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A B S T R A C T   

Humans differ in their capacity for integrating perceived events and related actions. The “Theory of event 
coding” (TEC) conceptualizes how stimuli and actions are cognitively bound into a common functional repre-
sentation (or “code”), known as the “event file”. To date, however, the neural processes underlying the devel-
opment of event file coding mechanisms across age are largely unclear. We investigated age-related neural 
changes of event file coding from late childhood to early adulthood, using EEG signal decompositions methods. 
We included a group of healthy participants (n = 91) between 10 and 30 years, performing an event file 
paradigm. Results of this study revealed age-related effects on event file coding processes both at the behavioural 
and the neurophysiological level. Performance accuracy data showed that event file unbinding und rebinding 
processes become more efficient from late childhood to early adulthood. These behavioural effects are reflected 
by age-related effects in two neurophysiological subprocesses associated with the superior parietal cortex (BA7) 
as revealed in the analyses using EEG signal decomposition. The first process entails mapping and association 
processes between stimulus and response; whereas, the second comprises inhibitory control subprocesses sub-
serving the selection of the relevant motor programme amongst competing response options.   

1. Introduction 

In cognitive neuroscience research, understanding the mechanisms 
underlying cognitive control and response selection during perception 
and action is of great importance. The term cognitive control can be 
regarded to be synonymous to executive functions (Diamond, 2013), 
albeit there are nuances between these definitions (Nigg, 2017) and 
multiple facets of cognitive control processes can be distinguished 
(Diamond, 2013; Freund et al., 2021). Several lines of evidence sug-
gest that that cognitive control processes are subject to profound 
developmental changes across childhood and young adulthood in 
typical populations (e.g., Friedman et al., 2009; Luna, 2009; Luna 
et al., 2010; Marek et al., 2015; Munakata et al., 2012; Vedechkina and 

Borgonovi, 2021), which are also of relevance for developmental 
neuropsychiatric disorders (Arnsten and Rubia, 2012; McTeague 
et al., 2017; Nigg, 2017). However, a common theme that runs 
through all these lines of research is the tenet that cognitive control 
relates to the processes of translating a specific stimulus input to an 
appropriate behavioral output in a given task context. What is thus 
central for any form of cognitive control and its development is 
how stimulus input becomes associated with a particular response 
and how this association is then represented (Freund et al., 2021). A 
prominent conceptual framework addressing how perceived events 
(i.e., perceptual processes) and related response actions (i.e., sensori-
motor processes) are integrated and represented in the brain is the 
“Theory of Event Coding” (TEC). TEC conceptualizes how 
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perception-related stimulus features and representations of action 
planning as well as implementation are stored and represented in a 
common functional network (Hommel et al., 2001). In particular, TEC 
proposes that the perception of an object triggers a specific corre-
sponding response, since the binding of object features (e.g. orientation, 
colour, or location) with response actions (e.g. right or left finger 
movement) results in the creation of a transient, episodic “event file”, 
which is the mental representation of stimulus features and the 
accompanying action (Hommel, 1998). Once an event file has been 
formed, it is automatically activated whenever the corresponding 
stimulus or response is re-encountered (Hommel et al., 2001). This 
“modus operandi” of event coding affects the way responses are suc-
cessfully selected and carried out. In cases where the same stimuli 
require the execution of different responses, previously created 
stimulus-response associations in an event file may cause difficulties 
because earlier bindings and related expectancies are only partially met. 
As a result, the preestablished event file has to be updated, leading to 
“partial repetition costs” that are commonly reflected in longer reaction 
times (RTs) and higher error rates. In contrast, whenever at least one 
stimulus (or one stimulus feature of an object) is repeated and requires 
the same response as before, pre-established bindings facilitate subse-
quent responses, leading to “partial repetition benefits” (Colzato et al., 
2006; Frings et al., 2020; Hommel, 1998; Hommel et al., 2001). 

Event files are not represented by individual neurons or local neural 
populations but by widely distributed networks (Hommel, 2009; Kiku-
moto and Mayr, 2020; Takacs et al., 2020a). Past studies using neuro-
physiological methods have shown that the creation and updating of 
stimulus-response bindings in event files require the integration of in-
formation processing across distant brain areas, particularly of regions 
in the inferior and parietal cortex (Kikumoto and Mayr, 2020; Petruo 
et al., 2019, 2016; Takacs et al., 2020a, 2020b). Processes underlying 
event file coding can be modulated by the dopaminergic system (Colzato 
et al., 2007a, 2007b, 2012, 2013; Colzato and Hommel, 2008). For 
instance, spontaneous eyeblinks, affect-inducing pictures and cannabis 
consumption (i.e. factors related to the activation of the dopaminergic 
system) have been associated with cognitive control and binding 
strength assessed with event-file paradigms (Colzato et al., 2007b, 
2007a; Colzato and Hommel, 2008). Later studies emphasized the role of 
striatal dopaminergic pathways for event coding, because binding 
strength was predicted by polymorphisms of the dopamine transporter 
gene DAT1 and by dopaminergic medication in patients with Parkin-
son’s disease (Colzato et al., 2013, 2012). Both the importance of 
distributed brain activity mediated via long-range connections and the 
role of the dopamine system are of direct relevance to developmental 
dynamics affecting event file coding. 

Cognitive development across the lifespan is associated with 
neuroanatomical and neurochemical network changes (Bäckman et al., 
2006; Hämmerer et al., 2014; Li, 2012; Li et al., 2006). There is ample 
evidence showing that prefrontal and parietal cortices develop rather 
gradually during childhood and adolescence (Andre et al., 2016; Crone, 
2014; Crone and Steinbeis, 2017; Darki and Klingberg, 2015; Luna et al., 
2010; Ofen et al., 2012; Shing et al., 2010; van Duijvenvoorde et al., 
2016). The protracted development of the frontal-parietal circuitries at 
the level of cortical networks is also accompanied by the late maturation 
of cortical dopaminergic modulation. The efficacy (e.g. the availability 
of dopamine synthesis or dopamine receptor protein) of subcortical and 
cortical dopamine systems shows a lead-lag pattern during typical 
development (see Li, 2012 for review). Using positron emission to-
mography (PET) imaging to measure dopamine receptor functions in 
vivo, a study by Jucaite et al. (2010) showed that dopamine D1 receptor 
function in the prefrontal cortex displays a gradual age-dependent 
development until late adolescence; in contrast, D1 receptor function 
in subcortical regions (i.e., dorsal or ventral striatum) reaches adult level 
already in late childhood/early adolescence. 

At the functional level, previous research has shown that the matu-
ration of the frontal and parietal networks parallel and contribute to the 

development of working memory and related executive control func-
tions, such as task switching (Crone and Richard Ridderinkhof, 2011; 
Karbach et al., 2011; Kray et al., 2008), as well as the development of 
intentional memory organization processes that help bind together 
different to-be-remembered items of a memory episode (e.g., Li et al., 
2006; Shing et al., 2010). Of particular relevance for the current study, 
previous work points to task-switching and action control deficits in 
childhood, as reflected in greater effects associated with action execu-
tion and reliance on stimulus-response associations (Crone et al., 2006; 
Karbach et al., 2011; Kray et al., 2008). Environmental supports, such as 
verbal labelling, seem to enhance associations between task-relevant 
features and event representation, therefore are helpful for reducing 
children’s action control deficits (Karbach et al., 2011; Kray et al., 
2008). A behavioural study in the context of TEC by Hommel and col-
leagues (2011) revealed that processes of event file binding are 
age-dependent: partial repetition costs, which are reflected by longer 
RTs and higher error rates in situations when stimulus-response asso-
ciations are altered across trials, were found to be higher in childhood 
than in early adulthood, suggesting that the efficiency of updating 
stimulus-response bindings develop gradually from childhood to adult-
hood. To date, however, the neural mechanisms underlying the devel-
opment of event-file coding processes are still largely unclear. 

