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ABSTRACT: We focus on characterizing common and different coexpression patterns among
RNAs and proteins in breast cancer tumors. To address this problem, we introduce Joint Random
Forest (JRF), a novel nonparametric algorithm to simultaneously estimate multiple coexpression
networks by effectively borrowing information across protein and gene expression data. The
performance of JRF was evaluated through extensive simulation studies using different network
topologies and data distribution functions. Advantages of JRF over other algorithms that estimate
class-specific networks separately were observed across all simulation settings. JRF also
outperformed a competing method based on Gaussian graphic models. We then applied JRF to
simultaneously construct gene and protein coexpression networks based on protein and RNAseq
data from CPTAC-TCGA breast cancer study. We identified interesting common and differential
coexpression patterns among genes and proteins. This information can help to cast light on the
potential disease mechanisms of breast cancer.

■ INTRODUCTION

In a recent breast cancer study conducted by the Clinical
Proteomic Tumor Analysis Consortium (CPTAC),1,2 extensive
global- and phospho- protein profiling were obtained for a
subset of breast cancer samples that have been extensively
characterized in the The Cancer Genome Atlas (TCGA).3 This is
so far the first attempt to study protein activities in breast
cancer samples using sophisticated protein experiments on a
large scale. Then, by leveraging genomic analytical outputs from
TCGA on these samples,3 we have the unique opportunity to
characterize and compare gene coexpression networks and
protein coexpression networks based on the same set of
samples. This is of great interest because knowledge about the
common and different coexpression patterns among RNAs and
proteins could improve our understanding of complicated gene
regulatory mechanisms in tumor samples and could also
facilitate the detection of important disease genes and
therapeutical targets.
In the past decade, numerous statistical and machine learning

methods have been proposed to construct gene−gene
regulatory networks and protein−protein regulatory networks,
including coexpression network methods,4 Bayesian network
methods,5,6 and Gaussian graphical models.7−10 Review of
these and other methods are available in Hecker et al.11 and Lee
et al.;12 however, all of these proposed models are designed to
construct one network at a time. Presumably, we can use RNA
expression data and protein expression data to construct two
networks separately and then compare, but such an approach is
certainly less optimal, as gene expressions and protein
expressions in one tumor sample are closely related. On one

hand, protein levels are regulated by their RNA levels, so we
expect the two coexpression networks share common
structures. On the other hand, protein activities are subject to
a large amount of post-transcriptional modifications, and thus
we also expect to observe unique interaction patterns in each
network. This motivates us to perform joint learning of both
RNA-seq and proteomic networks, so we are able to borrow
information across different data sets and better capture the
common correlation structure, which shall then improve the
overall accuracy of network estimation.
Various methods have been proposed to jointly estimate

different networks.13−17 Some of them13,14,17 have been
specifically designed to estimate time-varying graphical models
in the context of time-series data. Guo et al.16 and Danaher et
al.15 proposed likelihood-based methods for the joint
estimation of multiple related Gaussian graphical models.
Their approaches rely on two different regularization schemes
penalizing differences across partial correlation structures of
different classes. While both papers successfully demonstrate
the advantage of jointly modeling multiple networks over
estimating individual networks separately, the performance of
the methods heavily depends on the Multivariate Gaussian
assumptions of gene expression distributions, which may not
hold in real biological systems.
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Recently, random-forest-based methods have been utilized
for the construction of GRN.18−20 Random forest21 is a
decision-tree-based nonparametric method for building power-
ful prediction models. It has been extensively utilized for
classification and regression problems.22 Its ensemble structure
combined with its nonparametric nature delivers excellent
performance even when the sample size is moderate. Recently,
Huynh-Thu et al.18 proposed GENIE3, a random-forest-based
method for estimating networks. The key idea is to model the
expression of each target gene as a function of the expression of
all other genes via random forest. The superior performance of
GENIE3 was demonstrated in both DREAM 4 in-silico
multifactorial challenge23 and DREAM 5 network inference
challenge.24 In both challenges, GENIE3 and its extensions
scored the best. In Maduranga et al.,20 GENIE3 was further
modified to estimate GRN based on time-series data. Recently,
Petralia et al.19 proposed iRafNet, another random-forest-based
method that combines different types of heterogeneous data,
such as protein−protein interactions, transcription factor-DNA
binding, and gene knock-down to estimate GRN. While these
random-forest-based methods greatly advance the field of GRN
construction, none of them is designed to estimate simulta-
neously multiple related networks.
We propose JRF (Joint Random Forest), a new algorithm for

