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Abstract

Naked mole-rats are a long-lived rodent species (current lifespan >37 years) and an increas-

ingly popular biomedical model. Naked mole-rats exhibit neuroplasticity across their long

lifespan. Previous studies have begun to investigate their neurogenic patterns. Here, we

test the hypothesis that neuronal maturation is extended in this long-lived rodent. We char-

acterize cell proliferation and neuronal maturation in established rodent neurogenic regions

over 12 months following seven days of consecutive BrdU injection. Given that naked mole-

rats are eusocial (high reproductive skew where only a few socially-dominant individuals

reproduce), we also looked at proliferation in brain regions relevant to the social-decision

making network. Finally, we measured co-expression of EdU (newly-born cells), DCX

(immature neuron marker), and NeuN (mature neuron marker) to assess the timeline of neu-

ronal maturation in adult naked mole-rats. This work reaffirms the subventricular zone as

the main source of adult cell proliferation and suggests conservation of the rostral migratory

stream in this species. Our profiling of socially-relevant brain regions suggests that future

work which manipulates environmental context can unveil how newly-born cells integrate

into circuitry and facilitate adult neuroplasticity. We also find naked mole-rat neuronal matu-

ration sits at the intersection of rodents and long-lived, non-rodent species: while neurons

can mature by 3 weeks (rodent-like), most neurons mature at 5 months and hippocampal

neurogenic levels are low (like long-lived species). These data establish a timeline for future

investigations of longevity- and socially-related manipulations of naked mole-rat adult

neurogenesis.

Introduction

Adult neurogenesis is the generation of new neurons in a mature brain followed by subsequent

integration into established circuits. In diverse species, the dentate gyrus of the hippocampus
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is a site of neurogenesis with adult-generated neurons contributing to memory formation for a

variety of tasks including spatial memory, fear conditioning, and social recognition, allowing

mammals to discriminate changes in the environment and adapt to changing circumstances

[1–5]. The subventricular zone also produces adult-generated cells that migrate to the olfactory

bulbs [6,7]. Olfactory neurogenesis is related to various social functions including mate selec-

tion and recognition of pups and familiar conspecifics [8–11]. Evidence also exists for compa-

rably low level new cell production and survival in a variety of hypothalamic and amygdalar

structures related to hunger, social stress, and reproductive functions [12–20]. Thus, adult-

generated neurons in various brain regions are important for how animals respond and adapt

to their environment throughout life.

Given the importance of adult neurogenesis for organismal plasticity, it is not surprising

that patterns, levels, and mechanisms of neuron production are species-specific. Comparative

analyses of adult neurogenesis across a variety of mammalian species deepens our understand-

ing of what mechanisms are conserved and therefore how the processes might be similar—or

not—in the human brain. For instance, there are similarities in the rates of proliferation and

timeline of maturation in larger, longer-lived species that are distinct from what happens in

mice and rats. Primate fetuses have a relatively long gestation, which partly accounts for the

fact that much of their neurodevelopment and brain mass growth occurs in-utero [21,22].

Allometric studies that compare neurodevelopment by milestones common across species

rather than chronological time have found that brains grow at similar rates. However, smaller

brains tend to finish growing earlier in development and the rate of brain growth throughout

neurodevelopment may be more due to the size of the brain than the size of the animal [23,24].

Comparative analyses found that longer-lived species, such as humans, macaques and sheep,

tend to undergo more neurodevelopment by parturition, take longer to reach maturity and

produce fewer cells in the adult brain but continue proliferation later in life [21,25–27]. Taken

together, the lifespan of a model species is an important variable in making comparative

inferences.

The naked mole-rat is a remarkably long-lived rodent species, with the current recorded

lifespan in captivity at>37 years [28]. Naked mole-rats’ extended lifespan and slower matura-

tion presents novel opportunities for examining and manipulating neurogenesis at critical

periods [29,30]. Further, naked mole-rats are eusocial; they live in colonies of up to 300 indi-

viduals consisting of one reproductively active queen, 1–3 breeding males, and all other indi-

viduals are reproductively suppressed and socially subordinate [31,32]. Subordinates live their

entire lives in a protracted prepubertal state [33–38], presenting the opportunity to understand

the interaction between sociality, neuroplasticity and longevity. To date, few papers directly

explore neurogenesis in this species. Notably, Orr et al., (2016) [39] identified that newborn

naked mole-rats have a larger brain-to-body mass ratio relative to mice, yet it takes 3 months

for their brains to reach full mass compared to just 2 weeks in mice]. Work by Penz et al.

(2015) [40] identified cell proliferation in the rostral migratory stream is retained even in

naked mole-rats as old as ten years of age. Expression of doublecortin (DCX; an endogenous

immature neuron marker) is higher and remains more widespread in the piriform cortex of

naked mole-rats relative to mice at 1 year of age. While DCX expression is not observed in

naked mole-rats by 21 years of age, PSA-NCAM expression (developing and migrating neu-

rons; endogenous plasticity marker) is detectable in the DG at this age [40]. The retention of

neoteny is thought to be associated with their longevity [30,41], thus increasing the parallels in

naked mole-rat development to humans and other non-human primates. Evidence also sug-

gests that sociality alters DCX and Ki-67 (endogenous proliferation marker) expression in

naked mole-rats depending on social context [42–44], and that levels of young neurons are

higher relative to the solitary Cape mole-rat [45]. While some properties of naked mole-rat
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neurogenesis and plasticity have been examined at various developmental stages, a timeline of

cell proliferation or neuronal maturation in the naked mole-rat is required to further this

branch of research.