To fill this gap, here we investigated neurophysiological dynamics 
underlying the development of event file coding using EEG methods. On 
the basis of event-related potentials (ERP), it was previously possible to 
detect the temporally segregated stages of information processing dur-
ing event-file coding in healthy adults and adult patients with Tourette 
syndrome (Kleimaker et al., 2020; Petruo et al., 2016; Takacs et al., 
2020a, 2020b). Furthermore, EEG source localization methods are 
useful to delineate the underlying functional neuroanatomical networks. 
For instance, the P1 ERP-component is known to mirror early stimulus 
categorization and encoding of response-relevant stimuli, specifically in 
the superior parietal lobe (BA7) (Klimesch, 2011; Petruo et al., 2016), 
while the P3 ERP-component is associated with processes of selecting 
the appropriate response in the inferior parietal lobe (BA40) (Petruo 
et al., 2016; Takacs et al., 2020b). The P3 amplitudes might therefore 
reflect a reactivation of stimulus-response links and be indicative for 
event binding. However, it has to be considered that ERPs may not be 
precise enough to capture different subprocesses of event file coding. 
That is because different processes from overlapping brain regions are 
intermingled within the EEG signals and are difficult to discern 
(Mückschel et al., 2017; Ouyang et al., 2015; Stock et al., 2017; Takacs 
et al., 2020a, 2020b). Feature binding in the TEC framework encom-
passes at least three different processes: stimulus-related feature binding 
into object files, response-related feature binding into action files, and 
an associative binding that combines both processes into event files 
(Hommel et al., 2011). In this regard, the residue iteration decomposi-
tion method (RIDE) serves to disentangle neurophysiological processes 
of event file coding. RIDE decomposes the EEG signal into different 
activity clusters: the S-cluster predominantly related to early sensory 
attention and perception; the R-cluster related to response preparation 
and execution of the response; and the C-cluster related to cognitive 
processes involved in response selection or stimulus-response bindings 
(Ouyang et al., 2011, 2017, 2015). Given the striking similarities and 
overlaps of subprocesses involved in event-file coding as proposed by 
TEC (Hommel et al., 2011), recent studies applying RIDE on data 
collected using TEC paradigms have found for event file binding pro-
cessing to be more precisely captured in the C-cluster than in the un-
decomposed EEG data (Kleimaker et al., 2020; Opitz et al., 2020; Takacs 
et al., 2020a, 2020b). Of note, the P3 time window is incorporated in the 
C-cluster. Thus, similar to the P3, results from earlier work showed that 
the amplitudes of the C-cluster after RIDE decomposition were smaller 
when feature binding processes were easier and that this was related to 
better performance (Takacs et al., 2020b). At the source level, these 
event-coding effects were accompanied by activity changes mainly in 
the superior frontal gyrus (BA6) and the inferior parietal cortex (BA40). 
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Earlier and later time ranges, incorporated in the S- and R-clusters, 
appeared to reflect object- and response-file related processes, respec-
tively (Takacs et al., 2020a, 2020b). RIDE allows to account for 
intra-individual variability in EEG data (Ouyang et al., 2017). Interest-
ingly, intra-individual performance fluctuations in behaviour and stan-
dard ERPs were previously shown to change as a function of age 
(Bodmer et al., 2018; Li et al., 2004; Papenberg et al., 2013). Such 
fluctuations during development pose a general challenge when 
comparing neurophysiological correlates of cognitive performance 
across age groups. For developmental studies, RIDE has been shown to 
be a particularly suitable tool to circumvent these comparability prob-
lems (Bodmer et al., 2018; Giller et al., 2019). The reason is that RIDE 
decomposes EEG data into different clusters, based on latency vari-
ability. In comparison to standard ERPs, it minimizes residual error due 
to noise and therefore accounts for individual and age-related differ-
ences in intraindividual variability in the data. 

In the current study, we investigated event file processing in a large 
group of healthy participants covering development from late childhood 
to early adulthood. Our aim was to investigate the development of 
neural correlates of event file coding. Since it is well conceivable that 
action control processes may implicate the development of event-file 
coding and based on previous findings reviewed above, we hypothe-
sized that particularly the C-cluster, but not the S- and R-cluster, would 
reveal age-related differences of event file processing. Given that the 
maturation of long-range networks and of the dopaminergic system 
might affect event file processes (Colzato et al., 2007a, 2007b, 2012, 
2013; Colzato and Hommel, 2008; Crone, 2014; Crone and Steinbeis, 
2017; Hämmerer et al., 2014; Li, 2012; Luna et al., 2010; Petruo et al., 
2016; Takacs et al., 2020b) and that event file processes were differently 
modulated in relation to age (Hommel et al., 2001), we expected event 
file processes to develop gradually from childhood into late adolescence. 
Because the inferior parietal area has been attributed to C-cluster ac-
tivity modulation during event file processing (Kleimaker et al., 2020; 
Takacs et al., 2020b) and since parietal regions were associated to 
maturational processes of cognitive control (Andre et al., 2016; Crone 
and Richard Ridderinkhof, 2011; Darki and Klingberg, 2015; Luna et al., 
2010; Ofen et al., 2012; Shing et al., 2010; van Duijvenvoorde et al., 
2016), we further hypothesized that parietal regions may underlie 
age-related differences during event file coding. 

2. Methods 

2.1. Participants 

A sample of N = 91 participants in the age range from 10–30 years 
was recruited (44 females and 47 males, mean age = 18.14, SD = 6.23, 
74 right-handed). Among the participants, there were n = 54 children 
and adolescents under the age of 18 (29 females) and n = 37 adults 
above the age of 18 (15 females). Handedness was assessed through self- 
report and during the interview and was unknown for 11 participants. 
As confirmed by clinical interviews and questionnaires, they did not 
report any history of psychiatric or neurological disorders, did not take 
centrally acting medication, and had normal or corrected-to-normal 
vision. Children and adults were recruited from participant pools of 
the Technische Universität Dresden, the University Clinic Carl Gustav 
Carus, the Universität zu Lübeck, and the Eötvös Loránd University in 
Hungary. Across all study sites, each subject received financial 
compensation of 50€ after participating in this experiment. 

Prior to the experimental procedure, all participants were informed 
about the procedures for data collection and publication. Written con-
sent was provided by all subjects or their legal guardians (in case of 
children) prior to study participation. The study was performed in 
accordance with the declaration of Helsinki and was approved by the 
ethics committee of the TU Dresden (EK 359092017). 

2.2. Task 

The present study used the “automatic” event file coding paradigm 
(Hommel, 1998; Hommel et al., 2001), which has been slightly modified 
and used in our group before (Colzato et al., 2006; Kleimaker et al., 
2020; Petruo et al., 2016, 2016; Takacs et al., 2020a, 2020b). A sche-
matic diagram of the paradigm is shown in Fig. 1. 

