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cells with wild-type BRAF
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Tumors with mutant BRAF are dependent on the RAF/MEK/ERK signaling pathway for 

their growth1-3. We found that ATP-competitive RAF inhibitors inhibit ERK signaling in 

cells with mutant BRAF, but unexpectedly enhance signaling in cells with wild-type BRAF. 

Here we demonstrate the mechanistic basis for these findings. We employed chemical 

genetic methods to show that drug-mediated transactivation of RAF dimers is responsible 

for paradoxical activation of the enzyme by inhibitors. Induction of ERK signaling requires 

direct binding of the drug to the ATP-binding site of one kinase of the dimer and is 

dependent on RAS activity. Drug binding to one member of RAF homo-(CRAF/CRAF) or 

heterodimers (CRAF/BRAF) inhibits one protomer, but results in transactivation of the 

drug-free protomer. In BRAFV600E tumors, RAS is not activated, thus transactivation is 

minimal and ERK signaling is inhibited in cells exposed to RAF inhibitors. These results 

imply that RAF inhibitors will be effective in tumors in which BRAF is mutated. 

Furthermore, since they do not inhibit ERK signaling in other cells, the model predicts that 

they would have a higher therapeutic index and greater antitumor activity than MEK 

inhibitors, but could also cause toxicity due to MEK/ERK activation. These predictions have 

been borne out strikingly in a recent clinical trial of the RAF inhibitor PLX40324-5. Finally, 

the model suggests that promotion of RAF dimerization by elevation of wild-type RAF 

expression or RAS activity could lead to drug resistance in mutant BRAF tumors. In 

agreement with this prediction, RAF inhibitors do not inhibit ERK signaling in cells that 

coexpress BRAFV600E and mutant RAS.

Six distinct ATP-competitive RAF inhibitors induced ERK activation in cells with wild-type 

BRAF, but inhibited signaling in mutant BRAFV600E cells (Fig. 1a, b, Supplementary Fig. 

2a, b, Data Not Shown (DNS), structures of compounds shown in Supplementary Fig. 3, 

except that of PLX4032, which is unavailable). PLX47206, and its analog in clinical trial 
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PLX4032, were studied in more detail. PLX4032 inhibited ARAF, BRAF and CRAF 

immunoprecipitated from 293H cells (Supplementary Fig. 4) and purified catalytic domains 

of BRAFV600E, wild-type BRAF and CRAF (IC50s: 35, 110 and 48nM) (Supplementary 

Table 1). PLX4032 was assayed against 62 additional kinases that span the kinome, and had 

IC50s of 1μM-10μM against eight of these and greater than 10μM against the rest (G.B., 

unpublished data). Induction of ERK signaling by PLX4720 was rapid (Fig. 1c), reversible 

(Fig. 1d), and associated with increased phosphorylation of the ERK substrate RSK (Fig 1b). 

MEK and ERK phosphorylation were induced at intermediate concentrations of RAF 

inhibitor, and inhibited at much higher doses (Fig. 1a).

Physiologic induction of ERK signaling depends on upstream activation of RAS by 

receptor-induced signaling7-8. PLX4032 induced ERK signaling in SKBR3 breast cancer 

cells, in which RAS activation is HER2-dependent9. The HER2 inhibitor Lapatinib 

abolished basal and PLX4032-induced ERK signaling in these cells (Supplementary Fig. 

5a). In 293H cells, induction of MEK and ERK phosphorylation by either PLX4032 or 

PLX4720 was barely detectable (PLX will refer to data obtained with both compounds). 

HA-tagged wild-type RAS overexpression resulted in enhanced MEK/ERK activation by 

RAF inhibitor, which was more pronounced when mutant RAS was overexpressed (Fig. 2a 

and Supplementary Fig. 5b). The results suggest that RAS activity is required for 

MEK/ERK activation by RAF inhibitors. In contrast, in 293H cells expressing FLAG-tagged 

BRAFV600E, ERK signaling was inhibited by PLX4032 (Supplementary Fig. 5c). These 

results suggest that RAF inhibitors will inhibit the growth of tumors with mutant BRAF, but 

not those with wild-type BRAF, including those with RAS mutation. This is indeed the case: 

MEK-dependent tumors with RAS mutation are unaffected by PLX4032 (unpublished data).