Here, we tested the hypothesis that naked mole-rat rates of adult cell proliferation and neu-

ronal maturation are protracted compared to traditional short-lived laboratory rodents. First,

we quantified cell proliferation using the thymidine analogue bromodeoxyuridine, an exoge-

nous marker of cell division facilitating birth dating of cells (BrdU; 7 daily injections), over a

one year time course in canonical neurogenic regions (dentate gyrus, subventricular zone,

olfactory bulb) and potential target sites of migration in subordinate naked mole-rats. We then

compared these trajectories to newborn cells after a single 2 hour BrdU injection. Finally, we

tested whether these newly born cells developed into neurons by comparing 5-ethynyl-2’deox-

yuridine (EdU, a separate thymidine analogue) with DCX and NeuN (neuronal marker) in

canonical neurogenic niches.

Experimental procedures

Animal care

Naked mole-rats lived in stable colonies (i.e. established breeders were present) housed in

large (45.75 cm L × 24 cm W × 15.25 cm H) and small (30 cm L × 18 cm W × 13 cm H) poly-

carbonate cages connected by plastic tubes (25 cm L × 5 cm D) lined with corncob bedding.

Animals were fed sweet potato ad libitum supplemented with wet 19% protein mash (Envigo

RMS, Inc.) and kept on a 12:12 light/dark cycle at 28–30 C. All procedures were approved by

the University Animal Care Committee and performed in accordance with federal and institu-

tional guidelines.

Experiment 1: Cell birth-dating using BrdU. BrdU injections and tissue collection. Subor-

dinate animals were injected intraperitoneally (IP) with BrdU (dose = 200mg/kg) [46] once

per day for 7 consecutive days. To facilitate comparison with Penz et al. (2015) [40], we used a

seven day paradigm of injections. Brain collections occurred at 6 timepoints post-final BrdU

injection: 2 hours (N = 12, 5 females, 7 males), 1 week (N = 12, 9 females, 3 males), 3 weeks

(N = 11, 6 females, 5 males), 3 months (N = 11, 5 females, 6 males), 5 months (N = 12, 6

females, 6 males), and 1 year (N = 9, 6 females, 3 males). A separate group of animals (N = 12,

5 females, 7 males) was injected once with BrdU and euthanized 2 hours later. Animals used in

this study were young non-reproductive adults, aged between 8 months and 2.5 years at injec-

tion and aged between 11 months and 3 years at collection. Naked mole-rats reach maturity

around 6 months of age and show few differences in neurogenesis up to 3 years of age (the

timeframe in which this has been studied) [39]. Further, unlike other rodent models, successful

breeding is unpredictable meaning that entire experimental cohorts cannot be generated at

one time. To address this potential source of variability, animals of varying ages were yoked

across collection times. At its designated collection time point, each animal was euthanized

with 2,2,2-tribromoethanol dissolved in 2-methylbutanol (IP; 40mg/100g). Brains were

extracted fresh and immersion-fixed for 4 hours in 4% PFA followed by 20% sucrose for 24

hours. Brains were sliced in the coronal orientation on a freezing stage microtome at 30μm

into 6 series and stored at -20C in cryoprotectant.

Immunostaining. Free-floating sections were pre-treated for antigen-retrieval with sodium

citrate buffer (30 minutes at 80 C). Then, sections were incubated for 30 minutes at room tem-

perature with 0.6% H202 to inhibit endogenous peroxidase activity. Next, sections were incu-

bated for 30 minutes at 37˚C in 2N HCl for DNA denaturation. Sections were then incubated

in a 0.1M borate buffer (pH 8.5) for 10 minutes at room temperature and blocked in 3% nor-

mal goat serum in TBS (with 0.1% Triton-X) for 30 minutes at room temperature. Finally,
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sections were incubated with monoclonal rat anti-BrdU antibody (1:200 in TBS, 48h at 4˚C;

Accurate Chemicals Cat#OBT0030A) followed by goat anti-rat antibody (1:200 in TBS, 4 h at

RT; Vector Laboratories). Cells were visualized for counting with an Avidin-Biotin Complex

incubation (ABC; Vector Laboratories) and diaminobenzidine (DAB) reaction. Between all

steps, sections were washed for 3 x 5 minutes with 0.1M TBS. Sections were mounted onto

slides and dehydrated with an ascending series of ethanol. Slides were cleaned with xylene and

cover-slipped using Permount.

Tissue analyses. BrdU-expressing cells were counted manually and done blind to the experi-

mental group. Quantification was performed on an Olympus BX51 light microscope with a

40x objective. Counting for each brain region was performed by a single individual, with reli-

ability checks conducted by an additional experimenter. Reported counts for each region are

expressed as a density score (the number of cells counted divided by the number of tissue sec-

tions analyzed). In canonical regions, 5 sections were counted for the subventricular zone, 3

sections for the olfactory regions (AON, GCL, GloL, OV) and 7 sections for the dentate gyrus

(DGhil, DGsgz, DGgcl). In non-canonical regions, 3 sections were counted for the Arc, NAcc,

MeA, mPFC, POA and VMH and 5 sections for the BLA, PIC1, PIC2 and PIC3. Analyses were

performed bilaterally for the subventricular zone and dentate gyrus. All others were performed

unilaterally in order to ensure at least three consecutive sections were sampled per individual.

