected, expected time of surveillance, and maximum maximum sample size. The
latter three are calculated in the unit of sample size or number of events.

The content of this tutorial is organized in the following way: Next section presents definitions, notation and theoreti-
cal background that form the basis of this tutorial. Section 3 discusses planning and setting up sequential analysis testing
according to pre-experimental statistical performance measures such as maximum sample size, statistical power, expected
time to signal and expected length of surveillance. Sequential analysis designing is discussed in light of well-known test
statistics (statistical measures of evidences) such as Wald’s, Pocock’s, O‘Brien-Fleming’s, and Wang-Tsiatis’ tests. In addi-
tion, Section 3 shows how to calculate and interpret flat and time-variable signaling thresholds using the different test
statistic scales. There, we also explain how to switch the calculations from these classical test statistic scales to the alpha
spending scale, and vice-versa. Section 4 presents four examples of sequential testing for the actual analysis in practice.
The first example is based on simulated data with structure inspired by the recent placebo-controlled two-arm trials on
treatments for COVID-19 patients reported by References 14 and 15. The other three examples are based on real data for:
(i) comparison of two treatments of osteoporosis by weighting five different adverse events in a propensity score matched
cohort study, (ii) surveillance of neurological adverse events after Pediarix vaccination, and (iii) monitoring seizures
after concomitant vaccination of inactivated influenza vaccine with 13-valent pneumococcal conjugate vaccine. Section 5
contains the last comments and further software considerations.

2 EXACT SEQUENTIAL TESTING BACKGROUND

Let Xt denote a discrete stochastic process indexed by continuous or discrete time. In essence, in this article Xt is the
cumulative number of events up to time t. The distributions of interest in the present work involve: (i) the cases where t
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is a positive integer, here also denoted by n, and Xt is the sum of t Bernoulli outcomes with the success probability p(RR),
RR > 0, (ii) the cases where Xt is a Poisson stochastic process with parameter RR𝜇t, RR > 0, where 𝜇t is a known baseline
rate under the null hypothesis, and (iii) Xt is a Poisson stochastic process with parameter RR𝜇t, 𝜇t unknown. Therefore,
the parameter of interest is the relative risk (RR), and the underlying theory and results presented along this tutorial is
applicable for any of the four pairs of hypotheses:

H0 ∶ RR ≤ RR0 against H1 ∶ RR > RR0, (1)

H0 ∶ RR ≥ RR0 against H1 ∶ RR < RR0, (2)

H0 ∶ RR = RR0 against H1 ∶ RR ≠ RR0, (3)

H0 ∶ RR0,l ≤ RR ≤ RR0,u against H1 ∶ RR < RR0,l or RR > RR0,u, (4)

where RR0, RR0,l, and RR0,u are specified by the user in advance. For the formats (1) to (3), a common choice is RR0 = 1.
Applications using RR0 > 1 for format (1) are relevant too. See, for example, the public master protocol for COVID-19
vaccine active surveillance, by the U.S Food and Drug Administration (FDA).16 In that protocol, testing margin was settled
through RR0 values of 1.25, 1.5, and 2.5, depending on the characteristics of each database.

The subset of the parameter space, implied by these hypotheses options under H0, shall be denoted simply by Θ0,
where:

Θ0 =

⎧⎪⎪⎨⎪⎪⎩

(0, RR0], for the format in (1),
(RR0, ∞), for the format in (2),
{RR0}, for the format in (3),[
RR0,l, RR0,u

]
, for the format in (4).

(5)

The relation of RR with the parametrization of the Bernoulli and Poisson probability models shall be further discussed
in Sections 2.2,2.4, and 2.5.

Conventionally, sequential testing methods consist of comparing a test statistic, say W(Xt), against pre-established
signaling thresholds. The sequential testing concludes as soon as the test statistic reaches one of the thresholds. The
thresholds are usually flat, such as with SPRT, MaxSPRT, Pocock’s score test, and O’Brien & Fleming test, but time-variable
thresholds are used too, like those elicited with the alpha spending approach. In either case, group and continuous
sequential testing designs can be defined in general as following.

Definition 1 (Group Sequential Analysis). For two sets of constants, a1 ≤ a2 ≤ … , aG, and b1 ≤ b2 ≤ … , bG, given
in the scale of a test statistic, W(Xt), and a sequence {ti}G

i=1 of times taken from the set {1, … , N}, where tG = T is
the maximum length of surveillance, also denoted by N in the Bernoulli case, a group sequential analysis design is any
procedure that ends the analysis for: (i) rejecting the null hypothesis if W(Xti) ≥ bi and W(Xtj) > aj for each j ≤ i, or (ii)
failing to reject the null hypothesis if W(Xti) ≤ ai, or i = G, and W(Xtj) < bj for each j ≤ i.

The rationale behind group sequential analysis is to perform tests only at pre-defined times, where, if the maximum
sample size tG = T is reached without a decision, then the maximum number of tests equals G. Note that each test can
have one or many events. In contrast, in continuous sequential design, outcomes arrive one-by-one, and a hypothesis test
is performed after the arrival of each observation.

Definition 2 (Continuous Sequential Analysis). Let a(t) and b(t) denote real-valued functions such that a(t) < b(t) for
each t ∈ (0, T], where T is also denoted by N in the Bernoulli case, and let W(Xt) denote a test statistic. A continuous
sequential analysis design is any procedure that ends the analysis for: (i) rejecting the null hypothesis if W(Xt) ≥ b(t) and
Xl > a(l) for each l < t, or (ii) failing to reject the null hypothesis if W(Xt) ≤ a(t), or t = T, and W(Xl) < b(l) for each l < t.

The classical Wald’s SPRT is an example where both, upper and lower boundaries are used as in Definitions 1 and 2.
In contrast, if the analysis is allowed to be concluded before time T only under evidences against H0, such as with
MaxSPRT and CMaxSPRT, then only bi and b(t) are used in the definitions above. Another possible situation, which has
not received much attention in the literature, is that where only ai and a(t) are used. In such cases, the analysis is to stop
before time T only when evidences in favor of H0 are found.
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Definitions 1 and 2 are the so-called ‘truncated’ designs, and this is so because they have a vertical threshold, T.
In practice, T represents the maximum sample size (or maximum length of surveillance described in number of data
observations that have accrued) for ending the analysis without rejecting the null hypothesis. Procedures without vertical
thresholds are sometimes called "open-ended designs."

For binary and Poisson counting data, as demonstrated by References 10, 11, and 13, the signaling thresholds can
always be redefined in the scale of the original counting scale. For the pair of hypotheses in (1), the signaling threshold
in the scale of Xt is represented by an upper boundary, that is, H0 is rejected for large values of Xt. With the hypotheses in
(2), Xt is compared against a lower boundary, then H0 is rejected for small values of Xt. With the formats in (3) and (4),
both large and small values of Xt lead to rejection of H0.

It is important to emphasize that, for the formats (1) to (4), if the lower boundaries ai and a(t) are used to monitor
W(Xt), then the thresholds in the scale of Xt are represented by inner boundaries, that is, one fails to reject H0 for Xt values
consistently close to its average under H0.

2.1 Statistical performance measures

Three important statistical performance measures useful to compare and evaluate sequential analysis designs are: (a)
statistical power, that is, the overall probability of rejecting the null hypothesis, (b) expected sample size, and (c) expected
time to signal. While expected sample size is the average sample size when the analysis is stopped, irrespectively of the
decision drawn about H0, the expected time to signal is a conditional expectation, defined as the average sample size
when the null hypothesis is rejected. Although in practice group and continuous sequential methods are distinct in the
matter of the number of looks at the data, theoretically we can establish a unified notation for these three statistical
performance measures. As demonstrated by Reference 17, each group sequential design can be rewritten in terms of a
continuous sequential design holding exactly the same statistical performance. Therefore, without lost of generality, these
three metrics can be expressed using the notation for the continuous sequential design.