the simultaneous estimation of protein coexpression and gene
coexpression networks. The key idea is to borrow information
across different data by forcing the class-specific tree ensembles
to use the same genes for the splitting rules. In this way,
regulatory relationships playing important roles in multiple
classes will be detected with better power. After testing the
performance of our algorithm on several in silico experiments
and comparing JRF with different methods including
GENIE318 the Joint Graphical Lasso (JGL),15 we applied JRF

for the simultaneous construction of gene coexpression
networks and protein coexpression networks. For our analysis,
we considered gene expression from TCGA and protein
expression from CPTAC data for 62 breast cancer patients. We
derived the two networks and identified protein-specific hub
genes and gene modules, showing the unique contribution of
proteomic data to breast cancer research.

■ MATERIALS AND METHODS

Random Forest for Network Construction

Random forest is a nonparametric algorithm that models a
response variable via a collection of decision trees. Specifically,
each decision tree is constructed based on a random subset of
training samples, and the splitting variable at each node of a
decision tree is chosen from a randomly sampled subset of
predictors upon maximizing a certain utility function (e.g.,
decrease in node impurity).
Recently, Huynh-Thu et al.18 introduced GENIE3, a

random-forest-based model for inferring gene regulatory
networks (GRNs). In GENIE3, first, for each target gene k,
its expression is modeled as a function of the expression of all
other genes via random forest. Then, regulatory event (j → k)
is measured by Ij→k, the importance score of gene j in the
random forest model of gene k. Specifically, the importance
score Ij→k is defined as the summation of node impurities across
all nodes that utilize predictor j for the splitting rule divided by
the total number of trees in the random forest model of gene k.
Joint Random Forest

We start with some notations. Denote G as the total number of
different classes. For each class g ∈ {1, ..., G}, denote the gene
expression data for p genes and ng individuals as Xng×p

g , and the
ith observation of gene j under class g as xij

g. An overview of JRF

Figure 1. JRF schematic. For simplicity, let us assume that there are only two classes and that each data contains the same number of samples. For
each target gene, gk, we run random forest for each class and the two tree ensembles are forced to share some structure as follows. First, for each
node τ, the same set of genes Sτ is randomly sampled from the entire set of genes (a). Then, the same variable in set Sτ is chosen for the splitting rule.
This is achieved by deriving the splitting rule for any gene contained in set Sτ (b) and choosing the best variable to maximize the sum of decrease in
node impurity over different classes (c).
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is shown in Figure 1, where, for simplicity, we consider only
two classes. The key step of JRF is to construct G random
forest models simultaneously using data from G classes when
predicting the expression of a target gene k based on the
expression of all other genes. We propose to use the same
predictor variables for splitting rules in different trees
corresponding to different classes. The goal is to borrow
information across different classes, so that regulatory relation-
ships can be better detected if there are coherent signals across
different classes. Specifically, when we grow G decision trees in
parallel for G classes, at one node τ, we decide the splitting
variable based on the following procedure:
(1) Randomly sample a set τ containing N genes from the

entire set of genes except gene k.
(2) For each class, the best splitting rule based on each

candidate predictor in set τ is derived. Let
τ
g be the subset of

samples allocated to node τ under class g. The splitting rule
based on the jth predictor is of the form
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* = ∈ ≤ *

τ τ

τ τ
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where τ
gj and

τ
gj are the subsets of samples in class g allocated

to the left and right children of node τ with a splitting rule
based on the jth predictor. For each predictor in set τ , the best
threshold agj*(τ) is derived as follows

τ ω* =
ω
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set . In other words, Cgj
τ is the decrease in node impurity after

splitting node τ in the gth tree according to gene j.
(3) Finally, gene gτ* is chosen as the splitting variable of node