BRAF and CRAF kinases form homo- and heterodimers upon RAS activation10-12. PLX 

induced pronounced phosphorylation of MEK and ERK in wild-type MEFs and BRAF (−/−) 

MEFs. The response was diminished markedly in CRAF (−/−) MEFs (Fig. 2b, 

Supplementary Fig. 6a). Coexpression of CRAF and active RAS in CRAF (−/−) MEFs 

reconstituted the wild-type phenotype (Supplementary Fig. 6b, c). We conclude that BRAF 

is dispensable for MEK/ERK activation by PLX, and that CRAF expression is required for 

significant induction. We therefore investigated the mechanism of CRAF-dependent 

induction of ERK signaling in response to the drug.

Autoinhibition of RAF by its N-terminal domain13 is relieved upon binding to activated 

RAS7. We asked whether overexpression of an N-truncated form of CRAF would bypass 

the requirement for RAS activity. In 293H cells expressing the catalytic domain of CRAF 

(catC), PLX caused dramatic induction of MEK and ERK phosphorylation (Fig. 2a, 

Supplementary Fig. 7a). We focused mechanistic investigations on catC, in which PLX-

induced MEK/ERK activation is RAS-independent. To test whether direct binding of PLX 

to CRAF is required for induction of signaling, we generated a catC carrying a mutation at 

the gatekeeper position (T421) in the kinase domain (mutations used and their properties are 

in Supplementary Fig. 1a). Structural studies6 predict that the T421M mutation should 

prevent drug binding and catCT421M was indeed resistant to inhibition by PLX in vitro 

(Supplementary Fig. 8a, b). ERK signaling was not induced by PLX in cells expressing 

catCT421M (Fig. 2a, Supplementary Fig. 7b). Thus, activation of MEK/ERK by PLX 

Poulikakos et al. Page 2

Nature. Author manuscript; available in PMC 2011 September 22.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



depends on its direct binding to the RAF kinase active site. Sorafenib inhibited catCT421M in 

vitro (Supplementary Fig. 8c) and induced ERK signaling in cells expressing catCT421M 

(Fig. 2c), demonstrating that this mutant is capable of inhibitor-induced MEK/ERK 

activation. Thus, direct binding of an ATP-competitive inhibitor to CRAF is required for 

induction of ERK signaling.

Recent work shows that binding of ATP-competitive inhibitors to AKT and PKC inhibits 

their activity, but induces the active, phosphorylated state of these kinases14-15. Washed 

catC immunoprecipitated from PLX-treated cells was more active than that isolated from 

untreated cells (Fig. 3a, Supplementary Fig. 9a). The same was true for endogenous BRAF 

and CRAF immunoprecipitated from treated Calu-6 cells (Fig. 3b, Supplementary Fig. 9b). 

Phosphorylation of CRAF at S338 and S621 has been correlated with its activation7. PLX 

caused increased phosphorylation of both sites on wild-type and kinase-dead CRAF in 293H 

cells. In contrast, it did not affect the phosphorylation of the PLX-resistant CRAFT421M 

mutant. (Fig. 3c, Supplementary Fig. 9c). All RAF inhibitors tested induced phosphorylation 

at p338 of endogenous CRAF (Fig. 3d). The data suggest that binding of PLX to CRAF 

induces activation of the enzyme and, subsequently, ERK signaling. The result seems 

paradoxical: binding of ATP-competitive inhibitors to the catalytic domain of CRAF 

activate its function.

RAF isoforms form dimers in cells10-12,16. Since binding of both the drug and ATP to the 

catalytic domain would be required for activation and cannot occur simultaneously on the 

same molecule, we hypothesized that RAF inhibitors activate CRAF dimers in trans. 

(Supplementary Fig. 1b). To test this model, we generated mutant catCS428C that binds to 

quinazoylacrylamide-based inhibitors17, whereas catC does not. Two inhibitors JAB1317 

and JAB34 (PD-168393)18 both inhibited catCS428C, but up to 30μM had no effect in vitro 

on catC (Supplementary Fig. 10a, b). JAB13 and JAB34 selectively affected ERK signaling 

in cells expressing catCS428C, and were inactive in those expressing catC (Supplementary 

Fig. 11). Like the other inhibitors (Fig. 1a), lower doses (40nM - 1μM) induced ERK 

signaling (Supplementary Fig. 11), whereas higher doses (10μM) inhibited (Fig. 4a). The 

specificity of this system allows us to test the dimer transactivation model. We coexpressed 

a V5-tagged, JAB-sensitive, kinase-dead catC, V5-catCS428C/D486N and FLAG-catC in 

293H cells. V5-catCS428C/D486N is deficient in catalytic activity; it can bind to the inhibitor 

(JAB34) but cannot phosphorylate MEK, while FLAG-catC is catalytically active, but 

cannot bind JAB34. Treatment of cells expressing both constructs with a concentration of 

JAB34 that inhibited ERK signaling in cells expressing catCS428C alone (10μM JAB34, Fig. 