Let 𝜏 denote the number of events when the surveillance is interrupted. The statistical power is given by:

𝛽(RR) = Pr
[
∪𝜂

i=1 {𝜏 = i} |RR
]
, (6)

where 𝜂 is found by evaluating the very same expression (6) iteratively, for each i, starting with i = 1, under the null
hypothesis. That is:

𝜂 = max

{
x ∈ N ∶ sup

RR∗∈Θ0

Pr
[
∪x

i=1 {𝜏 = i} |RR∗] ≤ 𝛼

}
. (7)

The supreme in (7) is usually simple to evaluate for most of the probability distributions adopted in sequential analysis,
and this is so because the probability argument in (7) is monotone with RR. Therefore, for hypotheses of the format in
(1) to (3), the argument of the supreme is RR∗ = RR0. For the format in (4), the argument that solves (7) is either RR0,l or
RR0,u. This is valid for the probability models discussed in this article. Although the exact calculation can be performed
by running a Markov Chain in i, the specific analytical expression for the probability in (7), and so in (6), are somewhat
intricate. For the detailed power functions in each case, we indicate expression (13) by Reference 11 for Poisson data,
expressions (8) and (29) by Reference 13 for binary data, and expressions (16) and (22) by Reference 10 for conditional
Poisson data.

The monotonicity of 𝛽(RR) with respect to RR favors to find signaling thresholds and maximum length of surveillance
in order to control the statistical power for target points of the parameter space. More precisely, for a target relative risk
under H1, say RR1, if a given sequential design leads to 𝛽(RR1) = 𝛾 , then it holds that 𝛽(RR∗) ≥ 𝛾 for each RR∗ ≥ RR1
with the hypotheses in (1), or for each positive RR∗ ≤ RR1 with the hypotheses in (2). Similarly, considering two target
relative risks under H1, say RRl < RR0 and RRu > RR0 for (3), or RRl < RR0,l and RRu > RR0,u for (4), if 𝛽(RRl) = 𝛾l and
𝛽(RRu) = 𝛾u, then 𝛽(RR∗) ≥ 𝛾l for each positive RR∗ ≤ RRl, and 𝛽(RR∗) ≥ 𝛾u for each RR∗ ≥ RRu.

The expected time to signal, denoted by E[𝜏|H0 rejected,R], is given by:

E[𝜏|H0 rejected,RR] = 1 × Pr[𝜏 = 1|H0 rejected,RR] + 2 × Pr[𝜏 = 2|H0 rejected,RR] + …
… + 𝜂 × Pr[𝜏 = 𝜂|H0 rejected,RR]

= 1 × Pr[𝜏 = 1|RR]
Pr[H0 rejected|RR]

+ 2 × Pr[𝜏 = 2|RR]
Pr[H0 rejected|RR]

+ …
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… + 𝜂 × Pr[𝜏 = 𝜂|RR]
Pr[H0 rejected|RR]

=
∑𝜂

i=1i × Pr[𝜏 = i|H0 rejected,RR]
𝛽(RR)

.

The expected sample size, denoted by E[𝜏|RR], is given by:

E[𝜏|RR] = 1 × Pr[𝜏 = 1|RR] + 2 × Pr[𝜏 = 2|RR] + · · · + 𝜂 × Pr[𝜏 = 𝜂|RR] + 𝜂 × Pr[H0not rejected|RR]

=
𝜂∑

i=1
i × Pr[𝜏 = i|RR] + 𝜂 × [1 − 𝛽(R)].

Seeking a straightforward readability, the expected time to signal and the expected sample size will sometimes be
referred through the acronyms ETS and ESS, respectively. Note that these two expectations are connected to each other,
but the signaling thresholds that minimize E[𝜏|H0 rejected,RR] and E[𝜏|,RR] will usually differ. This topic shall be
further discussed in Section 3.2.

2.2 Binary data

Binary data appears in many sequential analysis problems, such as for Simon’s two-stage group binomial sequential
analysis,18 and placebo-controlled two-arm clinical trials, where patients exposed to a drug are compared with matched
unexposed subjects. Let Cn denote the number of exposed individuals in a total of n subjects, and assume that

Yn = Cn − Cn−1

follows a Bernoulli distribution with success probability pn,RR, for n = 1, 2, … , and C0 = 0. In addition, Y1,Y2, … are
independent, that is,:

Pr[Yn+1 = 1|Y1 = y1, … ,Yn = yn] = pn,RR,

for arbitrary sequences y1, … , yn. The Bernoulli probability is given by:

pn,RR = 1∕(1 + zn∕RR),

and zn denotes the matching ratio of the nth observation. For instance, if there are k > 0 controls matched to each case at
the nth test, then zn = k.

The Maximized Sequential Probability Ratio Test (MaxSPRT) statistic for the nth observation, in the log-scale, is given
by:

LLRn = I
(

R̂R ∉ Θ0
)
× max
{RR∗∈Θ̃0}

n∑
i=1

Yi log R̂R
R̂R + zi∕RR∗

−
n∑

i=1
(1 − Yi) log(R̂R + zi∕RR∗)−

−
n∑

i=1
Yi log 1

1 + zi∕RR∗ +
n∑

i=1
(1 − Yi) log(1 + zi∕RR∗),

where Θ̃0 = {RR0} for the hypotheses in (1) to (3), and Θ̃0 =
{

RR0,l, RR0,u
}

for the hypotheses in (4).
The subset of the parameter space under H0,Θ0, is defined according to (5), and R̂R is the maximum likelihood estima-

tor of RR, which, in general, can be solved numerically for multiple different matching ratios over time. If the Bernoulli
probability is fixed over time, that is, zn = z for each n, then the MaxSPRT statistic simplifies to:

LLRn = I
(

R̂R ∉ Θ0
)
× max
{RR∗∈Θ̃0}

Cn

(
log Cn

n
− log 1

1 + z∕RR∗

)
+

+ (n − Cn)
[

log n − Cn

n
− log

(
1 − 1

1 + z∕RR∗

)]
,
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where the maximum likelihood estimator of R is given by:

R̂R = zCn∕(n − Cn).

The MaxSPRT was specially developed for post-market drug and vaccine safety surveillance, where the hypotheses are
of the one-tailed format in (1), and a flat upper signaling threshold, cv. That is, H0 is rejected for the first n such that
LLRn ≥ bn = cv, n = 1, … ,N, otherwise, the analysis is finalized in favor of H0 for n = N. As demonstrated by Reference
6, for arbitrary significance level, 𝛼 ∈ (0, 1), the exact cv can be calculated through an iterative numeric procedure by
running a Markov Chain in the spirit of References 19-21.

The maximum likelihood estimator of RR can be solved numerically for multiple different matching ratios for both
over time and within the same batch of data. This type of data frequently occur in post-market drug safety surveillance,
where matching or stratification variables are used for confounding control. The stratification variables create risk sets of
comparable subjects. In these data sets, each record would include (1) a binary variable indicating whether the adverse
event or outcome of interest was exposed to the treatment or comparator exposure and (2) the proportion of treatment
group-exposed patients in the risk set at the time the adverse event occurs. In this manner, the person-time data that
typically populate a stratified Cox proportional hazards regression model are the same data that populate what is known
as a case-centered logistic regression. The authors of Reference 22 showed that the models are mathematically identical
and yield the same parameter estimates. In this manner, person-time data can be treated as a sum of binary data and all
of the functions described above can be used accordingly.

2.3 Multiple weighted binary endpoints

When there are multiple different outcomes, an important extension for binary sequential analysis is the possibility of
considering weights reflecting practical interpretations, such as severity of different disease outcomes. For example, con-
sider the case of two different outcomes, the first with weight w = 2, and the second with weight 1. That is, a single event
of the first outcome would be equivalent to 2 independent outcomes of the second type. In general, if the first outcome
type has weight w and the second has weight 1, then the first would be considered w times more severe than the second
outcome type.

The authors of Reference 23 proposed a test statistic based on the weighted sum of the outcomes. For this, let
C⃗1, C⃗2, … , denote a sequence of D-dimensional random vectors, where C⃗i = (Ci,1, … ,Ci,D), with i = 1, 2, … , and
Ci,j ∼ binomial(ni,j, pj,RRj), for j = 1, … , D. Also, assume that Ci,j is independent of Ci′,j′ for each i ≠ i′ or j ≠ j′. To illus-
trate, suppose that a two armed sequential testing, where two groups, called exposure I and exposure II, are compared
to each other. For the ith test, Ci,j counts the number of individuals from group I presenting the jth endpoint. There-
fore, ni,j is the total number of observations from endpoint j accruing in the ith test. The success probability is given by
pj,RRj = 1∕(1 + zj∕RRj), where zj is the matching ratio between exposure I and exposure II with outcome j, that is, pj,RRj

is the probability of having an observation from exposure I presenting outcome j. For example, if there are v exposures I
matched to each exposure II for endpoint j, then zj = v.