τ for all classes based on the following criteria:
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Because JRF utilizes the same splitting variable for correspond-
ing nodes across all classes, predictors associated with gene k in
multiple classes are more likely to be chosen for the splitting
rules. For each step in the tree construction, (1−3) only apply
to classes for which τ is not a final node. As in the original
random forest model,21 each tree grows until either the total
number of observations allocated to the final leaves falls below a
certain prespecified threshold or the maximum number of
possible nodes is reached. It is worth mentioning that when the
number of classes is one, JRF reduces to GENIE3, the original
random forest model for network inference. It is worth noting
that to implement JRF, data sets need to be standardized to
mean zero and unit variance. Importance scores depend on the
scale of the data and therefore variables (genes) need to be
standardized before the random forest models are fitted.
Assessing JRF Performance

On the basis of the previously described procedure, JRF
constructs G random forest models simultaneously for each
target gene k and returns a ranking of gene−gene interactions
based on importance scores. To assess the performance of JRF

in predicting the true interactions, receiver operating character-
istic curves (ROC) and precision-recall curves can be computed
by setting different thresholds on importance scores. In this
paper, JRF is compared with JGL,15 GENIE3-Sep, and
GENIE3-Comb on several in silico experiments. GENIE3-Sep
is GENIE3 used to estimate networks based on data from G
classes separately, while GENIE3-Comb is GENIE3 used to
estimate a unique network based on the union of data from all
classes. All random-forest-based algorithms (JRF, GENIE3-
Comb, and GENIE3-Sep) provide a ranking of regulatory
relationships based on importance scores, and ROC curves
were computed by setting different thresholds on these scores.
Instead, for JGL, ROC curves were constructed by considering
different values for the two parameters controlling the level of
sparsity (as shown by Figure S1 in the Supporting Information)
.
Another approach to evaluate the performance of JRF is

choosing a proper cutoff value for importance scores using
permutation techniques. Let Ij→k

g be the importance score
associated with the regulatory event (j → k) in the gth class-
specific tree ensemble. Specifically, this importance score is
defined as = ∑τ

τ
→ ∈I Cj k

g
T gj
1

gj
where T is the number of trees

and gj is the set of nodes which utilize gene j for the splitting
rule in the tree ensemble used to predict gene k based on the
gth class-specific data. Because in this paper we are interested in
estimating undirected networks, we derive importance score
Ij−k
g for every edge (j−k) as the average between importance
scores Ik→j

g and Ij→k
g , and the final undirected networks can

therefore be derived by applying a cutoff on the edge
importance scores. To derive a proper cutoff value for
importance scores, we utilize the following permutation-based
procedure:
(a) For b ∈ {1, ···, B}, with B being the number of

permutations:
(a.1) For any target gene k, we first permute its sample order

within each class and fit G random forest models via JRF to
predict the expression of gene k based on the expression of all
other genes in G classes, respectively.
(a.2) Repeat (a.1) for all genes and compute the final

importance scores for each edge in each class, which are
denoted as {Ip×p

g(b)}g=1
G .

(b) For each threshold ι, we compute
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where 1(•) is the indicator function, equal to one if event •
occurs and zero otherwise.
f(ι) can serve as an approximation of the false discovery rate

(FDR).25 In the following numerical studies, we use ι0 = min{ι:
f(ι) ≤ 0.001} and declare an edge between j and k in class g if
Ij−k
g > ι0.

Computational Complexity

The computational complexity of JRF is O(pTN∑g=1
G log(ng)ng),

where p is the number of genes, T is the number of trees in
each forest, N is the number of variables sampled at each node,
G is the number of classes, and ng is the number of samples in
each class. This complexity is in the same order as the
complexity of applying GENIE3 to estimate G networks for G
classes separately. In the contrast, the time complexity of
GGM-based approaches, such as JGL, often has the order of
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p3.15 So when p is large, JRF and GENIE3 enjoy better
computational efficiency, which is supported by our numerical
investigations (see Supporting Information).
In practice, the number of trees (T) and the number of

potential regulators to be sampled at each node (N) are user-
specified parameters. T is usually chosen sufficiently large
because the tree ensemble provides more accurate results as T
increases. In our numerical studies, we reported results for T =
1000. We also evaluated larger T values, such as 2000 and 5000,
but observed similar results (data not shown). For N, a
common choice is = −N p 1 where (p − 1) is the number
of predictors for each target gene. In general, large value of N
results in predictions with high bias; while low value results in
predictions with high variance.
We implemented an R package JRF using C routines

wrapped with an R interface. The R package is publicly available
through CRAN. Codes and a tutorial for JRFs implementation
can also be downloaded from http://research.mssm.edu/tulab/
software/JRF.html. Similarly to other tree-based algorithms for
network construction, JRF can be easily parallelized because the
estimation process consists of p-independent subproblems. A
comparison between JRF, JGL, GENIE3-Sep, and GENIE3-
Comb in terms of computational time is presented in Table S1.