4a) resulted in marked induction of ERK signaling (Fig. 4b, lanes 5-6). Thus, binding of 

JAB34 to kinase-dead, V5-catCS428C/D486N transactivated the catalytically competent 

FLAG-catC. When the catalytically active drug-binding mutant V5-catCS428C is 

coexpressed with catalytically inactive catC (FLAG-catCD486N), 10μM JAB34 inhibited, 

rather than activated ERK signaling. (Fig. 4b, lanes 9-10). When both constructs were 

insensitive to JAB, JAB34 had no effect on ERK signaling (Fig. 4b, lanes 1-2). When both 

constructs were catalytically active, we observed moderate MEK/ERK activation, likely 

resulting from inhibition of V5-catCS428C and transactivation of FLAG-catC (Fig. 4b, lanes 
3-4).
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Transactivation from CRAF to BRAF can occur as well. JAB34 activated ERK signaling in 

cells coexpressing FLAG-BRAF with V5-catCS428C/D486N (Fig. 4c). Finally, JAB34 

induced ERK activation in cells coexpressing full-length V5-CRAFS428C/D486N and wild-

type FLAG-CRAF, confirming that our model is valid in the context of full-length CRAF 

(Supplementary Fig. 12).

Thus, activation of RAF by ATP-competitive inhibitors can be explained by transactivation: 

binding of drug to one RAF in the dimer activates the other. This is consistent with the 

enhancement of induction by active RAS, which promotes homo- and hetero-dimerization of 

BRAF and CRAF10,12. Our model suggests that transactivation will be dependent on 

formation of RAF dimers. A side-to-side dimer of the kinase domain is observed in crystal 

structures of BRAF11 and the residues at the dimer interface are conserved in all RAF 

isoforms. Based on the BRAF crystal structures, we identified a conserved Arg (R509) at the 

center of the dimer interface. Structural analysis predicts that mutation of R509 will 

diminish contacts between the two interacting proteins and reduce dimer formation, as also 

recently reported19. In that study, mutation of BRAF at R509 to Histidine resulted in 

dramatic loss of activity. The corresponding mutation in catC (R401H) results in severe loss 

of both expression and activity (DNS). We therefore mutated R401 to Alanine in V5-

catCS428C and FLAG-catC. This mutation diminished dimerization (Supplementary Fig. 13), 

but retained expression and activity. In cells coexpressing these mutants, JAB34 failed to 

induce ERK signaling (Fig. 4b, lanes 7-8). Thus, a mutation that affects dimerization 

prevents transactivation.

The transactivation model explains the observation that inhibitors of RAF activate ERK 

signaling at low concentrations, but inhibit at higher concentrations in BRAFwild-type cells. 

Binding of an ATP-competitive inhibitor to one protomer within a RAF dimer results in 

both abolition of the catalytic activity of the inhibitor-bound RAF and transactivation of the 

other. Transactivation of RAF homo- and heterodimers is therefore responsible for induction 

of MEK/ERK phosphorylation by RAF inhibitors in cells with wild-type BRAF. Our model 

explains the paradoxical phenomenon of ERK activation by RAF inhibitors, previously 

reported by others20-22. Other kinases that exist in dimeric or multimeric complexes may 

behave in a similar manner. Recently, another model to explain these phenomena has been 

proposed23. They report that only selective BRAF inhibitors activate CRAF and ERK 

signaling, whereas pan-RAF inhibitors do not. Our data that all RAF inhibitors activate ERK 

signaling at low concentrations, that the phenomenon occurs in BRAF-null cells and that 

binding to CRAF activates CRAF and BRAF-dependent ERK signaling render that model 

unlikely.