For the ith test, consider the test statistic defined as a composite endpoint, denoted by Si, constructed as a weighted
sum of cumulative outcomes, that is:

Si =
i∑

g=1
(w1Cg,1 + · · · + wDCg,D), (8)

where wj is the weight associated to the jth outcome. Flat critical values in the scale of Si can be solved under arbitrary
significance levels using numeric procedures.23 That is, H0 is rejected for the first ni such that Si ≥ bni = cv, where ni =∑i

g=1
∑D

j=1ng,j. Otherwise, the analysis is finalized in favor of H0 for the first test such that ni ≥ N.

2.4 Poisson data

Let Ct denote the number of events up to the continuous time index, t. Under H0, Ct follows a Poisson distribution with
mean 𝜇t, where 𝜇t is a known baseline function of t. Under H1, Ct is still Poisson, but now with mean RR𝜇t. In this case,
the MaxSPRT statistic, given in the log-likelihood ratio scale, is given by:
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LLRt = max
{RR∗∈Θ̃0}

[
(𝜇∗

t − ct) + ct log ct∕𝜇∗
t
]
× I

(
R̂R ∉ Θ0

)
,

where 𝜇∗
t = RR∗𝜇t, Θ̃0 = {RR0} for the hypotheses in (1) to (3), and Θ̃0 =

{
RR0,l, RR0,u

}
for the hypotheses in (4).

The subset of the parameter space under H0, Θ0, is defined according to (5), and the maximum likelihood estimator
of RR is given by:

R̂R(t) = ct∕𝜇t.

The null hypothesis is rejected as soon as LLRt ≥ b(t) = cv, with t ∈ (0, T], where T is the maximum sample size. For
continuous sequential designs,6 shows that the exact critical value can be obtained by running a Markov Chain in the spirit
of Reference 21. The solution by Reference 6 is also valid for group sequential analysis when observations are accrued
following a fixed and common period of observation, which is the assumption behind the exact method by Reference
24 too. A generalized exact solution, valid for continuous, group or mixed continuous-group sequential, including the
applications where the periods of observations are unpredictable, was derived by Reference 11.

2.5 Conditional Poisson data for unknown baseline mean

The MaxSPRT statistic is a function of the data and of the Poisson rate under H0, 𝜇t. Therefore, MaxSPRT can be calculated
only if 𝜇t is known. Otherwise, a conditional Poisson distribution can be used.7

Let V denote the person-time in the historical sample containing c events, and let Pk denote the cumulative
person-time observed until arrival of the kth event during the surveillance period. As a consequence of the Poisson pro-
cess, and for a known c, V follows a Gamma distribution with shape c and scale 1∕𝜆V .9 Likewise, for a known k, Pk follows
a Gamma distribution with shape k and scale 1∕𝜆P. This way, the CMaxSPRT test statistic, in the scale of the log-likelihood
ratio, is given by:

Uk = max
{RR∗∈Θ̃0}

[
c log

c(1 + RR∗Pk∕V)
c + k

+ k log
k(1 + RR∗Pk∕V)
(RR∗Pk∕V)(c + k)

]
× I

(
R̂R ∉ Θ0

)
,

where Θ̃0 = {RR0} for the hypotheses in (1) to (3), and Θ̃0 =
{

RR0,l, RR0,u
}

for the hypotheses in (4).
The subset of the parameter space under H0, Θ0, is defined according to (5). As derived by Reference 7, the maximum

likelihood estimator of RR for each k is given by:

R̂R(k) = k × V
c × Pk

.

The null hypothesis is rejected as soon as Uk ≥ bk = cv, with k = 1, … ,K, where K is the maximum sample size.
Calculation of the exact cv, for arbitrary tuning parameters settings, is performed through numerical procedures.9

2.6 Minimum number of events before rejection of the null hypothesis

According to Reference 25, requiring a minimum number of events before allowing rejection of H0 can reduce the expected
time to signal. The idea is to establish a minimum number of events, say M, in such a way that H0 can only be rejected after
having observed at least M events after starting the analysis. Although all data observations affect the total sample size for
the final decision, a decision against H0 can only be taken after observing M events or more. This approach provides gains
in terms of expected time to signal. The authors of Reference 25 showed that, depending on the tuning parameters, M
values between 3 and 6 reduce the expected time to signal without affecting the overall statistical power of the sequential
test. They also indicated that, in general, M = 4 is a good choice.

2.7 Alpha spending

Usually, the approach for sequential testing is based on using signaling thresholds given in the scale of a test statistic. This
is the case for both classical and new methods, such as the procedures of References 1, 3, 4, 6, 7, and 26. Alternatively,
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one can use an alpha spending function. Denoted by F(t), it is a function that establishes the amount of Type I error
probability to be spent at each time t. For t ∈ (0, 1], four well-known choices are:

F1(t) = 𝛼 × t𝜌, 𝜌 > 0,

F2(t) = 2 − 2 × Φ(x𝛼 ×
√

t−1),where x𝛼 = Φ−1(1 − 𝛼∕2),
F3(t) = 𝛼 × log{1 + [exp(t) − 1] × t},
F4(t) = 𝛼 ×

[
1 − exp{−t𝛾}

]
∕
[
1 − exp{−𝛾}

]
, 𝛾 ∈ ℜ.

Consider, for simplicity, that only the upper limit signaling threshold (b(t)), according to Definition 2, is
used. Under a adaptive design, where data arrive with chunks of unpredictable sample sizes. Remind that 𝜏

denotes the number of events when the surveillance is interrupted, and 𝜂 is the maximum length of surveil-
lance expressed in the scale of the number of events. For the ith observed event, make t = i∕𝜂. Note that 𝜂 = N
with the Bernoulli data. The upper signaling threshold is elicited from the target alpha spending in the following
way:

b(t) = max

{
x ∈ N ∶ sup

RR∗∈Θ0

Pr
[
∪x

i=1 {𝜏 = i} |RR∗] ≤ F(t)

}
.

According to References 27-29, the power-type function, F1(t), is useful to approximate Pocock’s and O’Brien & Flem-
ing’s procedures. F1(t) also approximates MaxSPRT designs. It produces a line for 𝜌 = 1, a convex curve for 𝜌 > 1,
and a concave curve for 0 < 𝜌 < 1. The authors of Reference 8 offers a detailed description on proper choices for
𝜌 in order to minimize expected time of surveillance for fixed power. 𝜌 values around 2, producing convex shapes,
seems to provide small expected time of surveillance. If expected time to signal, instead of expected time of surveil-
lance, is the target performance measure, then concave shapes (𝜌 < 1) are more appropriate.11,30 F2(t), is shown by
Reference 31 to approximate O’Brien & Fleming’s procedure.31 also explored F3(t) in order to approximate Pocock’s
test. The results by Reference 31 were used by the authors of Reference 32 to derived exact calculations for dis-
crete data. F4(t), introduced by Reference 33, is also a good option to mimic Pocock’s test. As shown by Refer-
ences 11,30, F1(t) and F4(t), under concave curves, are more appropriate choices than F2(t) and F3(t) if minimizing
expected time to signal is the meaningful design criterion for binomial and Poisson data. Instead, for conditional Pois-
son data10 show that a convex form for F1(t) should be used, and that 𝜌 = 1.5 is a proper choice for most of the
applications.

There are many proposed alpha spending functions in the literature. The authors of Reference 8 offer a rich overview
and comparison of the most widely used functions.

As demonstrated by References 10,11, and 13, methods based on signaling thresholds can always be rewritten in terms
of an alpha spending function, but the reciprocal is not true. Therefore, the alpha spending approach is the most general
for sequential analysis. The authors of Reference 13 derived the optimal alpha spending function for binomial data for a
set of target performance measures, such as power, expected sample size, and expected time to signal. Their solution is
obtained through linear programming.