Participants performed the task on a 17-inch CRT screen, at a dis-
tance of 60 cm. Three vertically aligned boxes, each measuring 2.4 × 0.9 
cm, were presented in the middle of the screen. First, a response cue was 
presented in the middle box, which was either a left- or right-pointing 
arrowhead. The cue orientation needed to be remembered and was 
relevant for the first response execution (R1). After the presentation of 
the cue, two vertically or horizontally aligned lines corresponding to 
Stimulus 1 (S1) and by the following Stimulus 2 (S2) appeared. S1 and 
S2 varied randomly in orientation (vertical or horizontal), location (top 
or bottom), and colour (red or green). Thus, trials differed in the amount 
of feature overlaps between S1 and S2: no feature overlap, partial (one 
or two) feature overlap, or full (identical) feature overlap. In every trial, 
response R1 and response R2 had to be carried out following the stimuli 
(S1 or S2, respectively). To respond, participants used the left index 
finger to press the left key, or the right index finger to press the right 
control key of a computer keyboard. Thus, R1 and R2 within a trial could 
be identical in response repetition condition or different in the response 
alternation condition. Participants were told that S1 and S2, and S1 and 
R1 were not systematically related to each other. R1 was entirely in-
dependent of the orientation, colour, or location of S1, but due to their 
temporal proximity, stimulus features of S1 can be cognitively bound to 
R1. Regarding the timing of each trial, the cue was first presented for 
1500 ms, followed by a blank screen (1000 ms). Participants were 
instructed to carry out the first response (R1) (i.e. right or left keypress) 
according to the direction shown by the cue (right- or left-pointing 
arrowhead) after S1 appeared (presentation duration: 500 ms). Subse-
quently, a blank screen (2000 ms) was followed by S2, which lasted 
2000 ms or until R2 was executed. R2 was the response to the orienta-
tion of S2 (i.e. a left keypress was required when a lying rectangle and a 
right key when a standing rectangle was shown). The whole session 
included at least 384 trials, which were divided into three blocks of 128 
trials. In case R1 was incorrect, the same trial was repeated three times 
at maximum. The current sample did not exceed the presentation of 597 
trials (M = 444.7; SD = 45.3). Between trials, a fixation cross was shown 
in the middle of a black screen (1500–2000 ms). 

The common finding using this task is that previously estab-
lished event file bindings, which are due to identical stimuli 
require different responses (as in the response alteration condition, 
cause problems because expectancies on stimulus-response asso-
ciations are not or only partially fulfilled under such circumstance. 
This requires reconfiguration of the event file and integrated 
sensorimotor associations, which could slow down responses and 
increase error rates. In contrast, responding is facilitated whenever 
identical/similar stimuli trigger the same responses. Therefore, 
binding is reflected by an interaction “feature overlap x response“. 
The binding effect was defined as the difference values of full 
feature overlap minus the no feature overlap condition for each of 
the two response conditions (alteration vs. repetition). As a first 
step, we checked whether the principal task effects associated with 
the event-file coding paradigm are also observed in our sample 
covering a broad age range. Results presented in sections 3.1.1,3.1.2 
and 3.2 report task effects for the accuracy and reaction time, and 
neurophysiological data, respectively. In the second step, we con-
ducted correlational analyses to investigate age-related effects and 
the results are reported in sections 3.1.3 (behavior effects) and 3.3 
(neurophysiological effects). 
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2.3. EEG recording and processing 

To record the EEG, 60 Ag/AgCl electrodes (EasyCap, Germany) were 
connected to a BrainAmp amplifier and to the Brain Vision Recorder 1.2 
software (Brain Products, Germany). The cap layout is based on the 
standard 10 %-system but with equidistant electrode positions. The 
coordinates for the ground electrode were at θ = 58, φ = 78 and for the 
reference electrode at θ = 90, φ = 90. The sampling rate was 500 Hz, and 
all electrode impedances were kept below 5 kΩ. Data pre-processing 
steps were performed using Brain Vision Analyzer II (Brain Products) 
and corresponded to the previous studies of our lab analysing event 
coding data (Kleimaker et al., 2020; Takacs et al., 2020a, 2020b). The 
EEG data were down-sampled to 256 Hz, band-pass filtered (IIR filter: 
0.5–20 Hz, order of 8), and then re-referenced to an average reference. 
Technical artifacts were removed with a manual inspection of the data. 
That is, the data were screened by an examiner and periods in the 
data relating to breaks between the three task blocks were dis-
carded. Moreover, the data were screened for gross technical ar-
tifacts (e.g., offsets in the EEG) and these parts of the data were also 
discarded. The independent component analysis (Infomax algorithm) 
was used to eliminate remaining periodical artifacts, such as eye 
movements, cardiovascular or muscular activity. Next, segmentation 
was performed resulting in epochs of − 1000 ms before S2 presentation 
until 1000 ms after S2. Although event file binding occurs after the 
creation of S1-R1-links, retrieval, unbinding, and updating processes are 
typically studied after S2-R2 establishment (Hommel, 1998). The anal-
ysis only comprises trials with correct R1 and R2 responses. For all 
combinations of the four feature overlap levels (no, one, two, and full 
overlap between S1 and S2) and for the two response types (repetition 
vs. alternation) separate segments were created. An automated artifact 
rejection procedure in the segmented data was conducted in the 
time period spanning an interval starting 1000 ms before and 
ending 1000 ms after the S2. The criteria were as follows: segments 
containing amplitudes higher than 150 μV, lower than − 150 μV or ac-
tivities lower than 0.5 μV over a time interval of at least 100 ms were 
discarded. A current source density (CSD) transformation was applied 
(Kayser and Tenke, 2015) to gain reference-free EEG data. A baseline 
correction was performed on a time interval of − 200 to 0 ms prior to the 
S2 stimulus onset. Finally, data of each experimental condition (overlap 
level and response type) and each participant were averaged. 

2.4. Residue iteration decomposition 

After the initial pre-processing steps, the EEG data was further pro-
cessed using the residue iteration decomposition (RIDE) (Ouyang et al., 
2015, 2011). RIDE allows to account for intra-individual variability, but 
also to distinguish different event file processing stages that are inter-
mixed in usual ERPs (Mückschel et al., 2017, 2017; Ouyang et al., 2015; 
Takacs et al., 2020a, 2020b). Based on latency variability of different 
components, which correspond to different information processing 
levels, RIDE decomposition is employed on single-trial ERPs and sepa-
rately for each electrode. The current study applied RIDE according to 
established procedures (Kleimaker et al., 2020; Mückschel et al., 2017; 
Ouyang et al., 2015; Takacs et al., 2020a, 2020b) in MATLAB (Math-
Works, Inc., Natick, MA) and based on the RIDE toolbox (for a manual, 
see http://cns.hkbu.edu.hk/RIDE.htm). By estimating latency informa-
tion from stimulus and response onsets, we obtained the S (“stimulus”) 
and R (“response”) clusters. The C (“central”) clusters are extracted by 
estimating and iteratively improving the latency information in every 
single trial. Time windows for each cluster are predefined such that the 
S-cluster covers the stimulus onset and the following processes from P1 
to N2, the R-cluster occurs around the response, and the C-cluster in-
corporates the time ranges of P2, N2, and P3 (Ouyang et al., 2017, 
2015). Accordingly, we applied the interval from 200 ms prior to S2 
presentation to 700 ms after S2 for the S-cluster; from 300 ms before 
until after R2 for the R-cluster and from 150 ms to 800 ms after S2 for the 
C-cluster. An iterative decomposition with an L1-norm minimization is 
used in RIDE, which generates median waveforms. That is, C and R are 
subtracted from each trial and the residual of all trials are aligned to the 
latency information of S. Consequently, the median waveform in the 
S-cluster interval are obtained for all time points. Therefore, 
RIDE-decomposed data is less prone to intra-individual variability in the 
data in contrast to standard ERP, which is rather based on simple 
averaging and minimization of the L2-norm of the data (Ouyang et al., 
2015, 2011). To estimate the C- and R-clusters, the same procedure is 
performed. Please refer to Ouyang et al. (Ouyang et al., 2015) for further 
detailed descriptions of the RIDE procedure. For data quantification, we 
selected electrodes based on scalp topography plots and determined the 
corresponding time windows by visual inspection. Results from our 
sample spanning a wide age range showed that amplitude latencies and 
related electrode sites differ between children and adults. We therefore 
selected new time windows and considered new electrodes incorpo-
rating latency information of the whole developmental sample and 