Nevertheless, the clinical utility of these inhibitors depends on their inhibition of ERK 

signaling in tumor cells with BRAFV600E. Since transactivation of wild-type RAF requires 

dimerization and depends on RAS activity, we hypothesized that the levels of RAS activity 

in BRAFV600E mutant tumors may not be sufficient to support transactivation. If so, 

activation of RAS in BRAFV600E cells should prevent inhibition of ERK signaling by RAF 

inhibitors. In 293H cells overexpressing BRAFV600E and in HT29 tumor cells with 

endogenous BRAFV600E, ERK signaling was inhibited by either PLX or a MEK inhibitor. In 

contrast, when mutant RAS was coexpressed with BRAFV600E in either cell, ERK signaling 
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became resistant to PLX, but remained sensitive to the MEK inhibitor (Fig. 4d, 

Supplementary Fig. 14a, b).

The data are consistent with the idea that RAF inhibitors suppress ERK signaling in 

BRAFV600E tumors because the level of RAS activation in these cells is insufficient to 

support transactivation of wild-type RAF and inhibition of BRAFV600E activity becomes the 

dominant effect of the drug. The findings suggest that increases in RAS activation or RAF 

dimerization may be sufficient to cause drug resistance.

The clinical implications of these findings are profound. BRAFV600E tumors and some with 

RAS mutation are dependent on ERK signaling. However, in clinic, a MEK inhibitor had 

only a 12% response rate in melanomas with BRAF mutation24. MEK inhibitors block ERK 

signaling in all tumor and normal cells and the dose of the drug that can be administered is 

limited by toxicity. RAF inhibitors and MEK inhibitors might have been expected to have 

similar biologic effects. Our findings show otherwise. RAF inhibitors will be useful for the 

treatment of tumors driven by BRAFV600E, but could have deleterious effects in some 

contexts due to ERK activation. However, the absence of ERK inhibition in normal cells 

may allow administration of high doses of RAF inhibitors and thus more complete inhibition 

of ERK signaling in BRAFV600E tumors, than is possible with MEK inhibitors.

The recent phase I clinical trial of PLX4032 in metastatic melanoma strikingly confirmed 

these predictions4-5. High serum levels of drug were achieved with modest toxicity and 

resulted in profound inhibition of ERK signaling in tumors. Tumor regression was observed 

in more than 90% of patients with BRAFV600E mutation, with 64% achieving a partial 

response by RECIST criteria. We believe that the remarkable activity of this drug, compared 

to that of MEK inhibitors, is due to its ability to inhibit ERK signaling in tumors more 

completely because of the absence of ERK inhibition in normal tissue.

Resistance to PLX4032 does develop, with a median time to disease progression of 8-9 

months5. Potential mechanisms include gatekeeper mutations in BRAF and activating 

mutations in parallel signaling pathways. Our results suggest the possibility of novel 

mechanisms as well. Lesions that activate RAS or, as recently reported, overexpression of 

wild type RAF isoforms25 could result in inability of RAF inhibitors to suppress ERK 

signaling in the tumor and thus lead to resistance.

Methods Summary

Compounds and cell culture

PLX4032 and PLX4720 were obtained from Plexxikon, Inc. PD0325901 was synthesized in 

the MSKCC Organic Synthesis Core Facility by Dr. Ouathek Ouerfelli. Sorafenib was 

synthesized using published procedures26. JAB13, JAB34 were synthesized as previously 

described17. All other drugs were obtained from Calbiochem. Drugs were dissolved in 

DMSO and stored at −20°C. Cells were maintained in either DMEM or RPMI, 

supplemented with 2mM glutamine, antibiotics, and 10% fetal bovine serum. Wild-type, 

BRAF (−/−) and CRAF (−/−) MEFs were kindly provided by Dr. Manuela Baccarini, 
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University of Vienna, Austria. 293H cells were from Invitrogen. All other cell lines were 

from ATCC.

Antibodies

Western blot analysis was performed as described1. The following antibodies were used: 

p217/p221MEK (pMEK), p202/p204ERK (pERK), p338CRAF, p380RSK, p573RSK, 

MEK, ERK, myc-tag (Cell Signaling), p621CRAF, V5-tag (Invitrogen), ARAF, BRAF 

(Santa Cruz Biotechnology), FLAG-tag (Sigma), CRAF (BD Transduction Laboratories), 

HA-tag (Covance). For immunoprecipitations of tagged proteins, the following reagents 

were used: Anti-V5 agarose affinity gel, Anti-FLAG M2 affinity gel, anti-c-myc agarose 

affinity gel (all from Sigma).