3 SEQUENTIAL ANALYSIS PLANNING

For designing a sequential test procedure, it is often important to calculate statistical power, expected time to signal,
expected sample size, and maximum sample size. As there are trade-offs among these metrics, the sequential plan should
be defined according to the design criterion of each application. For instance, for post-market drug and vaccine safety
surveillance, a large number of individuals are exposed to the drug/vaccine, then sample sizes are usually large even
when the monitored event is rare. But, there is still the need for a fast identification of elevated threats from the drug,
therefore minimizing the expected time to signal is a critical design criterion. Conversely, in Phase III clinical trials the
number of individuals available for the study is usually of small or moderate magnitudes. Thus, minimizing the sample
size by ending analysis early is of major importance since it applies that the number of affected individuals are minimized
as well.
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3.1 Sample size calculations with flat thresholds

Recall that the sequential analysis ends without rejecting H0 when the sample size reaches a pre-specified upper limit.
Such upper limit must be defined in advance according to the desirable pre-experimental performance measures. To show
how this can be done in practice, we start with the conventional Wald’s flat-signaling threshold approach given in the
scale of the log-likelihood ratio. After defining the acceptable test size through the tuning parameter 𝛼, the subset of the
parameter space to form the null hypothesis (Θ0), and the size of the effect through the target power under meaningful
points of Θ, the next step is the calculation of the required sample size, N.

3.1.1 Binomial data

For binomial data under a continuous sequential manner, Table 1 shows sample sizes (N) calculated for testing H0 ∶ RR ≤

1 under 𝛼 = 0.05 using z = 0.25, 0.5, 0.75, 1, 2, 3, 4, and power of 0.9 and 0.99 under RR ≥ 2 and RR ≥ 4.
In practice, the number of events appearing during the sequential analysis is a portion of the total number of par-

ticipants receiving the treatments, then one should plan the maximum length of surveillance (N) according to a table,
possibly with many other scenarios of 𝛼, RR, and z, in order to ensure a reasonable statistical power. For example, if a
total of P = 1000 matched patients are randomized in two groups, say placebo and treatment groups, and if it is known
that, under H0, around 10% of the participants may present the monitored event, then the sequential procedure (with
Wald’s boundary) detects an increased relative risk of about 2 with power of 0.9 for z values in between 1 and 2 (see
the first line of Table 1). One may also evaluate the reverse, that is, based on the frequency at which the events occur
under H0, one can obtain the minimum number of patients (P) needed for detection of target relative risk, power, and
alpha level. Evaluations like this are also important for determining the ratio z for the number of placebo to treatment
groups.

3.1.2 Poisson data

With Poisson data the predetermined upper limit on the sample size (T) is expressed in terms of the expected number
of events under the null hypothesis. For instance, the sequential test may stop as soon as the cumulative sample size is
such that there are at least T = 30 expected events under H0. For a power of 0.9 and 0.99 with RR > 2 and RR > 4 for
testing H0 ∶ RR ≤ 1. Table 2 presents the related sample sizes (maximum length of surveillance) to comply with these
performance requirements.

If the baseline expected number of events (𝜇0) per test is unknown, one option is to use the CMaxSPRT test as described
in Section 2.5. In this case, the sample size is expressed either in terms of the ratio of the cumulative person-time in the

z

RR Power 0.25 0.5 0.75 1 2 3 4

2 0.9 222 147 123 112 110 120 132

2 0.99 373 245 212 194 192 216 238

4 0.9 70 44 33 30 28 25 29

4 0.99 113 73 57 53 46 47 50

T A B L E 1 Sample sizes (N) with binomial
data (z = 0.25, 0.5, 0.75, 1, 2, 3, 4) for testing
H0 ∶ RR ≤ 1 under 𝛼 = 0.05 for power = 0.9, 0.99
under RR = 2 and RR = 4

RR Power T

2 0.9 18.32

2 0.99 32.83

4 0.9 2.77

4 0.99 5.29

T A B L E 2 Sample sizes (T) with Poisson data for testing H0 ∶ RR ≤ 1 under 𝛼 = 0.05 for
power = 0.9, 0.99 under RR = 2 and RR = 4
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T A B L E 3 Sample sizes in terms of the maximum length of surveillance by
doses/person-time (T) and by the cases in the surveillance data (K), for powers of 0.9
and 0.99 under 𝛼 = 0.05 and RR = 2

Power = 0.9 Power = 0.99

c K T K T

50 66 0.79 290 3.89

70 50 0.43 157 1.53

100 43 0.25 96 0.65

120 40 0.20 83 0.47

150 38 0.15 73 0.33

170 37 0.13 69 0.27

200 36 0.11 64 0.21

T A B L E 4 Power, expected time to signal and
expected sample size for Poisson data with known
baseline rates using Wald’s lower signaling
thresholds 2.5, 2.6, 2.7, 2.8, and upper signaling
thresholds 3, 3.1, 3.2, 3.3

RR Power Expected time to signal Expected sample size

0.3 0.978 25.000 26.402

0.9 0.024 25.875 88.476

1.0 0.022 41.019 88.932

1.2 0.299 57.763 80.367

1.5 0.965 42.791 44.451

Note: The expected number of events (group sizes) used are 25, 20, 20, 25 (ie, T = 90). The
calculations were ran for RR = 0.3, 0.9, 1, 1.2, 1.5.

surveillance population divided by the total cumulative person-time in historical population (T), or in terms of the number
of events in the surveillance data (K). For instance, the monitoring may end as soon as the sample size is such that the
cumulative person-time in the surveillance population is equal to the cumulative person-time in historical population,
or if there are 30 events in the surveillance data.

For testing H0 ∶ RR ≤ 1, sample sizes in both scales are shown in Table 3 for selected numbers of events in the historical
data.

Naturally, in real data analysis the information may arrive in chunks of sizes greater than 1. But, the sample sizes
in Tables 1, 2, and 3 still ensure the target power since group sequential testing is powerful than the continuous
fashion under the same significance level.17 Section 4.3 presents a real data analysis to exemplify the usage of time spe-
cific alpha spending functions for preserving statistical power with unpredictable mixed group-continuous data arrival
structures.

3.2 Performance evaluations for arbitrary thresholds

For Poisson data with known baseline rates, suppose that one desires to test:

H0 ∶ 0.9 ≤ RR ≤ 1.2 against H0 ∶ RR < 0.9 or RR > 1.2. (9)

Consider the Wald’s lower signaling thresholds 2.5, 2.6, 2.7, 2.8, and the upper signaling thresholds 3, 3.1, 3.2, 3.3, with
expected number of events (group sizes) equal to 25, 20, 20, 25 (ie, T = 90), respectively. Table 4 contains the performance
measures of this very specific (non-flat signaling threshold) sequential design.

Assume that one requires a statistical power of 0.9 for RR ≤ 0.3 or RR ≥ 1.5. From Table 4, we see that this requirement
is indeed satisfied since for RR ≤ 0.3 and RR ≥ 1.5 the powers are about 0.98 and 0.965, respectively. Note also that the type
I error probabilities for RR values between 0.9 and 1 are smaller than 0.024. However, this is not a 0.024 level test because
the type I error probability is close to 0.3 for RR = 1.2. Therefore, the critical values should be conveniently modified in
order to adjust the actual test size according to the nominal alpha level. A simplistic solution is to use the regular flat
threshold approach again. For example, after checking a few scenarios, we found that the flat threshold cv = 6.8 promotes
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F I G U R E 1 Alpha spending implied by flat signaling
thresholds with Poisson data in the scale of MaxSPRT (cv = 2.59),
Pocock (cv = 2.83), O’Brien-Fleming (cv = 2.01), and
Wang-Tsiatis (cv = 2.12) test statistics under 𝛼 = 0.05 and RR = 2

MaxSPRT Pocock O’Brien-Fleming Wang-Tsiatis

Power 0.95 0.93 0.98 0.97

ETS 7.06 7.10 9.41 7.91

ESS 7.68 8.06 9.66 8.28

T A B L E 5 Power, expected time to signal
(ETS) and expected sample size (ESS) for
MaxSPRT (cv = 2.59), Pocock (cv = 2.83),
O’Brien-Fleming (cv = 2.01), and Wang-Tsiatis
(cv = 2.12) test statistics under 𝛼 = 0.05 and
RR = 2 based on T = 20 and samples of size 1

a 0.045 level test. But, the test no longer leads to power magnitudes greater than of 0.9 for RR around 0.3 and 1.5. Actually,
the power is 0.662 for RR = 0.3, and 0.782 for RR = 1.5. This is an indication that a sample size greater than 90 is needed
to satisfy the target power of 0.9.