Fig. 1. Schematic illustration of the task. In each trial, participants were first asked to look at a fixation cross prior to cue and stimulus presentation. After S1, 
participants responded depending on cue direction (R1). Following S2, participants answered in relation to the shape (an upright, standing rectangle or a lying, 
horizontal rectangle) of S2 (R2). Each stimulus varied randomly in orientation (vertical or horizontal), location (top or bottom), and colour (red or green). 
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which cannot lean on previous methodologies that included adult 
samples only (Takacs et al., 2020b, 2020a). The S-cluster was selected at 
electrode P7, based on scalp topography. After visual inspection, we 
chose the time range of 80–150 ms in order to obtain P1 component 
information, and the time range between 150–210 ms to obtain the N1. 
For comparability, we also analysed electrode P8 at the contralateral 
side, using the same time intervals. For the C-cluster, we chose the P3 
time window because this was found to reflect event-file coding in 
previous studies (Petruo et al., 2016; Takacs et al., 2020b). We pooled 
the C-cluster data across electrodes P3, PO1 and P7, because the positive 
peak (i.e. P3 component) was most pronounced across these electrode 
sites and we selected the time range of 300–600 ms. To assess event-file 
coding in the R-cluster, we selected electrode P4, because this electrode 
revealed the strongest P3 component signal in the time between 
400–500 ms. Because we were interested in potential processes in the 
motor cortex, we additionally selected the electrodes C3 and C4 within 
the same R-cluster time range. Finally, the mean amplitudes for the 
corresponding time intervals were extracted at the single-subject level. 

2.5. Source localization 

We used sLORETA (standardized low-resolution brain electromag-
netic tomography) (Pascual-Marqui, 2002) to examine which functional 
neuroanatomical structures are linked to RIDE-decomposed EEG activity 
correlating with age. sLORETA provides a single linear solution to the 
inverse problem without a localization bias (Marco-Pallarés et al., 2005; 
Pascual-Marqui, 2002; Sekihara et al., 2005).The validity of the 
approach has been corroborated by TMS and EEG/fMRI studies (Dippel 
and Beste, 2015; Ocklenburg et al., 2018; Sekihara et al., 2005). sLOR-
ETA uses the MNI152 template (Mazziotta et al., 2001) and the 
intra-cerebral volume is split in voxels with 5 mm spatial resolution. For 
each voxel, the current density is calculated using a realistic head model 
(Fuchs et al., 2002). sLORETA was calculated for time period in the EEG 
data correlating with age (see section 3.3 in the results). In a 
data-driven analysis step, we examined which time period after the 
locking time point (i.e. time point zero; S2 stimulus presentation) 
revealed significant correlations between RIDE-decomposed 
EEG-amplitude data and age. For time periods correlating with age 
(see results section for details), the mean source of the EEG activity in 
this time period was estimated. Statistically, this refers to contrast 
against zero. This contrast was computed using the sLORETA-built-in 
voxel-wise randomization tests with 2000 permutations, based on sta-
tistical non-parametric mapping (SnPM). Significant voxels with sig-
nificant differences (p < .01, corrected for multiple comparisons) were 
shown in the MNI-brain. 

2.6. Statistics 

For statistical analyses, SPSS (IBM Corp. Released 2017) was used. 
For the behavioural data, mean accuracy (percentage of correct re-
sponses) and mean RTs (for correct responses) of each participant and 
each experimental condition were computed. Regarding effects of 
feature overlap, the accuracy and RT data were analysed in two-way 
repeated measures analysis of variance (ANOVA) with the number of 
overlapping features (no, one, two, and full overlap between S1 and S2 
features) and response (repetition vs. alternation) as within-subject 
factors. This was done to examine the principle findings of event file 
binding effects observed in previous studies (Colzato et al., 2006; 
Hommel et al., 2001; Kleimaker et al., 2020; Petruo et al., 2016; Takacs 
et al., 2020a, 2020b). This analysis confirmed that the strongest effects 
of response alternation vs. response repetition were evident between the 
no feature and the full feature overlap conditions (see results section). 
Similar to previous studies, we therefore only used these two feature 
overlap conditions for the binding effect analysis (Beste et al., 2016; 
Kleimaker et al., 2020; Takacs et al., 2020a, 2020b). The binding effect 
was defined as the difference values of full feature overlap minus the no 

feature overlap condition for each of the two response conditions 
(alteration vs. repetition). Higher values indicate stronger binding ef-
fects, irrespective of whether there were partial repetition benefits or 
costs. To examine developmental effects on event file processing, a hi-
erarchical multiple regression analysis with four steps were performed 
either with respect to RT or the accuracy data, in order to evaluate the 
relation between age and the effect of feature overlap (computed as the 
difference score between the full and no-overlap conditions) and of age. 
For the RIDE-decomposed EEG data, ANOVAs were used including the 
within-subject factors feature overlap (no feature overlap and full 
feature overlap) and response (repetition vs. alternation). The following 
average number of trials (with the minimum and maximum numbers) 
were entered in the EEG analysis: no feature overlap repetition M =
17.4, (7–28); no feature overlap alternation M = 20.8, (8–29); full 
overlap repetition M = 20.9, (5–33); full overlap alternation M = 18.3, 
(6–30). Similar numbers were found for previous studies on event file 
coding (Petruo et al., 2016; Takacs et al., 2020b). As mentioned before, 
RIDE uses the L1-norm minimization method, which accounts for 
intra-individual variability and therefore allows to obtain more reliable 
effects with low trial numbers compared to standard ERP approaches 
(Ouyang et al., 2015, 2011). In the S- and R-cluster, electrode positions 
were included as within-subject factor (P7 and P4; C3 and C4, respec-
tively). We reported η2

p effect sizes for the ANOVA. Bonferroni correc-
tion was performed on all pairwise comparisons. 

3. Results 

3.1. Behavioral data 

The accuracy and RT data based on the entire sample are shown in 
Fig. 2. 

3.1.1. Accuracy 
The ANOVA for the accuracy data showed the following results: A 

significant main effect for the response condition was found (F(1,90) =
17.1, p < 0.001, η2

p = 0.160), with participants showing lower scores in 
the response repetition condition than in the alternation condition 
(84.86 % ± 1.10 vs. 88.24 ± 0.93). No main effect was found for feature 
overlap (F(3,90) = 1.42, p = 0.24, η2

p = 0.016). Crucially, as anticipated, 
the feature overlap x response interaction was significant (F(3,90) =
104.7, p < 0.001, η2

p = 0.538), indicating that there was a binding ef-
fect: When the repetition of the response was required, accuracy scores 
increased from the no feature overlap (78.04 % ± 1.57) to the one 
feature overlap (83.08 % ± 1.23, p < 0.001), the two features overlap 
(86.54 % ± 1.23, p < 0.001) and the full feature overlap condition 
(91.69 % ± 0.88, p < 0.001). In contrast, in cases where alternation of 
the response was required, accuracy scores decreased from the no 
feature overlap (93.60 % ± 0.82) to the one feature overlap (91.05 % ±
0.83, p = 0.001), the two feature overlap (86.33 % ± 1.18, p < 0.001) 
and the full feature overlap condition (81.98 % ± 1.48, p < 0.001). The 
remaining pairwise comparisons were also significant (all p < 0.001). 