Plasmids

Plasmids encoding HA-tagged wild-type and mutant N-RAS were obtained from Biomyx. 

Plasmids for wild-type BRAF and BRAFV600E were kindly provided by Dr. Walter Kolch, 

(University of Glasgow, UK), and were used as template to create FLAG-tagged constructs. 

All other plasmids were created using standard cloning methods, with pcDNA3.1 

(Invitrogen) as a vector. Mutations were introduced using site-directed Mutagenesis Kit 

(Stratagene). The catalytic domain of CRAF (catC) was created by truncating the first 305 

amino-acids of CRAF.

Kinase assays

RAF kinase assays were conducted in the presence of 100μM ATP, at 30°C for 20 minutes. 

Recombinant inactive K97R MEK (MIllipore) was used as a substrate and kinase activity 

was estimated by immunoblotting for pMEK.

Transfections

Cells were seeded at 35mm or 100mm plates and transfected the following day using 

Lipofectamine 2000 (Invitrogen).

Methods

Compounds and cell culture

PLX4032 and PLX4720 were obtained from Plexxikon, Inc. PD0325901 was synthesized in 

the MSKCC Organic Synthesis Core Facility by Dr. Ouathek Ouerfelli. Sorafenib was 

synthesized using published procedures26. JAB13, JAB34 were synthesized as previously 

described17. All other drugs were obtained from Calbiochem. Drugs were dissolved in 

DMSO to yield 10 mM stock and stored at −20°C. Cells were maintained in DMEM (MEFs, 

293H, NIH3T3 and Hela) or RPMI (all other cell lines), supplemented with 2mM glutamine, 

antibiotics, and 10% fetal bovine serum. Wild-type, BRAF (−/−) and CRAF (−/−) MEFs 

were kindly provided by Dr. Manuela Baccarini, University of Vienna, Austria. 293H cells 

were from Invitrogen. All other cell lines were from ATCC.
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Antibodies

Western blot analysis was performed as described1. The following antibodies were used: 

p217/p221MEK (pMEK), p202/p204ERK (pERK), p338CRAF, p380RSK, p573RSK, 

MEK, ERK, myc-tag (Cell Signaling), p621CRAF, V5-tag (Invitrogen), ARAF, BRAF 

(Santa Cruz Biotechnology), FLAG-tag (Sigma), CRAF (BD Transduction Laboratories), 

HA-tag (Covance). For immunoprecipitations of tagged proteins, the following reagents 

were used: Anti-V5 agarose affinity gel, Anti-FLAG M2 affinity gel, anti-c-myc agarose 

affinity gel (all from Sigma).

Plasmids

Plasmids encoding HA-tagged wild-type and mutant N-RAS were obtained from Biomyx. 

Plasmids expressing myc-tagged wild-type BRAF and BRAFV600E were kindly provided by 

Dr. Walter Kolch, (University of Glasgow, UK), and were used as template to create FLAG-

tagged constructs. All other plasmids were created using standard cloning methods, with 

pcDNA3.1 (Invitrogen) as a vector. Mutations were introduced using site-directed 

Mutagenesis Kit (Stratagene). The catalytic domain of CRAF (catC) was created by 

truncating the first 305 amino-acids of CRAF.

Immunoprecipitations and Kinase assays

Cells were lysed in lysis buffer (50 mM Tris (pH 7.5), 1% NP40, 150 mM NaCl, 10% 

glycerol, 1mM EDTA, supplemented with protease and phosphatase inhibitor cocktail 

tablets (Roche). Immunoprecipitations were carried out at 4°C for 4 hours, followed by 3 

washes with lysis buffer and, in cases of subsequent kinase assay, one extra wash with 

kinase buffer (25mM Tris, pH 7.5, 10mM MgCl2). RAF kinase assays were conducted in the 

presence of 100μM ATP, at 30°C for 20 minutes. Recombinant inactive K97R MEK 

(MIllipore) was used as a substrate and the reaction was terminated with the addition of 

sample buffer and boiling. Kinase activity was estimated by immunoblotting for pMEK.

