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Abstract

Eucalyptus nitens is a perennial forest tree species grown mainly for kraft pulp production in many parts of the world. Kraft
pulp yield (KPY) is a key determinant of plantation profitability and increasing the KPY of trees grown in plantations is a
major breeding objective. To speed up the breeding process, molecular markers that can predict KPY are desirable. To
achieve this goal, we carried out RNA-Seq studies on trees at extremes of KPY in two different trials to identify genes and
alleles whose expression correlated with KPY. KPY is positively correlated with growth measured as diameter at breast
height (DBH) in both trials. In total, six RNA bulks from two treatments were sequenced on an Illumina HiSeq platform. At
5% false discovery rate level, 3953 transcripts showed differential expression in the same direction in both trials; 2551 (65%)
were down-regulated and 1402 (35%) were up-regulated in low KPY samples. The genes up-regulated in low KPY trees were
largely involved in biotic and abiotic stress response reflecting the low growth among low KPY trees. Genes down-regulated
in low KPY trees mainly belonged to gene categories involved in wood formation and growth. Differential allelic expression
was observed in 2103 SNPs (in 1068 genes) and of these 640 SNPs (30%) occurred in 313 unique genes that were also
differentially expressed. These SNPs may represent the cis-acting regulatory variants that influence total gene expression. In
addition we also identified 196 genes which had Ka/Ks ratios greater than 1.5, suggesting that these genes are under
positive selection. Candidate genes and alleles identified in this study will provide a valuable resource for future association
studies aimed at identifying molecular markers for KPY and growth.
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Introduction

Eucalyptus nitens (shining gum) is a perennial forest tree species

grown mainly for kraft pulp production (KPY) in many parts of the

world [1]. KPY is considered a key determinant of plantation

profitability [2] and consequently increased KPY is a major

objective of breeding programs [3]. In forest tree species, marker-

assisted selection (MAS) is particularly attractive because conven-

tional selection is impeded by long generation times and long

delays until the full expression of mature traits [4]. A common

feature of most agronomic traits in trees is that they are complex,

and likely to be controlled by variation in many genes. Currently,

there are two approaches being explored in trees for applying

markers in breeding for improvement of complex traits. In the first

approach, known as Genomic Selection (GS), large numbers of

random markers are used for predicting phenotypes from

genotypes [5]. In the second approach, markers potentially

controlling the trait occurring within candidate genes are

identified using association genetics in candidate genes. These

associated markers are then used to predict traits as in GS with

random markers [6]. The discovery of high quality candidate

genes is therefore a crucial step in the discovery of polymorphisms

associated with complex traits such as growth and pulp yield.

Recent developments in sequencing technologies are making it

possible to identify large numbers of high quality candidate genes

by exploring gene expression at the whole transcriptome level.

RNA sequencing (RNA-Seq) uses next generation sequencing

technologies to sequence complementary DNA (cDNA), and the

resulting sequencing reads are either assembled de novo or mapped

on to a reference genome, if available. Differential gene expression

can be examined by comparing the number of reads mapping to

genes in samples derived from different conditions. Such RNA-Seq

experiments are new to forest tree species and only a few studies

have been published to date [7–10]. In addition to the

identification of differentially expressed genes, RNA-Seq can also

be used to identify differentially expressed alleles [7]. Until

recently, microarrays were predominantly used to explore

differential expression in large numbers of genes [11]. However

RNA-Seq is replacing microarrays to overcome some of the

limitations in microarray studies including increased false positives

due to hybridization signals [12] particularly from transcripts of
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low abundance [13]. RNA-Seq is also useful for discovering new

transcripts, while microarrays can only detect transcripts that

correspond to existing genomic sequence information.

In this study, we used RNA-Seq to identify candidate genes and

alleles that may influence wood and growth traits by comparing

gene expression in cambial tissue between low and high KPY

trees. Cambial tissue is widely used in forest tree species to study

patterns of expression of genes involved in wood (xylem)

development. KPY is a wood quality trait of forest trees and is

influenced by the cellulose and lignin content of xylem. Several

studies have shown that virtually all cellulose and lignin

biosynthetic genes are expressed in cambial tissue. Therefore

cambial tissue is widely used as a key organ to identify genes

relating to pulp yield in a number of studies [14–17]. In this study,

we identified several genes and alleles affecting wood and growth

traits which were consistent between two populations. The

functional variants showing differential allelic expression identified

in this study are useful for future association studies to identify

markers for KPY and growth traits.