3.1.2. Reaction time 
Regarding the RT data, a significant main effect for feature overlap 

was found (F(3,90) = 6.23, p = 0.002, η2
p = 0.065), with faster RTs in 

the no feature overlap condition (542 ms ± 14), than in the one feature 
(555 ms ± 14, p = 0.003), the two feature (556 ms ± 14, p = 0.002) and 
the full feature overlap condition (557 ms ± 15, p = 0.036). Other 
pairwise comparisons were not significant (all p > 0.05). A significant 
main effect was also found for response type (F(1,90) = 5.33, p = 0.023, 
η2

p = 0.056), indicating faster RTs for the response alternation condition 
(549 ms ± 14), compared to the response repetition condition (556 ms ±
14). Importantly, a significant feature overlap x response interaction 
was found (F(1,90) = 45.6, p < 0.001, η2

p = 0.336), which reflects 
binding. Specifically, when repetition of response was required, RTs 
were faster in the full feature overlap condition (542 ms ± 14), 
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compared to the two features overlap (557 ms ± 14, p = 0.006), the one 
feature overlap (567 ms ± 15, p < 0.001) and the no feature overlap 
condition (557 ms ± 15, p = 0.026). Additionally, the reaction time in 
the one feature overlap condition was slower than in the two features 
overlap condition (p = 0.034). Alternation of responses, on the contrary, 
lead to faster RTs when no feature overlapped (528 ms ± 14) than when 
one feature overlapped (542 ms ± 14, p = 0.020), when two features 
overlapped (555 ms ± 13, p < 0.001) and when all features overlapped 
(572 ms ± 17, p < 0.001). RTs in the one feature condition were also 
faster compared to both the two feature and full feature overlap con-
dition (p < 0.001). The other pairwise comparisons were not significant 
(all p > 0.05). 

3.1.3. Age-related effects 
In our age continuous sample, we analysed age-related effects by 

conducting hierarchical multiple regression analyses separately for the 
accuracy and RT data. Since we were particularly interested in the 
development of binding, we first computed difference scores between 
full feature overlap and no feature overlap for each of the two response 
conditions (alternation vs. repetition). This was done because contrast-
ing these conditions reveals the strongest binding effects in accuracy and 
RT. The hierarchical regression analysis includes four steps, with age as 
the dependent variable. Accuracy or RT difference score derived from 
the response alternation condition was entered as a predictor in the first 
step, followed by difference score from the response repetition condi-
tion, the interaction between the scores of the two conditions and gender 
as predictors in the second, third and fourth step, respectively. 

Results regarding the accuracy data showed that difference score 
from the alternation condition did not significantly predict age differ-
ences (β = 0.22, t = 1.36, p = 0.18), whereas difference score from the 
repetition condition did significantly predict age differences (β = -0.44, t 
= -2.96, p = 0.04). The interaction between effects of feature overlap in 
the alternation and repetition conditions also significantly predicted age 
differences (β = -0.48, t = -2.34, p = 0.021). Gender did not significantly 
predict age differences (β = -1.12, t = -1.12, p = 0.27). In contrast, re-
sults concerning the RT data did not reveal any significant relations with 
age, neither for RT difference score derived from the alternation con-
dition (β = -0.20, t = -1.74, p = 0.09), nor from the repetition condition 
(β = 0.11, t = 0.75, p = 0.46), their interaction (β =- 0.089, t = -0.64, p =
0.53) or gender (β = -0.063, t = -0.58, p = 0.56). Taken together, these 
results show that age-related developmental difference in the effect of 
feature overlap on stimulus-response binding was only observed in 
performance accuracy but was not present in the RT data. Furthermore, 
the age-related effect depends on whether the responses had to be 
repeated or alternated. With increasing age, the partial repetition 
benefit of repeating the responses decreases, which suggests a gradual 
development of lesser reliance on processes that are associated with 
executing motor actions for event coding. Although response alternation 
(switching) resulted in partial repetition cost in terms of reducing per-
formance accuracy (see Fig. 2), this cost was of similar extent for in-
dividuals of different ages. 

3.2. Neurophysiology data (principal task-related effects) 

For EEG analysis, only difference scores between full and no feature 
overlap were used. The analyses reported in this section are only 
presented to examine that general task effects reported in the 
literature are evident in this data set as well. The main focus is the 
analysis on age-related correlations presented in section 3.3 (Fig. 3). 

As mentioned before, contrasting these two conditions shows the 
strongest binding effects. For the S-cluster, the ANOVA showed a main 
effect for electrode position when analysing the P1 time range (F(1,90) 
= 15.9, p < 0.001, η2

p = 0.150). Mean amplitudes were higher at elec-
trode P8 (12.1 μV/m2 ± 1.2) compared to electrode P7 (7.53 μV/m2 ±

1.21). No significant main effect was found for feature overlap (F(1,90) 
= 1.52, p = 0.221, η2

p = 0.017) or for response type, (F(1,90) = 0.47, p =
0.493, η2

p = 0.005). The electrode x feature overlap, electrode x 
response, feature overlap x response, as well as the three-way electrode x 
feature overlap x response interactions did not reveal significant effects 
(all F < 4.00, p > 0.05). In the N1 time range, results of the S-cluster 
showed a significant main effect for electrode position (F(1,90) = 11.9, p 
= 0.001, η2

p = 0.117), with higher negative values for P7 (-8.31 μV/m2 

± 1.90), compared to P8 (-1.70 μV/m2 ± 2.32). There was no main effect 
for feature overlap (F(1,90) = 2.16, p = 0.145, η2

p = 0.023) or for the 
response condition (F(1,90) = 0.46, p = 0.500, η2

p = 0.005). There were 
also no interactions for electrode x feature overlap, electrode x response 
and feature overlap x response interaction (all F < 4.00, p > 0.05). 
However, the feature overlap x response x electrode interaction was 
significant (F(1,90) = 4.53, p = 0.036, η2

p = 0.048). However, follow-up 
analyses were not significant for P7 (F(1,90) = 3.04, p = 0.085, η2

p =

0.033) or P8 (F(1,90) = 0.677, p = 0.413, η2
p = 0.007). Grand-average 

waveforms on P7 and P8 for the S-cluster are shown in Fig. 4. 
Grand-average waveforms within the P3 time window for the C- 

cluster are shown in Fig. 5. The scalp topography plot (see Fig. 5) 
revealed activity in the P3 time window that was spread over 
posterior electrode sites with a slight left-ward accentuation in the 
no feature overlap condition, in which responses were repeated. 
Inspection of the data revealed that amplitudes were highest at the 
electrode sites P3, PO1 and P7, which were thus pooled for the data 
analysis. The ANOVA showed a main effect of feature overlap (F(1,90) 
= 8.69, p = 0.004, η2

p = 0.088), with larger mean amplitudes in the no 
feature overlap condition (13.4 μV/m2 ± 1.05) than in the full feature 
overlap condition (9.14 μV/m2 ± 0.98). No main effect for response type 
was found (F(1,90) = 2.68, p = 0.105, η2

p = 0.029). The interaction 
feature overlap x response was significant (F(1,90) = 5.66, p = 0.019, η2

p 
= 0.059). Specifically, mean amplitudes dropped from the no feature 
overlap to the full feature overlap condition in cases where responses 
repeated (15.3 μV/m2 ± 1.38 vs. 8.82 μV/m2 ± 1.20, p = 0.001, d =
0.523). Mean amplitudes also dropped from the no feature overlap to the 
full feature overlap condition in response alternation conditions, but this 
was not significant (11.5 μV/m2 ± 1.13 vs. 9.50 μV/m2 ± 1.12, p =
0.174, d = 0.195). 