The exercise above shows that guessing the signaling threshold is not an easy task as it demands to control desirable
performance measures vis-á-vis the format of the hypotheses. A straightforward approach for planning non-flat signaling
thresholds is to use the alpha spending approach. In fact, the alpha spending function is a general method as virtually
any sequential procedure can be rewritten in terms of an implicit alpha spending. For example, consider a twenty-group
sequential testing with test specific sample sizes all equal to 1 (ie, T = 20). Using 𝛼 = 0.05 for testing R0 ∶ RR ≤ 1, the
critical values (cv) in the scales of MaxSPRT, Pocock, OBrien-Fleming, and Wang-Tsiatis are 2.59, 2.83, 2.01, and 2.12,
respectively. These critical values were obtained through a bisection procedure. The command lines are placed in the
Appendix part.

Figure 1 shows the alpha spending curves for each test. We note that Wald’s (MaxSPRT) and Pocock’s
alpha spendings are concave while O’Brien-Fleming and Wang-Tsiatis are convex. As illustrated with Table 5,
such differences on the alpha spending shapes have critical implications in the pre-experimental performance
measures.

According to Reference 11, for fixed power and level the expected time to signal is minimized with concave
alpha spending shapes, while expected sample sizes are minimized with convex functions. The authors of Refer-
ence 11 showed that the power-type family, function F1(t) in (9), nearly-minimizes expected time to signal with
Poisson data for 𝜌 = 0.5. But, for minimizing expected sample size,8 suggest that one should use 𝜌 around 1.5
or 2.

For a continuous sequential analysis, Figure 1 shows the power-type alpha spending for 𝜌 = 0.5 and 𝜌 = 2. Figure 2
shows the signaling thresholds, event-by-event, in the four test statistic scales elicited from these two choices of 𝜌, and
Table 6 shows the related statistical performance measures.

This way, no-matter the frequency of the data arrival, the user can simply use the time-specific alpha spending
to calculate the critical value according to the actual amount of information (cumulative expected number of events
under H0) in hand. This type of unpredictable data frequency sequential testing shall be illustrated with real data in
Section 4.4.
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F I G U R E 2 Signaling thresholds for continuous sequential
testing implied by the power-type alpha spending with 𝜌 = 0.5
and 𝜌 = 2 for Poisson data in the scale of MaxSPRT, Pocock,
O’Brien-Fleming, and Wang-Tsiatis test statistics under 𝛼 = 0.05
and RR = 2.
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T A B L E 6 Statistical performance measures by the power-type alpha
spending using 𝜌 = 0.5, 2 under 𝛼 = 0.05 and RR = 2 based on T = 20 in a
continuous sequential fashion

Performance measure 𝝆 = 0.5 𝝆 = 2

Statistical power 0.95 0.97

Expected time to signal 6.90 8.48

Expected sample size 7.52 8.78

For the historical versus surveillance Poisson data (CMaxSPRT),10 suggest to use 𝜌 = 1.5 as it is near-optimal
in the sense of minimizing both expected time to signal and expected sample size in most of the real data
applications.

3.3 Optimal sequential design for binomial data

The alpha spending can be specified to optimize a performance measure of interest. For example, one can elicit the alpha
spending shape that minimizes either the expected time to signal or the expected sample size. This is possible with the
exact optimal solution introduced by Reference 13. For H0 ∶ RR ≤ 1 against H1 ∶ RR > 1, suppose that we want the alpha
spending shape that minimizes the expected time to signal while guaranteeing statistical power of 0.8 for any relative risk
greater than 2.

If we instead wish to minimize expected sample size. Figure 3 compares the optimal alpha spending solutions
between these two different objective performance measures for 𝛼 = 0.05, and z = 1. The optimal expected time to
signal is 32.99, and the optimal expected sample size is 39.63. The optimal samples sizes are N = 77 and N = 59,
respectively. The curves in Figure 3 have different shapes. While the optimal expected time to signal is obtained
under a concave alpha spending shape, the optimal expected sample size is reached with a convex alpha spending
function.

For two-tailed testing, that is, when the hypotheses are of the form H0 ∶ RR = 1 against H1 ∶ RR ≠ 1, one needs
to specify two target powers, one to each of the two target relative risks under the alternative hypothesis. For
example, suppose that we want to minimize expected time to signal, and both RR ≤ 0.5 or RR ≥ 2 should be
detected with power of at least 0.8. Figure 4 shows the optimal alpha spending for two-tailed testing under this
parametrization.

If there are restrictions on the sample size due to logistical, ethical and any other practical aspects, one can minimize
expected time to signal and expected sample size while setting an upper bound on the maximum sample size. This is done
through the input N on the command line above. For example, for N = 80, if one wishes to minimize expected time to
signal under a power of 0.8 for RR = 2, 𝛼 = 0.05, and z = 1, the optimal solution leads to a minimum expected time to
signal equal to 40.00, which is greater than the minimum expected time to signal, 32.99.
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F I G U R E 3 Optimal alpha spending shapes for expected time
to signal and expected sample size under 𝛼 = 0.05, z = 1, power
equal to 0.8, and RR = 2

0 20 40

n

60 80

0
.0

0
0

0
.0

0
5

0
.0

1
0

0
.0

1
5

0
.0

2
0

0
.0

2
5

A
lp

h
a
 s

p
e
n
d
in

g
 f
u
n
c
ti
o
n

lower spending

upper spending

Optimizing Expected Time to Signal

Optimizing Expected Sample Size

F I G U R E 4 Two-tailed optimal alpha spending shapes for
expected time to signal and expected sample size under 𝛼 = 0.05,
z = 1, power equal to 0.8, and RR1 = 0.5 and RR2 = 2

The optimal solution proposed by Reference 13 also incorporates control on the precision of the relative risk estimate
by the end of the sequential analysis through fixed-width and fixed-accuracy confidence intervals. This feature shall be
exemplified with an illustrative clinical trial data in Section 4.1.

3.4 Schematics for sequential testing planning

This section presents a synthesis of the main decision directions, so far discussed in this article, for balancing the trade-offs
between statistical performance measures and the alpha spending plan. Such decisions are determinant to calculate the
required sample size, that is, maximum length of surveillance.

The construction of a sampling design to collect the data takes in account ethical, logistical, and financial aspects.
Concomitantly, the planning involves defining the hypotheses format, the overall alpha level, the target relative risk to
detect under H1, and the target power. The data structure, and then the underlying probability model to be used in the
inference phase, results from the sampling scheme as well.

Once the data probability model (eg, binary, Poisson, conditional Poisson) is identified/defined, which we refer to as
step (A), the next step is to (B) establish the meaningful statistical metric to optimize between expected sample size and
expected time to signal, then (C) select the alpha spending plan, and finally (D) elicit the maximum length of surveillance
in compliance with the alpha level and target power.

The actual maximum length of surveillance to be calculated in step D depends on the format of the hypotheses,
significance level, and target power. For instance, the diagram in Figure 5 illustrates this steps for testing:
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F I G U R E 5 Diagram for setting a sequential analysis design for testing H0 ∶ RR ≤ 1 against H1 ∶ RR > 1 under 𝛼 = 0.05, M = 4, and
target power of 0.9 for RR ≥ 2. For step C, values of the tuning parameter 𝜌 are selected to fix the power-type alpha spending shape according
to the performance metric to minimize between the expected time to signal (ETS) and the expected sample size (ESS)

H0 ∶ RR ≤ 1 versus H1 ∶ RR > 1,

with minimum number of events to start the surveillance equal to M = 4, 𝛼 = 0.05, and target power of at least
0.9 for RR ≥ 2. Regarding the alpha spending shape, for this diagram we adopted the power-type shape, that is,
F1(t) = 𝛼 × t𝜌 (see Section 2.7). By selecting the tuning parameter 𝜌 conveniently, the power-type alpha spend-
ing works reasonably well to approximate the optimal alpha spending in each scenario.10,11,30 In order to empha-
size the possible changes in the maximum length of surveillance, three values were used for z, in the binary
case, and for c, in the conditional Poisson case. All the calculations for step D were based on the continuous
sequential analysis scenario. This ensures that the actual performance in terms of significance level and statis-
tical power satisfies the nominal requirements, no matter the real frequency at which the data arrives in each
application.

Naturally, the sample sizes in step D will suffer considerable changes if any of the tuning parameters are different
from those used in this example, such as the format of the hypotheses and the set of the parameter space under H0, and
the target power.

It is important to note the key role of the alpha spending shape for the overall statistical performance of the sequential
analysis. The values of 𝜌, presented in step C of Figure 5, are offered as a rule of thumb, a summary of the results found
in the literature on this topic. However, ideally, the alpha spending shape should be customized according to each appli-
cation, where the trade-offs appearing in the schematic presented here are confronted with the goals behind the design
criterion/metrics to optimize, expected data frequency, or even intangible characteristics of each study.