Experiment 2: Phenotyping adult-born cells using EdU, DCX, and NeuN. EdU injec-
tions and tissue collection. A separate cohort of animals was injected intraperitoneally (IP) with

EdU (dose = 25mg/kg) once per day for 7 consecutive days, similar to the dosage used in Penz

et al., 2015 [40]. Here, we used EdU instead of BrdU to avoid the denaturation step required

for immunostaining, resulting in partial tissue degradation [47], which was interfering with

our ability to perform multi-label immunofluorescence. Collections occurred at 5 timepoints

post-final EdU injection: 1 week (N = 12, 6 females, 6 males), 3 weeks (N = 12, 6 females, 6

males), 3 months (N = 12, 6 females, 6 males), 5 months (N = 15, 8 females, 7 males), and 12

months (N = 10, 4 females, 6 males). Animals used were young adults whose ages ranged

between 1.5 and 5.5 years at injection and between 1.5 and 6 years at collection. While this is

relatively double the age of animals used in Experiment 1, these animals are still considered to

be relatively young and, as for Experiment 1, age was yoked across collection time. At its desig-

nated collection time point, each animal was euthanized with 2,2,2-tribromoethanol dissolved

in 2-methylbutanol (IP; 40mg/100g) and transcardially perfused with PBS and 4% paraformal-

dehyde (PFA). Brains were extracted, post-fixed for 24 hours in 4% PFA followed by 20%

sucrose. Brains were sliced on a freezing stage microtome at 30μm into 6 series and stored at

-20 C in cryoprotectant.

Immunostaining. Tissue sections containing the olfactory bulb, subventricular zone, or den-

tate gyrus were selected from a single series and processed for triple-label immunofluorescence

for EdU, DCX, and NeuN. Sections were anatomically matched across animals and staining

was performed on free-floating sections. The sections were washed for 5 minutes in 0.01M

PBS and then twice in 3% BSA. Tissue was then permeabilized in 0.5% Triton-X for 20 minutes

at RT and washed twice in 3% BSA for 5 minutes. Further steps were performed in a manner

to minimize light exposure. Tissue was incubated in a Click-iT reaction cocktail (prepared

according to manufacturer’s recommendations; Life Technologies Inc. Cat #C10339) for 30

minutes followed by a 5 minute 3% BSA wash and 0.01M PBS wash. Tissue was blocked in

normal horse serum (Vector Laboratories Cat#VECTS2000) in PBS-T (0.1% Triton-X, 1X

PBS, 10% NHS) for 1 hour at room temperature. We used NHS rather than normal donkey

serum because pilot work showed better signal to noise ratio in our tissue. Tissue was incu-

bated in primary antibody (monoclonal mouse anti-NeuN 1:1000, EMD Millipore Cat#-

MAB377; polyclonal rabbit anti-DCX 1:250, Abcam Cat#AB18723) for 24 hours at 4˚C.
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Following a 5 minute wash in PBS-T, tissue was incubated for 2 hours at RT in secondary anti-

body in NHS/PBS-T (donkey anti-mouse 488 1:1000, Life Technologies Cat#A21206; donkey

anti-rabbit 647 1:500; EMD Millipore Cat#AP182SA6). Tissue was mounted onto slides and

cover-slipped with Dako fluorescent mounting medium (Agilent Cat#S2023).

Tissue analyses. For each region of interest, every visible EdU+ cell was phenotyped and cat-

egorized as either EdU+, EdU/DCX+, EdU/NeuN+ or EdU/DCX/NeuN+. All phenotyping

was done manually and by an experimenter blind to the experimental group. Analysis was per-

formed on Zeiss LSM 700 and Zeiss LSM 800 confocal microscopes at 40x magnification. Con-

focal images were captured in separate channels per fluorophore. Settings were kept consistent

for each run of staining including gain, pinhole, and filters. Z-stacks were set to 2μm. Images

were analyzed on the ImageJ program. Counts for each cell type are reported as a density score

(number of cells counted divided by number of tissue sections analyzed). Two sections were

used for the subventricular zone, 3 sections for the olfactory bulb, and 4 sections for the den-

tate gyrus. All analyses were done bilaterally.

Statistical analyses

All statistical analyses were performed in R [48]. Graphics were produced using ggplot2 [49].

Linear mixed-effects models were run using nlme. Linear mixed-effects models effectively deal

with unbalanced group numbers and allowed us to account for colony variation within and

between groups. Multiple-testing correction of models was performed using the p.adjust()

function in the base R package using the argument for false discovery rate. Post-hocs were per-

formed using Tukey’s method in emmeans to account for multiple testing correction [50].

Experiment 1

Models were assessed for collinearity amongst predictor variables prior to fitting using the vif

() function in the usdm package (VIF cut-off < 4) [51]. Models were fit for collinearity

between the predictor variables collection time, sex and brain region; sex was then collapsed

(see Results for statistics).

For each brain region, a linear mixed-effects model was fit with density (number of cells

counted divided by the number of counted sections) as the response variable, collection time

as the predictor variable, and colony as the random error variable. Residuals were tested for

normality, resulting in log transformation of density for the following models: Arc, AON,

DGhil, DGgcl, DGsgz, GCL, GloL, meA, mPFC, OV and VMH. Multiple-testing correction

was performed using false discovery rate on the main effect of collection time for all brain

regions (canonical and non-canonical). Within each brain region, Tukey post-hoc adjustments

were used.