The scalp topography plots of the R-cluster revealed that 

Fig. 2. Mean accuracy and mean RT across overlapping feature levels for repeated (black line) and alternated (dashed line) responses based on the entire sample. 
Error bars represent standard error of mean. 
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Fig. 3. Correlation between accuracy score and mean RT differences (i.e. full feature overlap minus no feature overlap) and age. Correlations are depicted for both 
the response repetition (black line) and the alternation condition (dashed line). 

Fig. 4. Mean amplitude activity of the S-cluster in the P1 (80-150 ms, black shaded area) and N1 (150-210 ms, grey shaded area) time window for the P7 electrode 
(A) and the P8 electrode (B). S2 is presented at timepoint zero. Scalp topography plots depict the mean activity distribution in the respective time window across the 
four conditions. The line graphs show mean amplitudes for the feature overlap x response interactions, for the P1 time window (black lines) and N1 time window 
(grey lines), with standard errors. 
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activity was not only evident at central (motor) regions (which can 
be captured by C3 and C4 electrodes), but also revealed activity at 
posterior electrode leads. Analyzing the R-cluster at electrode P4 
(Fig. 6A), the ANOVA showed no main effect for feature overlap (F 
(1,90) = 0.009, p = 0.926, η2

p < 0.001), and no main effect for response 
type (F(1,90) = 0.35, p = 0.554, η2

p = 0.004). The feature overlap x 
response type interaction revealed significant results (F(1,90) = 4.63, p 
= 0.034, η2

p = 0.049). When the response was repeated, mean ampli-
tudes were larger for full overlapping features than for the no over-
lapping features condition (7.82 μV/m2 ± 1.17 vs 5.99 μV/m2 ± 1.28, p 
= 0.103, d = 0.156). When the response was alternated, mean ampli-
tudes were lower when all features overlapped than when no features 
overlapped (5.12 μV/m2 ± 1.17 vs 7.13 μV/m2 ± 1.21, p = 0.201, d =
-0.177). 

Since the R-cluster reflects activity related to the motor response, we 
also examined the R-cluster at electrode C3 and C4, which overlie the 
motor cortex (Fig. 6B and C). Results revealed a significant main effect 
for feature overlap (F(1,90) = 5.35, p = 0.023, η2

p = 0.056). The no 
feature overlap condition showed higher amplitudes than the full 
feature condition (2.12 μV/m2 ± 0.69 vs. 0.32 μV/m2 ± 0.86). The main 
effect for response condition was significant (F(1,90) = 7.56, p = 0.073, 
η2

p = 0.077) with higher amplitudes in the repetition condition 
compared to the alternation condition (2.32 μV/m2 ± 0.77 vs. 0.11 μV/ 
m2 ± 0.80). No main effect was found for channel position (F(1,90) =
3.33, p = 0.071, η2

p = 0.036). No effects were found for all types of 
interactions, which are electrode x feature overlap, electrode x response, 
feature overlap x response, as well as feature overlap x response x 
electrode (all F < 4.00, p > 0.05). 

Taken together, the neurophysiological data pattern well replicates 
general findings on task-related effects (i.e. effects of the experimental 
manipulations) found in other studies (Kleimaker et al., 2020; Petruo 
et al., 2016; Takacs et al., 2020b). This validates the methodological 
approach taken for the EEG data analysis. 

3.3. Neurophysiological data (age-related effects) 

To investigate developmental effects in event file binding at a 
neurophysiological level, we correlated the RIDE-decomposed EEG data 
with age. In order to find the relevant electrodes and the specific time 
intervals to explore developmental effects we used a completely data- 
driven approach where age was correlated with the amplitudes for 
every time point at each electrode. This was done because there were 
no clear a-priori hypotheses could be derived based on existing 
literature to inform at which electrode and time window possible 
correlations of neurophysiological processes with age are most 
evident. To this end, and in line with the procedure taken in the 

analysis of the behavioural data, the difference of the amplitudes in the 
full overlapping features minus the no overlapping feature condition for 
each response condition (alternation and repetition) was calculated and 
analysed separately for each RIDE cluster. Given that this study only 
detected event file binding effects (i.e. significant feature overlap x 
response interactions) in the C- and R-cluster, we excluded any age- 
related analysis on the S-cluster. Although the regression model 
showed a significant contribution of only the response repetition con-
dition for accuracy data, both response conditions (including alterna-
tion) were tested for potential effects at the neurophysiological level. We 
analysed both conditions, because underlying mechanisms of binding 
effects might manifest differently at the neurophysiological level than 
through behavioural measures such as accuracy and RT. Each data point 
within a time range of – 200–1000 ms and of each electrode was then 
correlated with age. This procedure was performed by controlling for 
the False Discovery Rate (FDR) per electrode, according to Benjamin & 
Hochberg (1995). Based on this method, we identified the electrodes 
and time intervals which best reflected the significant correlations of 
EEG activity and age. This method was performed for each cluster 
separately (Fig. 7A and B). Scatterplots of the obtained correlations at 
the corresponding electrodes and time windows are shown in Supple-
mentary Fig. 1. In the C-cluster, correlation analysis revealed that the 
mean amplitude difference between the feature overlap conditions in 
the alternation condition correlated negatively with age at electrode FC4 
in the time period of 260 ms–340 ms after S2 presentation (r = -0.39, p <
0.05). In the repetition condition, a negative correlation was found at 
electrode FC2 in the time period of 250–380 ms (r = -0.39, p < 0.05). 
Using these time periods for further sLORETA analysis revealed that the 
correlations were associated with activation modulations in the superior 
parietal cortex for both the alternation condition (BA7; MNI [x,y,z]: -6,- 
53,70) and the repetition condition (BA7; MNI [x,y,z]: -10,-65,65). 
Correlation on the R-cluster showed a positive correlation only in the 
alternation condition at electrodes P8 (r = 0.36, p < 0.05) and P10 (r =
0.37, p < 0.05) and at the time period of 438–460 ms. sLORETA indi-
cated that the activity was modulated in the superior parietal cortex 
(BA7; MNI [x,y,z]: -5,-65,65). 

4. Discussion 

This study’s aim was to further characterize processes of feature 
binding and response selection in the context of TEC by providing a 
more profound understanding of the neurophysiological correlates 
accompanying the development of these mechanisms from late child-
hood to early adulthood. Mechanisms underlying processes of 
binding stimulus and response features are of central importance 
in the context of developmental cognitive neuroscience, because 

Fig. 5. Mean amplitude activity in the P3 time window for the C-cluster (300-600 ms). S2 is presented at timepoint zero. The analysed time window is in shaded 
grey. Scalp topography plots illustrate the mean activity distribution in the respective time window across each of the experimental conditions. The line graph shows 
mean amplitudes for the feature overlap x response interactions, with standard errors. 
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cognitive control processes are subject to strong developmental 
changes across childhood and young adulthood (Friedman et al., 
2009; Luna, 2009; Luna et al., 2010; Marek et al., 2015; Munakata et al., 
2012; Vedechkina and Borgonovi, 2021) and a common theme that 
runs through all these lines of research in cognitive control is how 
stimulus input becomes associated with a particular response and 
how this association becomes represented (Freund et al., 2021). The 
TEC framework represents one important theoretical framework 
addressing this. Both at the behavioural and the neurophysiological 
level, the results of this study revealed event file binding effects 

(Hommel et al., 2001) and shed new light on age-related differences in 
processes of event file coding. 