Data

Synthetic Data. For data generation, we first considered
two networks containing 500 nodes connected by 498 and 249
edges, respectively. In particular, Network 1 is a network with
two disjoint components and Network 2 consists of only the
first component of Network 1. In this example, we focused on
two network topologies: power law10,26 and star topology
(Figure S2 in Supporting Information). For each network
topology, we simulated 20 replicates involving n = 50 samples
from a Gaussian graphical model. Network structures and
covariance matrices were simulated in the same way as Danaher
et al. (2014)15 (further details can be found in the Supporting
Information). Besides this example, we also consider a series of
other different simulation settings, including (1) two non-
nested networks; (2) five non-nested networks; (3) two
nonrelated networks; and (4) data from non-Gaussian
distributions. Please see Supporting Information sections
1.3−1.7 for more details. For each data set, variables were
standardized to mean zero and unit variance.
Breast Cancer Data. The expressions of 5864 proteins for

62 breast cancer tumors27 (proteome-ratio-norm-noNA-
normal.gct(04-Jun-2014 version)) were downloaded from the
CPTAC Data Coordinating Center (http://proteomics.cancer.
gov/programs/cptacnetwork) sponsored by the National
Cancer Institute. For three samples having technical duplicates,
we took the average abundance of each protein across the
duplicates. We further standardized protein expression so that
each sample had median 0 and median absolute deviation
(MAD) 1. Finally, we excluded proteins with interquartile
range <70% quantile. The resulting data matrix consisted of
1759 proteins. Level-three RNAseq data of breast tumor
samples were obtained from the TCGA Web site (http://tcga-
data.nci.nih.gov/tcga/). First, we log-transformed the data and
then replaced all missing values with 0. Then, we standardized
each sample to have median 0 and MAD 1. We focused on the
62 samples contained in the proteomic data and excluded genes
with more than 10% missing values. Then, we selected the top
10% genes with largest interquartile range across samples. The
resulting data matrix based on RNAseq data contained 1464

genes. As final subset, we considered 528 genes obtained by
overlapping the set of 1464 selected genes and the set of 1759
selected proteins. For each data set, genes and proteins were
standardized to mean zero and unit variance.

■ RESULTS AND DISCUSSION

Synthetic Data

In this section, JRF was compared with JGL,15 GENIE3-Sep,
and GENIE3-Comb on several in-silico experiments. In all
implementations, we used T = 1000 and = −N p 1 . We
evaluated the performances of different algorithms based on
different network structures, sample sizes, and number of genes.

Network Structure. Figure 2 shows the average ROC
curves of each method over 20 replicates for Network 1 and

Network 2 separately. JRF outperforms all other methods
under all different settings, while GENIE3-Sep is the second
best performer. Figure S3 shows the boxplot of the area under
the precision-recall curve (AUPR) for JRF, GENIE3-Sep, and
GENIE3-Comb. As shown, JRF outperforms competitors also
in terms of AUPR. The advantage of JRF over GENIE3-Sep is
more evident for Network 2, which contains only shared edges.
This is expected because JRF should be able to detect common
edges with better power.
To further assess the performance of the proposed model, we

included more simulation scenarios in the Supporting
Information. In particular, in Supporting Information section
1.3, we considered the case of non-nested networks sharing
some structure, while, in section 1.4, we considered the case
where five different networks were estimated simultaneously.
As shown by Figures S4 and S5, JRF outperformed competitors
under all of these simulation scenarios. In addition, it would be
interesting to evaluate the performance of JRF when class-
specific networks do not share any structure. For this purpose,
we simulated two different networks with no common edge and
applied different methods on the corresponding data
(Supporting Information section 1.5). As shown in Figure S6,
performance of JRF is very comparable to that of GENIE3-Sep