To infer whether cells were born in a brain region or rapidly migrating, we performed

Welch two-sample t-tests between BrdU density in a brain region 2 hours after a single injec-

tion and 2 hours after the last of 7 daily injections. Multiple-testing correction was performed

on all brain regions (canonical and non-canonical) for collection time.

Experiment 2

We first tested whether data for markers BrdU and EdU for Experiments 1 and 2, respectively,

were consistent. For Experiment 2, EdU counts were totaled for EdU+, EdU/DCX+ and EdU/

NeuN+ counts. No EdU/DCX/NeuN+ cells were identified. Datasets were independently

scaled using z-scores. The normalized density counts between datasets were compared using a

linear mixed-effects model where collection time and marker were response variables, co-
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varied by brain region. No significant difference was observed for the main effect of markers

in this model (statistics reported in Results).

Each canonical brain region (subventricular zone, AON, OV, GloL, DGhil, DGsgz and

DGgcl) was tested using a linear mixed-effects models with density counts as the response vari-

able, collection time as the predictor variable and colony as the random error variable. Residu-

als were tested for normality. EdU+, EdU/DCX+ and EdU/NeuN+ counts were analyzed using

separate models. Multiple-testing correction was performed using false discovery rate on the

main effect of collection time for all brain regions within a marker type, Tukey post-hoc

adjustments were used. Proportions of EdU+, EdU/DCX+ and EdU/NeuN+ density were cal-

culated relative to the total EdU+ density per individual. These proportions were averaged

across individuals within a collection time.

Due to very low cell numbers in non-canonical regions, we were unable to phenotype cells

in a quantitative manner. Instead, we took a qualitative approach to determine whether we

could identify any EdU/DCX+, EdU/NeuN+ or Edu/DCX/NeuN+ cells in these regions. We

looked at sections at the 5 and 12 month collection times, as these are the times at which we

identified EdU/DCX+ and EdU/NeuN+ cells in the canonical brain regions. While we identi-

fied EdU+ cells, we did not find evidence that these cells co-expressed DCX or NeuN.

Results

Experiment 1

A complete summary of all statistics for both experiments can be found in the Supple-

mentary Files. Model fitting found no collinearity between the predictor variables of interest:

collection time (VIF = 1.02), sex (VIF = 1.00), and brain region (VIF = 1.01). As in Faykoo-

Martinez et al., 2018 [51], we collapsed sex as it was not a significant predictor variable (brain

region: F(17,1025) = 46.4, p<0.001; collection time: F(5,1025) = 10.4, p<0.001; sex: F(1,1025)

= 0.07, p = 0.79; collection time by sex interaction: F(5,49) = 0.65, p = 0.660).

Canonical regions (Fig 1). A significant effect of collection time in the subventricular zone

(F(5,52) = 45.3, padj<0.001) revealed BrdU cell density was highest at 2 hours following the

last BrdU injection relative to all other timepoints (1 week, p<0.001; 3 weeks, p<0.001; 3

months, p<0.001; 5 months, p<0.001; 12 months, p<0.001). BrdU cell density did not change

between 1 and 3 weeks (p = 0.803), with the next decrease in cell density occurring after 3

months (p = 0.016) and 5 months (p = 0.047) relative to 1 week.

BrdU density counts in the AON (F(5,22) = 8.01, padj<0.001) decrease overall from 2

hours to 12 months (p = 0.026), 1 week to 12 months (p = 0.004) and between 3 weeks and 3

months (p = 0.006), 5 months (p = 0.009) and 12 months (p<0.001). A similar pattern was

observed in the GCL (F(5,28) = 5.49, padj = 0.001) with a decrease between 2 hours to 12

months (p = 0.022), 1 week to 12 months (p = 0.001), 3 weeks to 12 months (p = 0.003) and 3

months to 12 months (p = 0.015). In the GloL (F(5,27) = 3.68, padj = 0.032), the only signifi-

cant pairwise comparison was between 1 week and 12 months (p = 0.004). After 7 days of

injections, no change in BrdU density was observed in the OV (F(5,39) = 84.2, padj<0.001)

between 2 hours and other collection times until 3 months (p = 0.007); density remained low

at 5 months (p<0.001) and 12 months (p<0.001). BrdU density in the OV further decreased

between 3 weeks and 5 months (p<0.001) and 12 months (p<0.001), between 3 months and

12 months (p = 0.003) and finally, between 5 months and 12 months (p = 0.028).

A significant effect of collection time in the DGsgz (F(5,51) = 23.0, padj<0.0001) revealed

BrdU density peaked at 2 hours relative to all other collection times (1 week, p = 0.056; 3

weeks, p<0.001; 3 month, p<0.001; 5 months, p<0.001; 12 months, p<0.001). A statistically

significant decline in density was observed between 1 week and 3 months (p = 0.002), but not
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Fig 1. Cell proliferation in canonical neurogenic niches. A) Photomicrographs of the subventricular zone (SVZ), olfactory

bulb, and dentate gyrus at representative timepoints after the last of 7 BrdU injections: 2 hour, 3 week, and 12 month. B) Bar

plots of density (+/- SEM) across timepoints in the subventricular zone and subregions of the olfactory bulb (anterior

olfactory nucleus, AON; granule cell layer, GCL; glomerular layer, GloL; and olfactory ventricle, OV) and the dentate gyrus

(hilus; sub-granular zone, sgz; granular cell layer, gcl). 2hr(1) = animals collected after a single injection and 2hr(7) = animals
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1 week and 3 weeks (p = 0.511). A similar pattern of collection time in the DGhil (F(5,51) =

14.9, padj<0.001) revealed a decrease in density between 2 hours and 3 months (p = 0.004), 5

months (p<0.001) and 12 months (p<0.001), between 1 week and 5 months (p = 0.001) and

12 months (p<0.001), between 3 weeks and 5 months (p = 0.007) and 12 months (p<0.001),

between 3 months and 12 months (p = 0.005) and no difference in BrdU density between 5

months and 12 months (p = 0.569). No significant effect of collection time on BrdU density

was observed in the DGgcl (F(5,51) = 2.04, padj = 0.09).