On the behavioural level, our results confirm previous well- 
established findings on event file bindings (Colzato et al., 2006; Hom-
mel et al., 2001; Hommel, 2009; Hommel et al., 2011; Kleimaker et al., 
2020; Petruo et al., 2016; Takacs et al., 2020a, 2020b); i.e. that there 
was an interaction of feature overlap x response, reflecting partial 
repetition benefits and costs and event file binding (Colzato et al., 2006; 
Hommel, 1998; Hommel et al., 2001). More importantly, the strength of 
binding (i.e. the difference between the full feature overlap and the no 

Fig. 6. Mean amplitude activity in the P3 time window for the R-cluster (400-500 ms) at electrode P4 (A), C3 (B) and C4 (C). S2 is presented at timepoint zero. The 
analysed time windows are marked with a shaded area. Scalp topography plots show the mean activity distribution in the respective time window across the four 
conditions. The line graphs show mean amplitudes for the feature overlap x response interactions, with standard errors. 
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feature overlap) linearly decreased as a function of increasing age, 
which was the case for accuracy scores in the repetition condition. 
Therefore, general partial repetition benefits in terms of performance 
accuracy after re-encountering of at least one feature decrease with age. 
This suggests a gradual development of lesser reliance on processes that 
are associated with automatic retrieval or motor execution for event 
coding. However, general partial repetition costs, reflecting more diffi-
cult un-/rebinding and control processes after response alternation, did 
not vary as a function of age. Accuracy was previously shown to be a 
more robust and sensitive measure than RT data, specifically in children 
(Hommel et al., 2011; Karbach et al., 2011). This could explain the lack 
of age effects in the current RT data. However, when considering 
development in the other end of the life span it needs to be noted that 
younger participants tended to commit more errors and consequently to 
have prolonged experiments than older participants. Long lasting ex-
periments potentially influence fatigue, motivation and data quality. 
Therefore, future studies are encouraged to separate the age-effect from 
a potential confounder of task length. Nonetheless, the finding that 
binding effects are stronger in children than adults was also found in an 
earlier study (Hommel et al., 2011). Hommel and colleagues compared a 
group of children (aged 9–10) with adults (20–31) and older adults 
(64–76). In our current study, a larger cohort of participants distributed 
in age between 10–30 years was investigated. Using age as a continuous 
variable allows us to more closely explore the effects of age on event file 
coding across the studied age range. Over and above replicating previ-
ous findings, the current study therefore provides deeper insights into 
the developmental dynamics of binding during maturation, showing 
that children were stronger stimulus-response binders and that feature 
binding and response execution processes change with age. Most 
importantly, these developmental differences in event file binding 
observed at the behavioural level were systematically related to 
neurophysiological markers of event file processing. 

Considering neurophysiological processes in developmental studies, 
it is crucial to note the significance of intra-individual variability in 
behavioural performance and in EEG data known to change across the 
lifespan (Bodmer et al., 2017; Li et al., 2004; Papenberg et al., 2013). 
This was one reason why we analysed RIDE-decomposed data, which 
showed more reliable results than standard ERP in developmental 
studies (Bodmer et al., 2017; Giller et al., 2019). In addition to con-
trolling for age-related differences in intra-individual variability, RIDE 
also allowed us to differentiate underlying event file coding 
sub-processes. In line with previous studies (Kleimaker et al., 2020; 
Petruo et al., 2016; Takacs et al., 2020a, 2020b), the C-cluster and the P3 
ERP component reflected event file binding processes during which 
stimulus-response association are retrieved and updated. C-cluster am-
plitudes in the P3 time window revealed a feature overlap by response 
interaction. This is consistent with previous research by our group 
(Kleimaker et al., 2020; Opitz et al., 2020; Takacs et al., 2020a, 2020b). 
In the current study, amplitudes were smaller when all stimuli and the 
response were repeated compared to the more difficult condition in 
which no stimulus was repeated. This condition was represented by 
faster RTs and higher accuracy scores at the behavioural level, reflecting 
better performance compared to the more difficult conditions in which 
unbinding and re-binding of at least one new stimulus leads to partial 
repetition costs. In the current experimental setting, large C-cluster 

(caption on next column) 

Fig. 7. Correlations between RIDE-decomposed EEG data and age, based on 
mean amplitude differences between the full feature and no feature overlap 
(full–no) conditions. A) C-cluster: negative correlation at electrode FC4 within 
the alternation condition (top), 260-340 ms after S2 presentation and at elec-
trode FC2 within the repetition condition (below), 250-380 ms after S2 pre-
sentation. sLORETA showed correlation modulation in the superior parietal 
cortex (BA7) in both conditions. B) Positive correlation in the alternation 
condition in the R-cluster at electrodes P8 and P10, 438-460 ms after S2 pre-
sentation. sLORETA indicated activity modulation in the superior parietal 
cortex (BA7). 
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amplitudes, just as the P3, apparently correspond to increasing diffi-
culties of selecting the appropriate response (Petruo et al., 2016; Takacs 
et al., 2020b). Interestingly, no amplitude modulation was seen in the 
response alternation condition. This is in accordance with Takacs et al. 
(2020b), suggesting that full feature overlap with an alternating 
response supressed any response selection capacities, which explains 
low performance at the behavioural level. The literature on the P3 
component is very extensive in exploring the meaning of either 
increased or decreased amplitudes. Generally, P3 amplitudes become 
larger with unexpected, unusual targets or when subjects devote more 
effort to a (difficult) task, but they decrease with increasing uncertainty 
(Luck, 2014). Similarly, repetition of objects showed to evoke a reduced 
positivity, reflecting adaptation and enhanced stimulus processing effi-
ciency (Grill-Spector et al., 2006; Stefanics et al., 2018). While reduced 
neural activity was found to increase with better performance (Grill--
Spector et al., 2006), enhanced activity was linked to the presentation of 
novel stimuli and was more pronounced in children (Nordt et al., 2016). 
These studies show that reduced C-cluster amplitudes might reflect more 
efficient processes, due to easier task conditions, learning or adaptation 
and this effect could improve with age as will be discussed later. 

In the current study, the interaction of feature overlap by response in 
the R-cluster showed different effects than in the C-cluster: amplitudes 
increased for the repeating features (i.e. full overlaps) and repeating 
response condition but decreased for the repeating features and alter-
nation condition. Therefore, amplitudes decreased with more 
demanding response selections processes but increased with better 
response selection capacities. Because we were interested in event-file 
coding processes and not in mere response-related processes, the R- 
cluster activity was measured in the P3 time interval after stimulus 
presentation, just as the C-cluster. The different results in both clusters 
show that the interaction effect in the R-cluster might be attributed to 
processes that are independent of the C-cluster and rather reflect motor 
control processes (Chmielewski et al., 2019; Friedrich and Beste, 2020; 
Ouyang et al., 2015, 2011). The S-cluster did not reveal any interaction 
effects. This is consistent with previous findings showing that 
stimulus-related processes, as reflected in the S-cluster, do not mirror 
event file coding processes (Ouyang et al., 2011, 2015; Takacs et al., 
2020b). The S-cluster might rather reflect object-file processes that share 
portions of the event file but change independently of stimulus-response 
associations (Hommel et al., 2001). 