Transfections

Cells were seeded at 35mm or 100mm plates and transfected the following day using 

Lipofectamine 2000 (Invitrogen). 24 hours later, cells were collected for subsequent 

analysis.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. RAF inhibitors rapidly activate MEK/ERK in cells with wild-type BRAF
a, Calu-6 cells (BRAFwild-type/K-RASQ61K) were treated with increasing doses of the 

indicated RAF inhibitors and the effects on ERK signaling were determined by 

immunoblotting for pMEK and pERK. b, Cells with wild-type BRAF (Calu-6) or mutant 

BRAF (Malme-3M) were treated with vehicle or PLX4720 (1μM/1 hour). Phosphorylation 

and expression of the indicated proteins were assayed by immunoblotting. c, Calu-6 cells 

treated with 1μM PLX4720 for the indicated time points. d, Calu-6 cells were treated with 

1μM PLX4720 for 60 minutes, then medium was replaced with medium containing 1μM 

PLX4720 (lanes 3-5) or vehicle (lanes 8-10) for the indicated time points.
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Figure 2. MEK/ERK activation requires binding of drug to the catalytic domain of RAF
a, 293H cells transfected with EGFP (control), HA-tagged RASG12V, the catalytic domain of 

CRAF (V5-tagged catC) and catC carrying a mutation at the gatekeeper residue (V5-tagged 

catCT421M), treated with vehicle or PLX4720 (1μM/1 hour). Lysates were subjected to 

immunoblot analysis for pMEK and pERK. b, Wild-type (+/+), BRAF knock-out (BRAF −/

−) or CRAF knock-out (CRAF −/−) mouse embryonic fibroblasts (MEFs) were treated with 

the indicated concentrations of PLX4720 for 1 hour. c, Sorafenib inhibits the gatekeeper 

mutant catCT421M protein in vitro (Supplementary Fig. 8c) and activates MEK/ERK in cells 

expressing it. 293H cells overexpressing catCT421M were treated with the indicated 

concentrations of sorafenib for 1 hour. Lysates were subjected to analysis for pMEK and 

pERK.
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Figure 3. RAF inhibitor induces the active, phosphorylated state of wild-type and kinase-dead 
RAF
a, 293H cells over-expressing catC were treated with the indicated amounts of PLX4720 for 

1 hour. Cells were lysed, catC was immunoprecipitated, washed extensively and subjected to 

kinase assay. Kinase activity was determined by immunoblotting for pMEK. b, Calu-6 cells 

were treated with PLX4720 (1μM/1 hour). Endogenous BRAF and CRAF were 

immunoprecipitated, washed and assayed for kinase activity. c, Treatment with RAF 

inhibitor results in elevated phosphorylation at activating phosphorylation sites on RAF. V5-

tagged wild-type CRAF or kinase-dead CRAFD486N were overexpressed in 293H cells. 

After 24 hours cells were treated with vehicle or PLX4720 (5μM/1hour) and lysates were 

immunoblotted for p338CRAF and p621CRAF. The gatekeeper mutant CRAFT421M was 

used as negative control. d. Samples as in Fig. 1a, immunoblotted for pS338CRAF. Note 

that phosphorylation at S338 steadily increased, even when concentrations were reached that 

inhibited MEK/ERK.
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Figure 4. MEK/ERK induction occurs via transactivation of RAF dimers
a, Similarly to RAF inhibitors, JAB34 inhibits MEK/ERK at higher concentrations. 293H 

cells expressing V5-tagged catC or catCS428C were treated with either vehicle or 10μM 

JAB34 for 1 hour. b, Coexpression of drug-sensitive V5-tagged catC with drug-resistant 

FLAG-catC reveals that activation in the homodimer occurs in trans. 293H cells expressing 

the indicated mutants V5-tagged catC and FLAG-tagged catC were treated with a dose of 

JAB34 (10μM/1 hour) that inhibits catCS428C when expressed alone. c, Activation in the 

context of the heterodimer BRAF/CRAF occurs in trans. 293H cells co-expressing FLAG-

tagged wild-type BRAF and V5- tagged kinase-dead catC (catCD486N) (lanes 3,4) or JAB34-

sensitive/kinase-dead catC (catCS428C/D486N) (lanes 5,6) treated with vehicle or 10μM 

JAB34 for 1 hour. d, HT-29 cells (colorectal – BRAFV600E) were transfected with EGFP or 

HA-tagged N-RASG12V and treated with PLX4720 (1μM/1hour). Lysates were blotted for 

pMEK and pERK.
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