Figure 2. Mean of ROC curves for Network 1 (first column) and
Network 2 (second column) over 20 replicates for JRF (red),
GENIE3-Comb (green), GENIE3-Sep (blue), and JGL (black). For
each replicate, we sampled 50 samples from a Gaussian graphical
model based on the power law topology (first row) and star topology
(second row).
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on this simulation example. This suggests that JRF is
sufficiently robust and works in the absence of common
structure. Moreover, to assess the performance of JRF in the
presence of nonlinearities in the data, we further generated data
examples using GeneNetWeaver,28 an open-source software for
the generation of in-silico data from a set of ordinary and
stochastic differential equations (Supporting Information
section 1.6). As shown in the supplemental Figure S7 and S8,
JRF again outperformed other algorithms in terms of both area
under the ROC curve (AUC) and area under precision-recall
curve (AUPR). Finally, Figure S9 shows results for different
algorithms in estimating networks with 1000 nodes (further
details can be found in Supporting Information section 1.7), in
which we can see that JRF outperformed competitors in terms
of both AUC and AUPR. It is worth mentioning that the
increased dimensionality did not negatively affect results,
suggesting that JRF can handle problem with high dimension-
ality.
Effect of Sample Size. In this section, we assess the

performance of JRF and other algorithms on data sets involving
different number of samples. Figure 3 shows boxplots of AUC

over 20 replicates resulting from JRF, GENIE3-Sep, and
GENIE3-Comb for different sample sizes, that is, n = 50, 100,
200. The AUCs of JRF are significantly larger than that of
GENIE3-Sep based on 20 replicates under all sample sizes. As
shown in the Supplemental Figure S10, JRF outperforms
competitors also in terms of AUPR for different samples sizes.
As shown, the smaller the sample size the bigger the

improvement of JRF over GENIE3-Sep is. This result is
expected because as the sample size increases GENIE3-Sep
should have sufficient information to estimate the networks
separately.

Edge Specificity. In this section, we compare JRF and
GENIE3-Sep regarding their abilities to estimate class-specific
edges. We considered the 20 replicate data sets (n = 100),
which was simulated based on the power law network topology
in the previous section. For both JRF and GENIE3-Sep, edges
were declared using the permutation procedure illustrated
above with B = 500 and an FDR threshold of 0.001. Table 1a
shows the performance of JRF and GENIE3-Sep in estimating
Network 1 and Network 2. For each network, we reported the
minimum and the maximum value of true positive rate (TPR),
false-positive rate (FPR), and false discovery rate (FDR) across
20 replicates. In particular, these quantities are defined as TPR
= TP/(TP + FN), FPR = FP/(FP + TN), and FDR = FP/(FP +
TP), where TP is the number of true positives, FP is the
number of false positives, TN is the number of true negatives,
and FN is the number of false negatives. For both networks,
JRF achieved better power (TPR) than GENIE3-Sep, while the
resulting FPRs were quite comparable. Table 1b shows a
comparison of the two algorithms regarding the detection of
class-specific (differential) edges. Again, we computed the rate
of true differential edges and false differential edges and showed
the minimum and the maximum value of these quantities over
20 replicates. While the TPRs for detecting differential edges
were similar for the two methods, the FPRs of GENIE3-Sep
were significantly larger than that of JRF. In addition, JRF leads
to substantially lower FDRs for detecting differential edges than
GENIE3-Sep. This again suggests the merit of joint learning in
JRF.

Coexpression RNA and Protein Networks in Breast Cancer

We applied JRF to construct coexpression networks based on
the CPTAC global proteomics data set and TCGA RNAseq
data of 62 breast cancer samples.

Networks via JRF. For simplicity, we will refer to the
coexpression networks constructed by JRF from global
proteomics data and RNAseq data as protein-network and
RNA-network. At FDR cutoff of 0.001, we detected 687
common edges shared by both networks, 502 edges unique to
protein-network, and 382 edges unique to RNA-network. The
topologies of the two networks are shown in Figure 4, while the
full list of interactions can be found in Additional File 1 in the
Supporting Information. Interestingly, a few network modules
in protein-network have a high percentage of edges unique to
protein-network. No such structures is observed in RNA-
network. Figure 5 highlights genes whose degrees (i.e., total

Figure 3. Boxplot of AUC over 20 replicates for JRF (red), GENIE3-
Comb (green), and GENIE3-Sep (blue) for different sample sizes, that
is, n = 50, 100, and 200. Data: samples simulated from a Gaussian
graphical model on a power law topology.