Methods

Plant material and RNA extraction
Plant material from two trials of E. nitens at Meunna (241.08uS,

145.47uE) and Florentine (242.54uS, 146.51uE) in Tasmania,

Australia were used in this study. Meunna and Florentine are

approximately 350 kilometres apart and located at an altitude of

297 m and 266 m above mean sea level, respectively. The annual

rainfall of Meunna and Florentine are 1007 mm and 1225 mm,

respectively. The two trials were established in 1993 to study the

performance of 420 E. nitens families, each represented by two-tree

plots in each of five replicates. Cambial scrapings for RNA

extraction were collected from 44 trees, 22 each from high pulp

yield and low pulp yield extremes in the Meunna trial (March

2011) and 66 trees, 33 each from high pulp yield and low pulp

yield extremes, in the Florentine trial (May 2012). Scrapings were

immediately frozen on dry ice then stored at 280uC. Total RNA

was isolated from the cambial scrapings following a modified

CTAB method as described in [18]. RNA samples were then

treated with TURBO DNA-free Kit (Cat No. AM1907, Ambion)

to remove contaminating DNA from RNA preparations and to

remove the DNAse from the samples. Concentrations of RNA

samples were measured using a QUBIT fluorometer and all the

samples were normalized to 100 ng/ul. An equimolar concentra-

tion of total RNA from trees in each category (high and low pulp

yield) was pooled into three bulks of seven to eight trees each in

Meunna and 11 trees each in Florentine and quality checked using

an Agilent 2100 Bioanalyser. These three bulks from each

treatment were used as biological replicates in differential gene

expression analyses.

cDNA Sequencing
In total, six RNA bulks from two treatments (three from high

and three from low pulp yield) from each trial were sequenced

(paired end) at the Australian Genome Research Facility using the

Illumina HiSeq platform (HiSeq 2000). Raw sequence reads were

obtained using the Illumina CASAVA pipeline version 1.8.2.

RNA sequence reads mapping and transcript assembly
Adapter sequences from all raw sequence reads were removed

using CLC Genomics Workbench v6.0.4 (CLC Inc, Aarhus,

Denmark) and sequence reads having a quality score less than 20

were discarded using the Popoolation package [19]. Quality

trimmed sequencing reads from all 6 libraries in each trial were

pooled and mapped to the Eucalyptus grandis reference genome

(http://www.phytozome.net/eucalyptus.php) with TopHat v2.0.9

[20] which uses Bowtie v0.12.7 [21] as an alignment engine.

Tophat was run with the default parameters. To determine and

exclude ambiguous reads mapping to multiple transcripts we used

Tophat’s default option (–g value: 20 multi-hits). Since we do not

have a reference genome sequence for E. nitens, we used the

publicly available E. grandis reference genome sequence for

mapping the sequencing reads. A binary sequence alignment file

(BAM) produced by TopHat and a FASTA file of E. grandis

genome sequence was used to generate transcript annotations in

GTF format using Cufflinks v1.1.0 [22]. Cufflinks was run with

default parameters without supplying any annotation file. BED-

tools v2.18.1 [23] was used to estimate the counts of reads in

individual bulks that are mapping to different gene products in the

GTF annotation file using the BAM file from each library. Raw

read sequences and the read counts data are deposited in NCBI’s

Gene Expression Omnibus and are accessible through GEO series

accession number GSE56592.

Differential gene expression (DGE) analyses
The count files generated using BEDtools for individual bulks

were used to find significant differences in transcript abundance

between low and high KPY samples using edgeR [24]. EdgeR

identifies differentially expressed transcripts based on the assump-

tion that the number of reads produced by each transcript is

proportional to its abundance. edgeR measures transcript abun-

dance in counts per million (CPM). As there were three biological

replicates each for low and high pulp yield samples in each trial,

edgeR observes the differences in the CPMs for each gene across

the replicates and uses these variance estimates to calculate the

statistical significance (p-values) of observed differential expression.

Transcripts with very low expression were filtered before DE

analysis based on an expression cut-off of 1 CPM in at least three

libraries. For the library sizes in this study, one CPM would

correspond to ,50 read counts for the Florentine trial and ,70

read counts for the Meunna trial. Benjamini and Hochberg’s

algorithm [25] was used to control false discovery rate (FDR) due

to multiple testing in differential expression analysis.