Non-canonical regions (Fig 2). BrdU density counts in the non-canonical regions were

lower than those observed in the canonical regions, however patterns across timepoints

remained similar.

A significant effect of collection time in the Arc (F(5,46) = 11.4, padj<0.001) revealed a rela-

tively steady decline across timepoints. Statistically, a decrease in BrdU density was observed

between 2 hours and 3 months (p<0.001), 5 months (p<0.001) and 12 months (p<0.001).

There was no decrease between 1 week and 3 weeks (p = 0.999), or 3 months (p = 0.496), but it

did decrease by 5 months (p = 0.041) and 12 months (p = 0.005). Another decrease was

observed between 3 weeks and 5 months (p = 0.017) and 12 months (p = 0.002).

A similar pattern was observed in the BLA (F(5,52) = 13.8, padj<0.001) were a decrease in

BrdU density was observed between 2 hours and 3 months (p = 0.004), 5 months (p = 0.003)

and 12 months (p<0.001). Similarly, while no change in BrdU density was observed between 1

week and 3 weeks (p = 0.075) or 3 months (p = 0.052), a statistically significant drop was

observed by 5 months (p = 0.041) and 12 months (p = 0.002). Further, another decrease

occurred between 3 weeks and 3 months (p<0.001), 5 months (p<0.001) and 12 months

(p<0.001). This pattern was also observed in the MeA (F(5,428) = 20.218.1, padj<0.0001)),

with a drop in density between 2 hours and 3 months (p<0.001), 5 months (p<0.001) and 12

months (p<0.001), between 1 week and 3 months (p<0.001), 5 months (p<0.001) and 12

months (p<0.001) and between 3 weeks and 3 months (p<0.001), 5 months (p<0.001), 12

months (p<0.001).

The mPFC (F(5,41) = 27.7, padj<0.0001) observed a decrease between 2 hours and 1 week

(p = 0.010), but not 3 weeks (p = 0.547), before decreasing again at 3 weeks (p<0.001), 3

months (p<0.001), 5 months (p<0.001) and 12 months (p<0.001). No change was observed

between 1 week and 3 weeks (p = 0.507), however density decreased by 3 months (p = 0.010), 5

months (p = 0.026) and 12 months (p<0.001). Further, decreases in density were observed

between 3 weeks and 3 months (p<0.001), 5 months (p<0.001) and 12 months (p<0.001),

between 3 months and 12 months (p = 0.020) and between 5 months and 12 months

(p = 0.023). Like the mPFC, the NAcc (F(5,462) = 20.8, padj<0.001) peaked at 2 hours (1

week, p = 0.004; 3 weeks, p = 0.009; 3 months, p<0.001; 5 months, p<0.001; 12 months,

p<0.001). No difference between 1 week and 3 weeks (p = 1.000) was observed but density

decreased after 3 months (p = 0.005), 3 months (p = 0.003), 5 months (p = 0.003) and 12

months (p = 0.002). Density at 3 weeks decreased after 3 months (p = 0.008), 5 months

(p = 0.005) and 12 months (p = 0.004); no significant changes were seen between 3 and 12

months.

Density in the PIC1 (F(5,52) = 37.8, padj<0.001) did not decrease after 1 week (p = 0.371),

but decreased after all following timepoints (3 weeks, p<0.001; 3 months, p<0.001; 5 months,

p<0.001; 12 months, p<0.001). Similarly, density decreased between 1 week and 3 months

(p<0.001), 5 months (p<0.001) and 12 months (p<0.001), between 3 weeks and 3 months

collected after 7 injections. Density was averaged over the following number of sections per region: Subventricular zone = 5

sections, olfactory bulb = 3 sections, dentate gyrus = 7 sections. Circle = male; triangle = female.

https://doi.org/10.1371/journal.pone.0273098.g001
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(p = 0.002) and 5 months (p<0.001), but plateaued after 3 months. BrdU density in the PIC2

(F(5,52) = 14.5, padj<0.001) remained consistent between 2 hours and 1 week (p = 0.961) and

3 weeks (p = 0.316) before gradually declining (non-significant change) after 3 months

(p<0.001), 5 months (p<0.001) and 12 months. Density decreased between 3 weeks and 5

months (p<0.001), but not between 3 months to 12 months. In the PIC3 (F(5,5249) = 29.7,

padj<0.001), density peaked at 2 hours relative to all other groups (1 week, p = 0.004; 3 weeks,

p = 0.042; 3 months, p<0.001; 5 months, p<0.001; 12 months, p<0.001). No difference was

observed between 1 week and 3 weeks (p = 0.971) but density decreased after 3 months

(p<0.001) and remained unchanged thereafter.