Table 1. (a) TPR, FPR, and FDR of Network 1 and Network 2 and (b) TPR, FPR and FDR of Differential Edges (Diff.Net)a

TPR FPR FDR

model network min max min max min max

(a) JRF Net 1 0.64 0.69 4e-4 7e-4 0.13 0.20
Net 2 0.68 0.78 2e-4 6e-4 0.15 0.26

GENIE3-Sep Net 1 0.62 0.66 4e-4 6e-4 0.12 0.20
Net 2 0.57 0.67 2e-4 6e-4 0.11 0.27

(b) JRF Diff.Net 0.56 0.65 1e-4 2e-4 0.09 0.18
GENIE3-Sep Diff.Net 0.59 0.67 3e-4 4e-4 0.19 0.29

aFor each quantity (TPR, FPR, and FDR) we show the minimum value (Min) and the maximum value (Max) across 20 replicates. Note that the true
discovery rate (TDR) is defined as TDR = (1 − FDR).
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number of edges connecting to one gene) in protein-network
are much higher than that in RNA-network. Three out of the
top five genes with more protein-unique edges, C3, CFB, and
MPO, are related to immune response functions. It is well
known that immune response plays a major role in the patient
response to chemotherapy treatments.29 Some of these genes

have been shown to be predictive of survival outcomes of breast
cancer patients. For example, C3 and CP are predictive of
chemoresistance in breast cancer patients,30 and high activity of
MPO genotypes can enhance efficacy of chemotherapy for
early-stage breast cancer.31 Other remarkable proteins are
MMP8 and MMP9. Genes belonging to the MMP family have

Figure 4. Network based on proteomic data (a) and RNAseq data (b) resulting from JRF. Green edges (687) are shared between proteomic and
RNAseq data, red edges (502) are unique to proteomic data, while blue edges are unique to RNAseq data (382). Only names of genes with at least
ten connecting edges are shown in the plot. For both networks, the full list of interactions can be found in additional file 1.

Journal of Proteome Research Article

DOI: 10.1021/acs.jproteome.5b00925
J. Proteome Res. 2016, 15, 743−754

748

http://dx.doi.org/10.1021/acs.jproteome.5b00925


been linked to cancer progression for their ability to degrade
the extracellular matrix and may be implicated in the formation
of metastasis.32,33

We then focused on network modules unique to protein-
network. We derived network modules based on edge
betweenness using function “edge.betweenness.community”
available in the R package igraph.34 In Figure 6, we show the
protein-network with gene modules enriched of at least one
GO category. The full list of genes contained in each module
can be found in additional file 1. Figure 6 shows, for each
module, the most enriched GO category and the corresponding
Benjamini adjusted p-value.35,36 Two interesting protein-
specific modules (with more protein-specific edges than shared
edges) are C1 and C2. C1 is enriched of “fibroblast growth
factor receptor activity”, as shown in Figure 7, genes are more
tightly correlated in the proteomic data compared with the
RNAseq data. Various studies have investigated the role of the
FGFR pathway as a predictive marker for breast cancer.37,38 As
shown in Figure 7, FGFR2 and FGFR3 show a correlation close
to one. Recently, Cerliani et al.39 reported a strong correlation
between FGFR2 and FGFR3 based on protein expression
mentioning that there is no previous evidence of correlation
between these two proteins for breast cancer patients. In
addition, the interaction between FGFR2 and FGFR3 is
contained in the STRING database40,41 (see Table S2).
Another interesting protein-specific module is C2. This module
is enriched of “extracellular region”. Similarly to module C1,
genes in module C2 are higher correlated in the proteomic data
compared with the RNAseq data (Figure 7). This cluster
contains genes such as APOB, C3, ORM1, and CP that have
been recently shown to be predictive of chemoresistance in

breast cancer patients.30 As shown by Figure 7, protein
expressions of these genes are highly correlated. Another
important gene in this module with a high number of
connecting edges is APOA1 (the fifth highest connected
node according to Figure 5). This gene has been recently
identified as a potential target for disease progression using
whole-genome trancriptomic and whole proteomic.42 As shown
in Table S2, 11 of the relationships in Figure 7 are contained in
the STRING database. These results suggest that proteomic
data can provide complementary information to genomics data
and help to reveal important biological mechanisms.