4 DATA ANALYSIS EXAMPLES

4.1 Binomial data in placebo-controlled two-arm trial: monitoring adverse events
in COVID-19 studies

The efforts to develop treatments for COVID-19 patients are urgent, therefore, important studies are currently in devel-
opment in this direction. For example, the Adaptive COVID-19 Treatment Trial (ACTT), detailed by Reference 14, is a
randomized placebo-controlled trial where intravenous remdesivir was administrated in 1062 adults hospitalized with
COVID-19. The individuals were randomly divided in two groups, where 541 were assigned to remdesivir, and 521 to the
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placebo group, then with a randomized ratio of z = 521∕541 ≈ 0.96. By the end of the analysis, the observed 131 severe
adverse events from the remdesivir group and in 163 patients from the placebo group. We can also mention the study by
Reference 15, where a randomized open-label trial was conducted on hospitalized adult patients of SARS-CoV-2. A total
of 199 individuals were randomly divided in two groups, 99 to the lopinavir-ritonavir treatment, and the remaining 100
to the standard-care group. In this case, z = 100∕99 ≈ 1.01. Severe adverse events were observed in 19 participants from
the lopinavir-ritonavir treatment, while 32 patients presented adverse events in the standard-care group.

Using a data structure similar to that described by References 14 and 15, here we mimic a clinical trial for comparing
two hypothetical treatments, say Treatment A and Treatment B. Then, suppose that a randomized double-blind plan with
randomized ratio z = 1 is conducted to a total of P = 1000 patients. We want to test:

H0 ∶ 0.9 ≤ RR ≤ 1.1, (10)

H1 ∶ RR < 0.9 or RR > 1.1. (11)

Aiming to minimize the number of patients affected by severe adverse events, the optimal alpha spending that min-
imizes expected sample size was used restricted to 𝛼 = 0.05, and statistical power greater than or equal to 0.8 for either
RR ≥ 2 or R ≤ 0.5. In addition, the optimal solution was constrained to a fixed-width and a fixed-accuracy 90% confidence
interval for RR with the following formats:[

R̂R − 1.5, R̂R + 1.5
]

and
[
R̂R∕1.5, 1.5R̂R

]
(12)

Figure 6 shows the optimal alpha spending solved according to the constraints above.
In practice, patients may leave the study due to many different reason other the presenting adverse events. Therefore,

the number of patients in each arm, here denoted by Pi,A and Pi,B at the ith test, will decrease in time. For simulating
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F I G U R E 6 Optimal alpha spending
minimizing expected sample size under
𝛼 = 0.05, power ≥ 0.8 for each RR < 0.5 and
RR > 2 with hypothesis H0 ∶ 0.9 ≤ RR ≤ 1.1.
Graphics A, and B, show the upper and lower
cumulative alpha spending under fixed width
and fixed accuracy 90% confidence intervals,
and graphics C, and D, shows the optimal
alpha spending without confidence interval
constraints for comparisons
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T A B L E 7 Analysis results on simulated randomized, double-blind, placebo-controlled trial for monitoring
severe adverse events

# Patients cv RR = 3

i Pi,A Pi,B zi ni Lower Upper Xni
R̂R Rej. H0

1 500 500 1 12 na 13 10 5 No

2 498 489 1.02 21 3 22 15 3.16 No

3 494 484 1.02 30 7 31 21 2.75 No

4 490 478 1.03 41 12 42 30 2.77 No

5 486 468 1.04 52 16 47 36 2.61 No

6 479 462 1.04 65 22 47 45 2.52 No

7 475 451 1.05 75 26 48 55 2.61 Yes

8 474 440 1.08 78 27 50 57 2.67 Yes

9 473 437 1.08 89 32 56 64 2.69 Yes

10 468 429 1.09 100 37 61 70 2.67 Yes

11 462 423 1.09 112 42 67 77 2.62 Yes

this effect, a discrete uniform random variable in the {0, 1, 2} support was subtracted in both arms for each test. The
number of adverse events in each test (ni − ni−1) was generated using a binomial(Pi, 0.01), where Pi = Pi,A + Pi,B. For
the first test, we used n1 ∼ binomial(1000, 0.01). Finally, the adverse events from the Treatment B group at the ith test
(Yn = Xni − Xni−1 ) were generated using a binomial(ni − ni−1, pi), where pi = (1 + zi∕RR)−1 and zi = Pi,A∕Pi,B, with R = 3
under the alternative hypothesis.

The second and third columns of Table 7 present the number of patients in both Treatment A and B at each test. The
lower and upper signaling thresholds, given in the scale of the number of events, are shown in columns 6 and 7 of Table 7.
The number of adverse events from Treatment B and the maximum likelihood estimates of RR are shown columns 8
and 9. We note that the null hypothesis is rejected in the 7th look since the number of events, 55, extrapolated the upper
signaling threshold, 48. By construction, a 90% confidence interval for RR is given by [1.74, 3.92] since 2.61 − 1.5 = 1.11 <

2.61∕1.5 = 1.74 and 2.61 + 1.5 = 4.11 > 1.5 × 2.61 = 3.92.
The critical values in this example were elicited from the optimal alpha spending shown in Figure 6, and the relative

risk estimates were obtained with the command lines in the Appendix.

4.2 Multiple weighted binomial outcomes in propensity score matched patients:
comparing two treatments of osteoporosis

The authors of Reference 23 applied the alpha spending approach to formulate a new methodology for monitoring mul-
tiple types of adverse events that are comparable through pre-specified weights. They used real data to illustrate their
method for five different outcomes with the following weights: hip and pelvis fracture (w1 = 0.05), forearm fracture
(w2 = 0.08), humerus fracture (w3 = 0.09), serious infection (w4 = 0.11), and pneumonia (w5 = 0.30). They mimicked a
sequential testing for comparing 9340 patients treated with denosumab to 9340 propensity score matched patients who
initiated bisphosphonates for treatment of osteoporosis, therefore z = 1. The goal was testing:

H0 ∶ RRj = 1 for each j = 1, … , 5,
H1 ∶ RRj ≠ 1 for at least one j ∈ {1, 2, 3, 4, 5},

where RRj is the relative risk associated to the jth type of adverse event.
Table 8 was extracted from Reference 23. It contains the cumulative sample size at each test in each of the five end-

points (columns 1 to 5), and the test statistic in column 6, denoted by U = Si,A∕Si,B, which is the ratio of exposure A
to exposure B weighted sums, where exposure A is for denosumab treatment and exposure B is for bisphosphonates
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T A B L E 8 Sequential analysis results for the data of treatment of osteoporosis

Cumulative data per outcome cv

H-p frac. F. frac. H. frac. Infec. Pneum. U Lower Upper

0 0 0 1 0 inf na na

1 2 0 5 3 1.68 0.05 19.75

2 7 0 6 7 1.22 0.17 5.84

3 9 1 10 10 0.94 0.25 3.96

6 13 1 14 14 0.65 0.34 2.98

10 17 1 20 16 0.69 0.39 2.54

12 21 1 26 21 0.58 0.44 2.28

15 29 1 28 27 0.55 0.48 2.09

20 32 2 37 32 0.70 0.52 1.92

23 44 4 48 43 0.76 0.58 1.73

26 57 6 59 55 0.66 0.62 1.62

32 72 8 79 60 0.74 0.66 1.52

Note: The outcomes are Hip and pelvis fracture (w1 = 0.05), forearm fracture (w2 = 0.08), humerus fracture (w3 = 0.09),
serious infection (w4 = 0.11), and pneumonia (w5 = 0.30). It was settled a maximum length of surveillance of N = 1000. The
overall significance level used was 𝛼 = 0.05, with power-type alpha spending (𝜌 = 0.5). The critical values (cv) are shown in
the scale of the test statistic given by the ratio between weighted sums from expose A to exposure B populations (U = Si,A∕Si,B).

treatment. The lower and upper critical values, given in the scale of U, are shown in columns 7 and 8. This table can be
reproduced with the command lines shown in the Appendix:

As the test statistic stayed in between the lower and upper signaling thresholds during the sequential monitoring,
the empirical information suggests that treatments A and B do not differ in terms of the risks of these five adverse
events.