BrdU density in the mPOA (F(5,48) = 14.0, padj<0.001) peaked at 2 hours, declined by 1

week (p<0.001), with no difference between 1 week and 3 weeks (p = 0.366) before declining

again by 3 months relative to 3 weeks (p = 0.029), with no changes over the next year. For

BrdU density in the VMH (F(5,42) = 12.5, padj<0.001), no changes were observed across the

first 3 weeks, however density decreased by 3 months (p<0.001), 5 months (p<0.001) and 12

months (p<0.001). Density decreased between 3 weeks and 3 months (p = 0.004) before

remaining unchanged to 12 months.

2 hour post-single BrdU injection. Two hours following a single injection of BrdU, the aver-

age density count was 59.00(+/-9.81) in the subventricular zone. Average density counts in the

olfactory bulb were 3.555 (+/-1.27) in the AON, 8.300(+/-0.99) in the GCL, 14.83(+/-1.73) in

the GloL and 9.272 (+/-1.22) in the OV. Counts were substantially lower in the dentate gyrus

at 0.048(+/-0.03) in the DGhil, 0.048(+/-0.03) in the DGsgz and 0.012(+/-0.01) in the DGgcl.

Density counts in the noncanonical regions varied as follows: Arc, 1.694 (+/-0.27); BLA, 0.017

(+/-0.02); MeA, 0.370(+/-0.13); mPFC, 0.727(+/-0.20); mPOA, 0.444(+/-0.14); NAcc, 0.700

(+/-0.24); PIC1, 0.183(+/-0.05); PIC2, 0.017(+/-0.02); PIC3, 0.050(+/-0.03); VMH, 0.300

(+/-0.10). In each region, there were significantly more labelled cells following 7 injections

compared to 1 injection. All adjusted p-values were less than <0.05; a full summary of results

can be found in the Supplementary Files.

Experiment 2

A complete summary of all statistics can be found in the Supplementary Files. A com-

parison of the BrdU and EdU data revealed a main effect of collection time (F(1,338) = 5.43,

p = 0.020) but not marker (F(1,7) = 0.000, p = 1.000) or interaction of collection time and

marker (F(1,338) = 26.8, p = 0.115), suggesting the BrdU and EdU datasets are capturing the

same effects of collection time.

EdU+ cell density in the subventricular zone (F(4, 54) = 7.20, padj = 0.003; Fig 3A) peaked

at 1 week and subsequently plateaued (3 weeks, p = 0.016; 3 months, p = 0.037; 5 months,

p<0.001; 12 months, p<0.001). The same pattern was observed for EdU/DCX+ cell density (F

(4, 54) = 11.9, padj<0.001) in this region where cells peaked at 1 week (relative to 1 week: 3

weeks, p<0.001; 3 months, p<0.001; 5 months, p<0.001; 12 months, p<0.001. No effect of col-

lection time was found for EdU/NeuN+ cells (F(4,54) = 0.93, p = 0.452), yet low numbers of

Fig 2. Cell proliferation in non-canonical neurogenic niches. A) Photomicrographs of a representative brain region, the arcuate nucleus of hypothalamus, at

representative timepoints after the last of 7 BrdU injections: 2 hour, 3 week, and 12 month. B) Higher magnification image (400x) of BrdU cells in the arcuate

nucleus of the hypothalamus at 3 weeks. C) Bar plots of density (+/- SEM) across timepoints in non-canonical neurogenic regions. 2hr(1) = animals collected after a

single injection and 2hr(7) = animals collected after 7 injections. The number of sections averaged to calculate density are in parentheses following the abbreviation:

Arc = arcuate nucleus of the hypothalamus (3 sections); BLA = basolateral amygdala (5 sections), MeA = medial amygdala (3 sections), mPOA = medial pre-optic

area (3 sections), NAcc = nucleus accumbens (3 sections), PIC1 = piriform cortex–layer 1 (5 sections), PIC2 = piriform cortex–layer 2 (5 sections), PIC3 = piriform

cortex–layer 3 (5 sections), VMH = ventromedial hypothalamus (3 sections). Circle = male; triangle = female.

https://doi.org/10.1371/journal.pone.0273098.g002
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1–3 cells were observed in several individuals per collection time starting as early as 1 week.

No EdU/DCX/NeuN+ cells were observed.

EdU+ cell density in the olfactory bulb did not vary across collection time (F(4, 54) = 1.89,

padj = 0.125; Fig 3B), however a significant effect of collection time on EdU/DCX+ (F(4, 54) =

20.0, padj<0.001) and EdU/NeuN+ cells (F(4, 54) = 6.78, padj<0.001) was detected. Edu/DCX

+ cells peaked at 1 week relative to all other timepoints (3 weeks, p = 0.044; 3 months,

p<0.001; 5 months, p<0.001; 12 months, p<0.001). EdU/DCX+ cell density was also higher at

3 weeks relative to other timepoints (3 months, p<0.001; 5 months, p<0.001;12 months,

p<0.001), with counts plateauing after 3 months. EdU/NeuN+ cells appeared as early as 3

weeks, however the bulk of these cells appeared at 5 months (relative to 3 weeks: 5 months,

p = 0.001; 12 months, p = 0.042). No EdU/DCX/NeuN+ cells were observed.