Comparison with GENIE3-Sep. Because we are interested
in assessing the utility of a joint learning, JRF was compared
with the standard random-forest algorithm that constructs the
two networks separately. For both methodologies, we derived
undirected networks using the same FDR cutoff (0.001). The
protein-network resulting from GENIE3-Sep can be found in
Figure S11 in the Supporting Information. As shown, 57% of
the edges are shared across protein- and RNA-networks under
JRF, while only 26% are shared under GENIE3-Sep. This
finding can be explained by the fact that a joint learning can
facilitate the detection of common edges.

a. Validation Using GO Terms. In this section, we validate
our findings using GO categories. In particular, we consider 596
GO terms containing fewer than 200 genes (the list of GO
terms can be found in Tables S3−S6 in the Supporting
Information). Figure 8a shows the number of edges contained
in at least one GO term for different FDR cutoff for both
protein-networks. Figure 8b shows the enrichment p-value for
different FDR cutoff. The enrichment p-value was calculated as
follows. First, we constructed a network based on GO terms

Figure 5. Number of connecting edges for top connected genes in the network based on proteomic data. For each gene, the green bar corresponds
to the number of connecting edges shared between proteomic and RNAseq data; the red bar indicates the number of Protein-specific edges; while
the blue bar indicates the number of RNA-specific edges. For each gene, we list its biological functions.
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where an edge (a − b) was drawn between every pair of genes
(a, b) sharing at least one GO term. Then, a contingency table
was constructed considering variables “network based on GO
terms” and “network based on proteomic data” with categories
“number of edges contained” and “number of edges non-
contained”, and a Fisher’s exact test was performed to derive
enrichment p-values. Figure 8a,b shows that JRF results in a
network more overlapping with GO terms than the standard
random-forest algorithm GENIE3-Sep.
b. Validation Using Esr1 and Gata3 Knockdown

Signatures. To further validate our findings, we overlapped
both networks with Esr1 and Gata3 knock-down signatures. We
identified siRNA knock-down signatures of key transcription
factors (TFs) of breast carcinoma in MCF7 cells1 by accessing
gene expression data available under GSE31912 in Gene

Expression Omnibus43 (further details about these signatures
can be found in Section 2 of Supporting Information). For each
network, a neighborhood was defined by defining a threshold k
for the number of edges connecting a particular gene to the
target gene of interest (either Esr1 or Gata3). For each network
in Figure 8, we considered different values of k and counted the
number of knockout signatures contained in the neighborhood.
Figure 8c,d shows the total number of signatures contained in
k-size neighborhoods for Esr1 and Gata3, respectively. As
shown, also in this case, JRF results in a more enriched
network. Figure S12 contains the same comparison for RNA
networks.

Discussion

In this paper, we developed JRF, a random-forest-based
algorithm for the simultaneous construction of gene coex-

Figure 6. Network based on proteomic data resulting from JRF with corresponding gene modules. Modules were detected using function
“edge.betweenness.community” available in the R package igraph. For each module, we show the most enriched GO category with corresponding
Benjamini adjusted p-value (P). In particular, only modules reporting a significant enriched Benjamini adjusted p-value (P ≤ 0.01) are highlighted.
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pression and protein coexpression networks. JRF is designed to
borrow information across different expression data by selecting
the same set of predictors (genes) as splitting variables in the
random forest model corresponding to each data. In this way,
JRF is able to detect common relationships (edges) with better
power and detect differential edges-specific to individual data
with fewer false positives.

Because in this study we were mainly interested in assessing
the unique contribution of proteomic data to breast cancer
research, we focused our attention on protein-specific hub
genes and modules. We identified two interesting protein-
specific modules containing potential targets for breast cancer
treatment. In addition, we compared our algorithm to the
original random-forest algorithm, which constructs the two
networks separately, and showed that our algorithm leads to