4.3 Poisson data in exposure-outcome pairs: monitoring neurological adverse events
after Pediarix vaccination

This example uses the data of neurological adverse events after Pediarix vaccination from the Kaiser Permanente Northern
California. With a single injection, Pediarix protects children from diphtheria, tetanus, whooping cough, hepatitis B, and
Polio. The authors of Reference 6 used continuous MaxSPRT to analyze severe neurological symptoms in the period 1-28
days after the vaccination. Table 9 presents the data for the first 10 weeks out of 81 weeks of surveillance.

The second column of Table 9 contains the background rate (𝜇t) of adverse events under the null hypothesis (H0 ∶
RR = 1). From this table, we see that H0 was not rejected until the 10th test. If more data are entered in the function
for subsequent chunks of data, it will run and disclose the regular output table. Figure 7 shows realized and signaling
thresholds in both the cases and the MaxSPRT scales. Note how irregular are the shapes of the thresholds as the testing
time evolves. The observed empirical information reached the signaling threshold in the 32th test. This signal occurred
when the total amount of information reported a relative risk estimate about 2.5.

4.4 Conditional Poisson in historical versus surveillance data: monitoring seizures
after influenza vaccination

This last example uses a time-series of seizures during Days 0-1 after application of concomitant vaccination with inac-
tivated influenza vaccine (IIV) and 13-valent pneumococcal conjugate vaccine (PCV-13). The fifth column of Table 10
contains the cumulative number of doses applied to 6-23-month-old children in the period of September 2013 to April
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T A B L E 9 Sequential analysis results for the first 10 weeks of surveillance of neurological adverse events
after Pediarix vaccination

Test specific Cumulative Alpha spending

Week 𝝁t #Events 𝝁t #Events cv R̂R Target Actual

1 0.04 0 0.04 0 na 1 0 0

2 0.06 1 0.10 1 3 10 0.0035 0.0015

3 0.08 0 0.18 1 3 5.56 0.0047 0.0017

4 0.10 0 0.28 1 3 3.57 0.0059 0.0020

5 0.11 0 0.39 1 3 2.56 0.0070 0.0056

6 0.12 0 0.51 1 4 1.96 0.0080 0.0060

7 0.13 0 0.64 1 4 1.56 0.0089 0.0074

8 0.12 1 0.76 2 5 2.63 0.0097 0.0075

9 0.11 0 0.87 2 5 2.3 0.0104 0.0080

10 0.12 0 0.99 2 5 2.02 0.0111 0.0089

Note: The critical values (cv) are given in the scale of the cumulative events and were settled under a maximum length of
surveillance of T = 20 and based on the alpha spending implied by MaxSPRT, 𝛼 = 0.05.

F I G U R E 7 Critical values,
observed data and alpha
spending in the first 32
sequential tests for monitoring
neurological adverse events after
Pediarix vaccination. The critical
values were settled under a
maximum length of surveillance
of T = 20 and based on the alpha
spending implied by MaxSPRT,
𝛼 = 0.05. Evidences for rejecting
the null (H0 ∶ RR = 1) occurred
in week 32 [Colour figure can be
viewed at
wileyonlinelibrary.com]
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2014. The sixth column of this table contains the cumulative number of individuals presenting seizures in the surveil-
lance period. This data has already been used by,10 and it come from three large U.S. health insurance or data companies
(‘Data Partners’) participating in the U.S. Food and Drug Administration-sponsored Sentinel system. See Reference 34 for
more details about the Sentinel system.

The authors of Reference 34 used Poisson MaxSPRT, with flat signaling threshold, based on the expected number
of seizures estimated with the Data Partner-specific rates related to IIV vaccination in historical influenza seasons. In a
different direction, instead of using estimated rates as if it is the real rate under H0, here we use the conditional Poisson

http://wileyonlinelibrary.com
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T A B L E 10 Sequential analysis results for the surveillance of seizures after influenza vaccination

Test specific Cumulative

Chunk pk #Events Pk k Pk∕v LLR cv R̂R

1 3877 0 3877 0 na na na na

2 3211 0 7088 0 na na na na

3 1 0 7089 0 na na na na

4 25975 1 33064 1 0.04 0 6.49 0.62

5 8 0 33072 1 0.04 0 6.49 0.62

6 34760 5 67832 6 0.09 0.77 3.31 1.80

7 18497 3 86329 9 0.12 1.75 2.89 2.12

8 173 0 86502 9 0.12 1.56 2.89 2.12

9 17573 3 104075 12 0.14 2.81 2.45 2.35

10 12058 0 116133 12 0.15 2.34 na 2.10

Note: With a historical person-time information of V = 752949 (doses) and c = 37 adverse events in the historical period,
the critical values (cv) are given in the scale of the log-likelihood ratio (LLR) statistic. The maximum length of surveillance
is K = 20 under a power-type alpha spending (𝜌 = 1.5) with 𝛼 = 0.05.

approach described in Section 2.5. For this application, the cumulative number of doses reflects the person-time (Pk) for
a given number k of observed events (seizures). The time-specific person-time is denoted by pk = Pk − Pk−1, with p0 = 0.
The historical information is composed by c = 37 events in days 0-1 after V = 752,949 doses of IIV prior to licensure of
PCV13.

We want to test if the relative risk is smaller than or equal to 1 (null hypothesis). Consider to setup the maxi-
mum length of surveillance as K = 20. It is important to check the pre-experimental statistical performance resulting
from this sample size choice. Using the power-type alpha spending (𝜌 = 1.5) for learning evidences of RR ≥ 2, we
obtain a statistical power about 0.85, expected time to signal of 12.18, and expected length of surveillance equal
to 13.35.

Note from the third column of Table 10 that new adverse events arrived in the surveillance period only in chunks 4,
5, 6, 7, and 9. Although one can revert the random variable taken the person-time as the amount of information and the
related number of events as the monitored random measure of evidence,9 hence the log-likelihood ratio statistic can still
be calculated even when no new adverse events arrives, that would never lead to the null hypothesis rejection since the
likelihood decreases when the relative person-time increases keeping the overall number of events fixed. Therefore, for
futility, it is more convenient to keep the original framework by Reference 7, that is, the number of events are treated as
the time index in the surveillance period, thus the monitored measure of evidence is the person-time ratio Pk∕V for each
fixed k. But, unlike in Reference 7, here we use the flexible group-sequential test instead of the continuous sequential
manner. This ensures that alpha is spent only when new events arrive, increasing the overall statistical power of the
sequential analysis.

After having twelve adverse events in only 14% of the person-time in the surveillance period relatively to the historical
period, from Table 10 one can conclude in the 9th test that there are empirical evidences against H0, which occurred when
the relative risk estimate was about 2.35.

5 CONCLUDING REMARKS AND SOFTWARE CONSIDERATIONS

This manuscript discuss sequential analysis hypothesis testing where the goal is to do inference of intrinsic characteris-
tics of the analyzed phenomenon. Therefore, the ideas are not directly convertible for quality control problems, where
the goal is to detect problems that suddenly appear during the surveillance, causing an abrupt increase in the relative
risk.

Another point to emphasize is that we focused on exact calculations only. For those interested on easy-to-use tools
based on the conventional practice of using approximations based on the asymptotic statistical theory or Monte Carlo
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simulations, we recommend the following R packages: ldbounds, Binseqtest, gsDesign, PwrGSD, seqDesign,
seqmon, OptGSand, sglr.

Regarding the R Sequential package, a limitation is that it is only applicable for analyzing binomial, Poisson, or
conditional Poisson data. For other probability distributions, such as Gaussian or exponential processes, we recommend
GroupSeq and SPRT.

The reason we opted to use R Sequential in this tutorial is its flexibility to dealing with the data structure that
usually appears in real applications. For instance, Sequential is used to conduct the sequential monitoring of adverse
events according to the master protocol for COVID-19 vaccine active surveillance in the United States.16

Unlike the R package Sequential, most R packages for sequential analysis are only designed for group sequen-
tial analysis. A review on available packages for group sequential designs is offered by Reference 35. Among the few
alternative options for continuous sequential analysis, Binseqtest works only for binomial data, while SPRT only
works for simple alternative hypotheses. Besides, although some of the packages cited above are able to provide statistical
power and expected sample size calculations, such as OneArmPhaseTwoStudy, ph2rand, to the best of our knowl-
edge, R Sequential is the only freely-available package that also calculates expected time to signal. The calculation
of sample size for a given target power and relative risk, the calculation of signaling thresholds for a given alpha spend-
ing, and the calculation of alpha spending for given pre-experimental signaling thresholds, are also unique features of R
Sequential.