A significant effect of collection time in the dentate gyrus was observed for EdU+ cells (F(4,

54) = 6.25, padj<0.001; Fig 3C), EdU/DCX+ cells (F(4, 54) = 4.09, padj = 0.006) and EdU/

NeuN+ cells (F(4,54) = 8.89, padj<0.001). EdU+ cells peaked first at 1 week (relative to 5

months, p = 0.010, and 12 months, p = 0.005), with a second peak at 3 months (relative to 5

months, p = 0.012, and 12 months, p = 0.006). EdU/DCX+ cells peaked at 1 week, with a signif-

icant drop observed by 5 months (p = 0.008) and 12 months (p = 0.016). EdU/NeuN+ cells

appeared in the dentate gyrus as early as 1 week in some animals, with the majority maturing

by 5 months (p = 0.004) or 12 months (p = 0.001); another increase occured between 3 months

and 12 months (p = 0.006). No significant loss occurred between 5 and 12 months (p = 0.597).

No EdU/DCX/NeuN+ cells were observed.

Proportions of EdU/DCX+ cells in the subventricular zone peak at 1 week and 3 weeks,

making a sharp decline by 3 months and remain low thereafter. Alternatively, EdU/NeuN

+ proportions emerge at 3 months. In the olfactory bulb, large proportions of EdU+ cells

remain solely EdU+ across timepoints measured; Edu/DCX+ cells also remain relatively con-

sistent across timepoints. EdU/NeuN+ cells increased across timepoints but were few. In the

dentate gyrus, EdU+ cells plummeted at 5 months and remained low. Similar to the olfactory

bulb, EdU/DCX+ cell proportions dropped by 3 months and by 5 months, EdU/NeuN+ pro-

portions increased and remained elevated at 12 months. While few adult-generated cells

expressed EdU and NeuN in the olfactory bulb, >50% of EdU+ cells in the subventricular

zone and dentate gyrus expressed NeuN+ at 5 and 12 months, implying their maturation.

Discussion

Here, we tracked the birth of newly-born cells in the brains of adult naked mole-rats across a

12 month period. We looked beyond the hippocampus, subventricular zone, and olfactory

bulb into regions of the brain that are not typical neurogenic regions but contribute to the

remarkable social adaptations of this species. We then determined how long it takes for these

newly proliferating cells to develop into neurons. Consistent with previous work in this spe-

cies, levels of adult cell proliferation were low in the DG, yet were high in the subventricular

zone [40,45]. Cell proliferation was high in the subventricular zone only 2 hours after a single

injection indicating cells were born here. Most of these newly-born cells migrated to the

Fig 3. Cell maturation in canonical neurogenic niches. A) Representative triple label immunofluorescent photomicrographs of the subventricular

zone (animal collected after 1 week), olfactory bulb (animal collected after 5 months) and dentate gyrus (animal collected after 5 months) (left to right).

EdU = red, NeuN = green, DCX = blue. B) Representative photomicrographs of a cell co-expressing EdU (red) and NeuN (green). C) Bar plots of

density (+/- SEM) for EdU+ only, EdU/DCX+, and EdU/NeuN+ density in the subventricular zone, olfactory bulb and dentate gyrus (left to right).

Tissue is from the OB of an animal in the 5 month collection group. D) Proportions of density (+/- SEM) for EdU+, EdU/DCX+, and EdU/NeuN+ cells

(out of total EdU+ density, calculated within an individual) per brain region. Density is averaged over the following number of sections per region:

Subventricular zone = 2 sections, olfactory bulb = 3 sections, dentate gyrus = 4 sections.

https://doi.org/10.1371/journal.pone.0273098.g003
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olfactory bulb, presumably through the rostral migratory stream. Hippocampal adult neuro-

genesis levels (born in the DGsgz and migrating inwards to the DGhil or outwards to the

DGgcl) were low. Cell proliferation was highest in regions after the first timepoint post-BrdU

or -EdU injection, with labeled cells gradually declining, but surviving, until at least 12 months

later. Newly-born cells in the olfactory bulb and dentate gyrus matured into neurons by 3–5

months and persisted for at least 12 months. This is consistent with findings that naked mole-

rats can preserve stable neurogenic potential far longer than mice [40]. In non-canonical

regions of neurogenesis we observed low levels of newly-born cells. However, we did not find

evidence that these cells matured into neurons.

By tracking cell proliferation and maturation in the adult naked mole-rat, we further dem-

onstrate the naked mole-rat follows a developmental trajectory that is more similar to other

long-lived species than it is to traditional laboratory rodents [39]. DCX expression in the

naked mole-rat differed between regions, but peaked across all regions at 1 week (Fig 3). DCX

expression decreased after 1 week in the subventricular zone, decreased after 1 and 3 weeks in

the olfactory bulb, and in dentate gyrus a significant decline was observed at 5 months. A

cross-species analysis of DCX+ cells in the dentate gyrus [25] found neurogenesis is strongly

correlated to lifespan, but not other biological factors (e.g. body mass, metabolism). The naked

mole-rat timeline of olfactory bulb and dentate gyrus neurogenesis resembled that of larger,

long-lived animals such as sheep or macaques or Chiroptera species (e.g. brown bat) [26], but

not similarly-sized rodents (e.g. mice, rats) [52–55]. In mice and rats, neurons born in the

olfactory bulb take approximately 1 month to reach maturity as compared to 3 months in

sheep and macaques [52–56]. However, some new neurons appeared as early as 3 weeks in the

olfactory bulb of naked mole-rats, suggesting there may be some overlap with what is seen in

other rodents. Hippocampal DCX expression in mice/rats declines sharply between 2–3 weeks

and mostly disappears by 1 month [53,57]. In contrast, macaques express DCX at 2 weeks, peak

around 1.5 months and plateau by 6 months [52–56]. Sheep have a low but steady EdU/DCX

co-expression from 1 month to 8 months [52–56]. This long-term stability of naked mole-rat

newly-born cells from subventricular zone is posited to be related to protection against DNA

damage, which is associated with its longevity [58]. While neuronal maturation timelines in the

naked mole-rat appear to be a blend of what is known about long-lived and rodent species,

migration patterns of newly-born cells appear consistent with other Rodentia species.