Figure 7. Heatmap of the absolute value of correlation between genes based on proteomic and RNAseq data for module C1 (a) and C2 (b) in
Figure 6. For each module, we include a pie plot showing the number of protein-specific interactions (red) and interactions shared across proteomic
and RNAseq data (green).
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networks more overlapping with available knockout signatures
and existing GO terms.
The current version of JRF requires the feature (protein)

space to be the same across different classes. Extension of JRF
for handling data involving different sets of variables remains as
future work. This problem arises in the protein domain because
protein abundance can be measured for different phosphor-
ylation-sites that map to a unique protein. As future work, we
will design a model able to jointly estimate networks from
phosphorylation-site abundance and RNAseq data, simulta-
neously.
Besides estimating gene-regulatory network and protein-

regulatory network, as shown in the paper, JRF can be used in
many other applications. For example, we can apply JRF to
estimate GRNs for the three breast cancer subcategories
(luminal, basal, and her2), GRN for different tissues, and GRN
for cancer and normal tissues. Another interesting direction
would be assessing the association between miRNAs-genes and
miRNAs-proteins simultaneously. miRNAs are molecules that
control the growth and proliferation of a cell. It is well known
that the downregulation of some miRNAs may play an
important role in the progression of cancer.44 Therefore, a
better understanding of the interactions between miRNA,
mRNA, and protein expression is crucial to cast light on the
potential disease mechanisms of cancer. In this context, JRF can
be easily utilized to jointly detect which miRNAs regulate genes
and proteins.
Another advantage of JRF relies on its computational

efficiency. JRF can be easily parallelized because the
computation can be divided into p-independent subproblems.

On the contrary, for many existing methods such as Bayesian
networks and GGM-based algorithms, it is difficult to parallelize
their computation. For this reason, JRF could be more
preferred when handling large data sets.
The merit of JRF depends on the assumption that networks

of different classes share some common structures. To assess
the performance of JRF in the absence of common structure,
we conducted numerical studies to investigate such cases and
concluded that JRF is sufficiently flexible to guarantee good
performance even when nonrelated networks are considered.
In JRF, importance scores derived from random forest

models are used to rank edge strengths. We propose a
permutation-based procedure to derive proper cutoffs on
importance scores for selecting confident edges. Specifically,
we introduce f(ι) as an approximation of the false discovery rate
(FDR) of the selected edge set based on cutoff ι; however, in
the numerical studies, we observe that f(ι) tends to under-
estimate FDR. Thus, a conservative threshold on f(ι) is
recommended in practice. New methods to obtain more
accurate estimate of FDR for JRF warrant future research.

■ ASSOCIATED CONTENT
*S Supporting Information

The Supporting Information is available free of charge on the
ACS Publications website at DOI: 10.1021/acs.jproteo-
me.5b00925.

The PDF file includes more results from both synthetic
data and breast cancer data and is divided into two
sections: “In-silico experiments” and “Coexpression RNA
and protein networks in breast cancer”. Section “In-silico

Figure 8.We validate protein-networks in Figure 4 using GO terms and knockout signatures. The first row contains network validation based on GO
terms. For our analysis, we considered 596 GO terms containing fewer than 200 genes. (a) Number of edges contained in at least one GO term for
different FDR cutoff. (b) p value of enrichment for different FDR cutoff. The second row contains validation based on Esr1 (c) and Gata3 (d)
signatures. For a particular neighborhood size of either Esr1 or Gata3, we show the total number of knockout signatures contained under JRF (○−)
and GENIE3-Sep (★−).

Journal of Proteome Research Article

DOI: 10.1021/acs.jproteome.5b00925
J. Proteome Res. 2016, 15, 743−754

752

http://pubs.acs.org
http://pubs.acs.org/doi/abs/10.1021/acs.jproteome.5b00925
http://pubs.acs.org/doi/abs/10.1021/acs.jproteome.5b00925
http://dx.doi.org/10.1021/acs.jproteome.5b00925


experiments” contains nine subsections: “JGL parameter
specification”, “Network topology”, “Estimation of non-
nested networks”, “Estimation of five networks”,
“Estimation of non-related networks’, “Gaussian model
vs GeneNetWeaver”, “Network dimension”, “Effect of
sample size”, and “Computational time”. Section
“Coexpression RNA and protein networks in breast
cancer” includes four subsections: “String database”,
“Protein and RNAseq networks from GENIE3-Sep”,
“GO categories”, and “Knockout signatures”. The XLS
file includes the list of gene−gene interactions for both
Protein and RNAseq data derived via JRF, the list of
genes contained in each of the clusters shown in Figure
6, and the list of interactions obtained via GENIE3-Sep.
(ZIP)
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