It merits to remark that the package performs near-automated data analysis. The functions automatically signal when
the rejection thresholds are reached. After each analysis, the package delivers the results in the form of both tables and
graphs. The package has a detailed user guide explaining how different features and parameter options are specified. For
people unfamiliar with the R language, there is a web interface (http://www.sequentialanalysis.org) where users only
have to specify the input data and the analysis parameters. With this online tool, users can perform many of the analyses
shown in this article without having to install or write code in R.

This article only used the main features of R Sequential for planning and performing sequential analyzes with con-
tinuous, group, or mixed group-continuous Poisson and binomial data. Further features, explanations, and examples are
available in the PDF user guide, which accompanies the R Sequential package. All calculations in this article were run
using version 3.3.1 from http://CRAN.R-project.org/package=Sequential.
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APPENDIX

Here we deliver the command lines for the calculations shown along the article using the Sequential package.

Command lines for Section 3
Table 1 was produced with command lines in similarity with the following:

SampleSize.Binomial(RR=c(2,4),alpha=0.05,

https://www.bestinitiative.org/wp-content/uploads/2021/02/C19-Vaccine-S%25%20afety-Protocol-2021.pdf
https://www.bestinitiative.org/wp-content/uploads/2021/02/C19-Vaccine-S%25%20afety-Protocol-2021.pdf
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power=c(0.9,0.99),z=0.25,Tailed="upper")
Table 2 was produced with the following command line:
SampleSize.Poisson(alpha=0.05,power=c(0.9,0.99),M=1,D=0,
RR=c(2,4),Tailed="upper")
The following command line exemplifies how Table 3 was produced:
SampleSize.CondPoisson(cc=50,D=0,alpha=0.05,
power=c(0.9,0.99),RR=2)
Table 4 was produced with the following command line and outputs:
res<- Performance.Threshold.Poisson(SampleSize=90,
CV.lower=c(2.5,2.6,2.7,2.8),CV.upper=c(3,3.1,3.2,3.3)
GroupSizes=c(25,20,20,25),Tailed="two",
Statistic="MaxSPRT",Delta="n",RR=c(0.3,0.9,1,1.2,1.5))
res
$AlphaSpend_lower
[1] 0.006467484 0.006467484 0.006467484 0.006467484
$AlphaSpend_upper
[1] 0.00569632 0.01033923 0.01306292 0.01533008
$events_lower
[1] 14 30 47 68
$events_upper
[1] 39 63 87 116
$Performance
RR Power ESignalTime ESampleSize
[1,] 0.3 0.97843535 25.00000 26.40170
[2,] 0.9 0.02376536 25.87450 88.47603
[3,] 1.0 0.02179756 41.01881 88.93233
[4,] 1.2 0.29882956 57.76333 80.36673
[5,] 1.5 0.96483674 42.79107 44.45109
Critical values calculation in Section 3.2:
cv1<- 0; cv2<- 10; cvm<- (cv1+cv2)/2; alpha<- 0.05; alphain<- 0; count<- 0;
aux<- log(10/(10̂(-6)))/log(2)
while(abs(alpha-alphain)>10̂6)&count<aux){
count<- count+1
alphain<- Performance.Threshold.Poisson(SampleSize=20,
CV.upper=cvm,GroupSizes=rep(1,20),Tailed="upper",
Statistic="Pocock",RR=1)$Performance[[2]]
if(alphain>alpha)cv1<- cvmelse{cv2<- cvm}; cvm<- (cv1+cv2)/2}
resPocock<- Performance.Threshold.Poisson(SampleSize=20,
CV.upper=cvm,GroupSizes=rep(1,20), Tailed="upper",
Statistic="Pocock",RR=c(1,2))
The object resPocock$AlphaSpend contains the alpha spending implied by Pocock’s test.
Figure 1 and Table 6 were obtained with the command lines similar to:
resM<- Performance.AlphaSpend.Poisson(SampleSize=20, alpha=0.05,RR=2,
alphaSpend=1, rho=0.5,gamma="n",Statistic="MaxSPRT",
Delta="n",Tailed="upper")
Performance.Threshold.Poisson(SampleSize=20,CV.lower="n",
CV.upper=resM$cvs,GroupSizes="n", Tailed="upper",Statistic="MaxSPRT",
Delta="n",RR=c(1,2))
The solutions for constructing Figure 3 can be obtained with the following command lines:
Optimal.Binomial(Objective="ETimeToSignal",N="n",z=1,
alpha=0.05,power=0.8,RR=2,GroupSizes="n",Tailed= "upper")
Optimal.Binomial(Objective="ESampleSize",N="n",z=1,
alpha=0.05,power=0.8,RR=2,GroupSizes="n",Tailed= "upper")
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The content of Figure 4 was calculated with the following command lines:
Optimal.Binomial(Objective="ETimeToSignal",N="n",z=1,
p="n",alpha=0.05,power=c(0.8,0.8),RR=c(0.5,2),
GroupSizes="n",Tailed= "two")
For calculating the optimal solution of Section 3.3:
Optimal.Binomial(Objective="ETimeToSignal",N="80",z=1,
alpha=0.05,power=0.8,=2,GroupSizes="n",Tailed= "upper")

Command lines for Section 4
The lower and upper critical values presented in Table 8 of Section 4.2 can be reproduced with the following command
lines:

AnalyzeSetUp.wBinomial(name="Treatments_AxB",N=1000,
alpha=0.05,M=1,rho=0.5,
title="Treatment A vs Treatment B comparison",
address="C:/Users/Example",Tailed="two")
Analyze.wBinomial(name="Treatments_AxB",test=1,
z=c(1,1,1,1,1),w=c(0.05,0.08,0.09,0.11,0.3),
ExposureA=c(0,0,0,0,1,0),ExposureB=c(0,0,0,0,0,0))
The critical values in the scale of the number of events and related alpha spending in Section 4.3 were obtained with

command lines in similarity to:
AnalyzeSetUp.Poisson(name="PediarixVaccine",SampleSize=20,
alpha=0.05,M=1,AlphaSpendType="power-type",rho=0.5,
title="Pediarix vaccination",address="C:/Users/Example")
Analyze.Poisson(name="PediarixVaccine",test=1,mu0=0.04,
events=0)
Analyze.Poisson(name="PediarixVaccine",test=2,mu0=0.06
,events=1)
⋮
Analyze.Poisson(name="PediarixVaccine",test=10,mu0=0.12
,events=0)
The calculations in Section 4.4 were obtained with the following command lines:
Performance.AlphaSpend.CondPoisson(K=20,cc=37,alpha=0.05,
AlphaSpend=1,GroupSizes="n",rho=1.5,gamma="n",
Tailed="upper",RR=2)
AnalyzeSetUp.CondPoisson(name="INFLUENZA",
SampleSizeType="Events",K=20, cc=37,alpha=0.05,
M=1,AlphaSpendType="power-type",rho=1.5,
title="n",address="C:/Users/Example")
Analyze.CondPoisson(name="INFLUENZA",test=1,events=1,
PersonTimeRatio=0.044)
Analyze.CondPoisson(name="INFLUENZA",test=2,events=5,
PersonTimeRatio=0.046)
Analyze.CondPoisson(name="INFLUENZA",test=3,events=3,
PersonTimeRatio=0.025)
Analyze.CondPoisson(name="INFLUENZA",test=4,events=3,
PersonTimeRatio=0.024)

Command lines for the relative risk estimates in Table 7
MLE_R<- function(cases,SampleSizes,z)

{
# cases: number of new adverse events from Treatment B in each test until the ith

test.
# SampleSizes: number (A+B) of new adverse events in each test until the ith test.
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# z: matching ratio in each test until the ith test.
recand<- matrix(seq(0.01,10,0.01)”1)
lr<- function(rr){
return(prod(choose(SampleSizes,cases)*((1/(1+z/rr))̂ (cases))*((1-1/(1+z/rr))̂

(SampleSizes-cases))))
}
veccand<- apply(recand,1,lr)
Rhat<- seq(0.01,10,0.01)[veccand==max(veccand)]
return(Rhat)
}
Rparciais<- rep(0,length(cases))
for(i in 1:length(cases)){
casesh<- cases[1:i]
SampleSizesh<- ni[1:i]
zh<- z[1:i]
Rparciais[i]<- MLE_R(casesh,SampleSizesh,zh)
}