The large majority of newly-born cells appeared to follow the rostral migratory stream char-

acterized in other rodents and is consistent with a previous report in naked mole-rats [39].

Newly born cells were highest in the subventricular zone 2 hours following the last injection

(Fig 1C). This number dropped drastically following 1 week post-final injection and remained

low across the 12 month period we tracked. These levels declined between 3 weeks and 3

months in OV. It appears these cells then migrated into the AON by 3 weeks and remained

there (Fig 1C). Two hours following a single injection, the subventricular zone retained the

highest number of newly-born cells compared to olfactory bulb regions, yet quantifiable BrdU

expression in the olfactory bulb implies some of these cells were also born there. Consistent

with previous reports using endogenous markers in naked mole-rats, very low levels of BrdU-

labeled cells were observed in the dentate gyrus (Fig 1C). Adult hippocampal neurogenesis has

previously been identified as occurring at low levels in African mole-rats, including naked

mole-rats, despite their sociality [30,45]. Given that we did not find a change in BrdU-express-

ing cells in the DGgcl across timepoints, it is possible cells migrated into the DGhil but not the

DGgcl in an unmanipulated subordinate naked mole-rat. These findings demonstrate adult

hippocampus neurogenesis is more consistent with the long-lived brown bat species, which

show minimal [or no] adult hippocampal neurogenesis [58], than they are with other rodent

species.
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Identifying where these newly-born cells migrate to and how they mature is an important

component of understanding adult-born cells. This can be achieved through experiments

exploring the functional importance of neurogenesis in the naked mole-rat. Our previous

work on the interaction of social dynamics and neurogenesis has revealed that the sex of a

housing partner alters novel cell birth [43]. Opposite-sex pair housing, relative to same-sex

pair housing, is associated with a decrease in cortisol and aggression, increased huddling, and

increased Ki-67/DCX expression in the DGgcl [43]. In the current experiment, we saw differ-

ences between cell proliferation across timepoints despite not having a social manipulation.

Housing with a female (regardless of sex) results in higher DCX expression in the BLA com-

pared to colony-housed subordinates. This may be associated with increased risk assesment

[43] and the findings demonstrate social stressors do not always downregulate neurogenesis.

Risk assessment within the colony structure is important to avoid aggressive encounters. The

relationship between risk assessment and adult neurogenesis is further substantiated by

increased DCX expression in the BLA, dentate gyrus, and PIC of subordinates relative to

socially-dominant breeders [42]. Given that brain regions do not work in isolation, it is impor-

tant to consider brain regions involved in circuitry relevant to social decision-making [59].

In other species, there is evidence for new cell production in non-traditional adult neuro-

genic niches, such as those involved in the social decision-making network (e.g.: hippocampus,

amygdalar structures, nucleus accumbens, hypothalamus, etc.) [12–19,60]. We previously

demonstrated differences in coordinated neural activity in hippocampal and olfactory struc-

tures when subordinates are presented with familiar or unfamiliar animals (using the early

immediate marker c-Fos), although activity in these regions is distinct from the social deci-

sion-making network [61]. The functional purpose of newly-born cells in non-traditional

niches is not as well understood as those found in the olfactory bulb/dentate gyrus. However,

there is evidence that rates of proliferation and survival are affected by socio-environmental

factors [13,16,18,62–66]. Voles are a notable example. Meadow voles and prairie voles (who

are polygamous and monogamous, respectively) show species-specific responses of cell prolif-

eration, survival and neuronal maturation in response to sociosexual manipulations

[13,16,65]. For example, sociosexual interaction alters cell proliferation and birth of neurons

in hypothalamic and amygdalar structures in the monogamous prairie vole [13]. Our 2 hour

single injection collection time indicates that there are low levels of newly-born cells in these

regions and that newly-born cells persist into adulthood. This presents an intriguing research

question of how neurogenesis in these non-canonical niches might shape behavioral responses

to the shifting social environment of the colony in naked mole-rats.

Here, we provide evidence that cells born in adult naked mole-rats matured into neurons

by 3–5 months. These maturation patterns reflect long-lived species more-so than other rodent

species (e.g., mice/rats). We acknowledge that we are singularly profiling subordinates–these

individuals are pre-pubertal, pre-reproduction and (for the most part) are in early adulthood.

Several key questions require further exploration in the field of naked mole-rat adult cell pro-

liferation. First, what proportion of these newly-born cells mature into non-neuronal cell-

types (e.g., astrocytes, oligodendrocytes, etc)? This work would be complemented by investiga-

tions into the plasticity of newly-born cells in the context of opportunities where transition

within the social hierarchy is possible. Next, do these cells integrate into social decision-mak-

ing circuits in response to the environment (e.g. when a change in social rank is possible)?

Finally, in order to discern how adult-generated cells contribute to behavioral/physiological

development, it will be important to develop a species-specific catalog of neurogenic markers.

This will become possible as species-specific single-cell atlases continue to emerge in the litera-

ture and can help us to identify which of the established markers of proliferating/developing

cells exist in the naked mole-rat. These data will contribute to our understanding of longevity
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and sociality in mammalian species and how this biomedical model can contribute to our

understanding of plasticity and aging in the brain.
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