A key novel finding emerged from the analysis integrating (corre-
lating) RIDE-decomposed EEG components and age. Specifically, we 
could show that there was a linear correlation between age and event file 
binding effects both in the C- and in the R-cluster. Against the back-
ground that at the behavioural level the strength of binding, i.e. the 
difference between the full feature minus the no feature overlap con-
dition, decreased with age, we examined amplitude modulations be-
tween both overlapping feature conditions depending on age. In the C- 
cluster, our findings revealed a negative correlation between mean 
amplitude modulation and increasing age for both response types. In 
contrast to the behavioural data, in which age effects were only visible in 
the repetition condition, the neurophysiological data yielded age- 
dependent mechanisms in the two response conditions and therefore 
showed effects regarding both partial repetition benefits and costs. As 
reflected by increased repetition benefits in children at the behavioural 
level, C-cluster modulation effects in the repetition condition might 
incorporate decreased automatic retrieval and motor execution pro-
cesses with increasing age. Although the behavioural data did not show 
age-dependent repetition costs, activation modulation in the C-cluster 
within the alternation condition reflects more demanding event-file 
updating and control processes with increasing age. This is consistent 
with the notion that the C-cluster entails stimulus-response associations 
and response selection processes (Ouyang et al., 2017; Verleger et al., 
2014; Wolff et al., 2017). The C-cluster modulation is also in accordance 
with the idea that a neural positivity after stimulus repetition is 
enhanced in children (Nordt et al., 2016) but decreases with better 

performance efficiency (Grill-Spector et al., 2006; Luck, 2014; Stefanics 
et al., 2018). In the same way, amplitude modulation after 
stimulus-response binding could therefore reflect maturational pro-
cesses. In contrast, the R-cluster showed a positive age correlation in the 
alternation condition only. The opposite directions of the correlations 
indicate that the underlying mechanisms in the C-cluster and R-cluster 
represent different mechanisms of event file coding. As suggested by 
various other data (Bodmer et al., 2018; Ouyang et al., 2015), the 
R-cluster might reflect motor-related processes. Apparently, brain re-
sponses depending on overlapping feature levels are differently and 
gradually modulated from late childhood into early adulthood. While 
neurophysiological modulation in the C-cluster reflects more efficient 
response selection and stimulus-response updating processes from 
childhood to early adulthood (i.e., smaller amplitudes suffice for better 
performance in older ages), the underlying component reflected in the 
R-cluster is associated with strengthened response inhibition processes 
with increasing age (i.e. higher amplitudes for better performance in 
older adults). 

At the source level, the correlations both in the C- and in the R-cluster 
were mirrored by activity modulations in the superior parietal cortex 
(BA7) which has previously been linked to event coding in numerous 
studies (Chmielewski et al., 2019; Friedrich and Beste, 2020; Gottlieb, 
2007; Kleimaker et al., 2020; Le et al., 2017; Mückschel et al., 2017; 
Petruo et al., 2016; Takacs et al., 2020b). In some studies, binding effects 
were reflected by the P3 component or the C-cluster and were related to 
the inferior parietal cortex (BA40) (Kleimaker et al., 2020; Petruo et al., 
2016; Takacs et al., 2020b). The function of binding sensory, motor and 
cognitive information into a topographically organized salient repre-
sentation has been attributed to this area (Gottlieb, 2007), which fits to 
the stimulus-response binding concept of TEC (Hommel et al., 2001). 
However, aside from the C-cluster, developmental effects in the 
R-cluster were also associated with BA7. As mentioned, a central aspect 
in event file coding is to associate stimuli with the appropriate response. 
Importantly, this means that response options that are not correct have 
to be discarded. This requires some form of inhibitory control. Indeed, 
multiple research findings suggest that superior parietal inhibitory 
mechanisms contribute in the selection of motor responses (Bernier 
et al., 2012; Cisek and Kalaska, 2002; Jaffard et al., 2008; Sulpizio et al., 
2017) and recent findings suggest that R-cluster modulations associated 
with superior parietal activity may reflect inhibitory control of motor 
response options (Chmielewski et al., 2019; Friedrich and Beste, 2020). 
In the current study, correlations of age and R-cluster data were evident 
in the time period between ~400 and 450 ms. Since the mean reaction 
times were consistently longer than ~525 ms (cf. Fig. 2), it is well 
possible that observed dynamics reflect inhibitory control of response 
options preceding the overt motor response. We suggest that age-related 
modulations of the binding processes found at parietal regions in the 
R-cluster reflect inhibitory control subprocesses subserving the selection 
of the appropriate motor programme amongst competing response op-
tions. Regarding this functional interpretation, it needs to be 
acknowledged that due to the inverse problem in EEG data, the 
source localization results are not as definite as it would have been 
the case with fMRI data. Therefore, the functional interpretation of 
the sLORETA findings needs to be cautious. However, recent data 
on developmental effects in binding processes within the motor 
domain (Dilcher et al., 2021) in the same age range was also asso-
ciated with the superior parietal cortex (BA7). Therefore, it seems 
that processes subserving ‘binding’ in various contexts is a function 
of superior parietal cortices. This consistency of findings lends 
support to the reliability of source localization results and their 
conceptual validity. 

Interestingly, the role of the parietal cortex for cognitive changes 
during development has been demonstrated in numerous studies (Andre 
et al., 2016; Darki and Klingberg, 2015; Luna et al., 2010; Ofen et al., 
2012; Shing et al., 2010; van Duijvenvoorde et al., 2016). For instance, 
fronto-parietal networks and parietal regions have been suggested to be 
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associated with maturational processes in cognition, such as working 
memory, executive function or memory retrieval (Andre et al., 2016; 
Crone and Richard Ridderinkhof, 2011; Li et al., 2006; Luna et al., 2010; 
Ofen et al., 2012; Shing et al., 2010; van Duijvenvoorde et al., 2016). 
Specifically, activation in the superior parietal cortex (BA7) increased 
with age and was related to functional maturation of working memory 
or memory retrieval (Andre et al., 2016; Ofen et al., 2012). Despite the 
fact that developmental changes in cognitive control and inhibitory 
control were more attributed to the prefrontal cortex, there is general 
agreement that modulatory brain changes are associated with cognitive 
control improvements with age (Andre et al., 2016; Crone, 2014; Crone 
and Steinbeis, 2017; Darki and Klingberg, 2015; Hämmerer et al., 2014; 
Li, 2012; Luna et al., 2010). Furthermore, increases in the strength and 
amount of connections between distributed brain areas during matura-
tion allow more efficient interaction between distant regions (Luna 
et al., 2010; Shing et al., 2010). Given that long-range information 
processing networks and the dopaminergic system are related to event 
file coding in particular (Colzato et al., 2007a, 2007b, 2012, 2013; 
Colzato and Hommel, 2008; Petruo et al., 2016; Takacs et al., 2020b), 
maturation of those systems might explain the increased event file 
updating and inhibitory control abilities with increasing age in our 
study. During development, some brain regions may be better special-
ized or focalized and cognitive processes could shift from one area to 
another (Crone and Richard Ridderinkhof, 2011; Shing et al., 2010). 
This could explain why brain regions are differently engaged in children 
and adulthood and why adults rely more on parietal regions rather than 
solely on prefrontal regions during event coding. However, it needs to be 
underscored that age-related effects based on cross-sectional age sam-
ples, albeit covering a broad age range and not focusing on extreme age 
groups as the case here, are only proxies of age-related changes at best 
and could not inform causal relations between brain changes and per-
formance (Raz & Lindenberger, 2011; Lindenberger & Pötter, 1998), 
Thus, longitudinal studies that assess the development of event-file 
coding at the behavioural and brain levels need to be conducted in the 
future to more directly examine the impacts of maturational changes in 
the frontal-parietal network on the development of event-file coding. 

5. Conclusion 

This study provided novel insights into the neurophysiological dy-
namics underlying the development of event file coding that may reflect 
the gradual maturation of the frontal-parietal network. The behavioural 
results revealed that performance accuracy differences between feature 
overlap levels decreased with age. Therefore, event file updating pro-
cesses become more efficient from late childhood to early adulthood in a 
linear fashion. These binding effects are reflected by two neurophysio-
logical subprocesses associated with the superior parietal cortex (BA7) 
as revealed by EEG signal decomposition. The first process refers to 
mapping and association processes between stimulus and response, the 
second refers to processes involved in inhibitory control subprocesses 
subserving the selection of the appropriate motor programme amongst 
competing response options. 
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