A web-based tool High-Throughput GOMiner [26] was used to

categorise the differentially expressed genes based on their

function. To identify Arabidopsis homologs for gene models

predicted from transcriptome mapping, BEDTools was used to

extract sequences of all genes from the E. grandis reference genome

sequence using gene coordinates from the gene annotation (GTF)

file produced using the ‘Cufflinks’ package. The extracted gene

sequences were BLAST searched with the Arabidopsis protein

database. The identified Arabidopsis homologs were used in GO

enrichment tests based on Biological processes.

SNP discovery and differential allelic expression (DAE)
analysis

To identify SNPs from the RNA-Seq data, BAM files generated

from TopHat were used in SAMtools to produce an mpileup file.

Reads from the three biological replicates from each treatment

were combined to increase coverage and confidence of the SNP

calls. The mpileup file was used in VarScan [27] to call SNPs. The

following parameters were used in SNP calling: minimum read

depth (50), minimum supporting reads (20), minimum base quality

(20), minimum variant allele frequency (0.01), P-value threshold

for calling variants (0.05). We used these stringent parameters

compared to the less stringent default parameters to avoid false

positives in SNP calling. We also tested for differences in the

frequency of the alleles at each SNP between low and high pulp
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yield samples in each trial. A chi-square test was performed to

estimate the significance of allele frequency differences.

A GO analysis was conducted using High-Throughput

GOMiner to categorise the genes that had differentially expressed

alleles based on their function. Separate analysis was performed

for genes that showed both DGE and DAE and genes that showed

only DAE.

Identification of genes under positive selection based on
Ka/Ks ratios

We used Popoolation to annotate synonymous (SS) and

nonsynonymous (NS) substitutions using an mpileup file contain-

ing reads merged from all the six bulks from each trial and a

coding sequence (CDS) gene annotation file of E. grandis. A

minimum allele count of 4, minimum coverage of 20 reads,

maximum coverage of 2000 reads and a minimum phred quality

of 20 was used to identify SNPs. The identified nonsynonymous

and synonymous SNPs were used to estimate Ka/Ks ratios (ratio

of number of nonsynonymous substitutions per nonsynonymous

site to the number of synonymous substitutions per synonymous

site). The nonsynonymous and synonymous SNPs were normal-

ized by their respective lengths estimated with the Popoolation

package. A constant 1 is added to the number of SNPs to enable

comparisons with genes containing no SNPs, as suggested by [28].

Genes with Ka/Ks ratio of more than 1.5 were considered genes

under positive selection. We also conducted GO enrichment tests

to identify the biological processes associated with the genes

showing positive selection signatures.

Results

Sequencing output
RNA samples of E. nitens trees representing the KPY extremes

were collected in two trials, Meunna and Florentine. Distributions

of pulp yield for the collected samples from both the trials are

shown in Fig. 1. A positive correlation between KPY and diameter

at breast height (DBH) was observed for samples in both Meunna

and Florentine (Figure S1).

From both the Meunna and Florentine trials, six RNA bulk

libraries from two treatments (three from high and three from low

pulp yield) were paired-end sequenced on one lane of an Illumina

HiSeq flowcell. In Meunna this yielded a total of 430 million

reads, with individual library yields ranging from 49 to 78 million

reads. In Florentine, this yielded a total of 286 million reads, with

individual libraries yielding 43 to 53 million reads. These reads

were mapped to the E. grandis reference genome using Bowtie and

TopHat software packages. Sequencing reads from three bulks

within a treatment were used as biological replicates in differential

gene expression analyses.

Differential gene expression analysis
To identify the candidate genes controlling KPY and growth

traits, we performed differential gene expression (DGE) analysis

using edgeR on the E. nitens transcripts which had a minimum of

one counts per million (CPM) in at least three libraries. The down-

regulated genes in low KPY (low DBH) samples are primarily

involved in growth and cell wall formation while up-regulated

genes in low KPY samples (up-regulated in high KPY samples) are

mainly involved in biotic and abiotic stress tolerance reflecting the

low growth of the low KPY samples. Several genes putatively

involved in wood formation and growth such as alpha and beta-

tubulins, calcium dependent protein kinase, cellulose synthases,

cellulases, COBRA-like proteins, 4-coumarate:CoA ligase, FAS-

CICLIN-like arabinogalactan protein, MYB domain proteins,

protein kinases, SAM-dependant methyltransferases, sucrose

synthases, xyloglucan endotransglucosylases were down-regulated

in low KPY samples (up-regulated in high KPY samples). On the

other hand, biotic and abiotic stress related proteins such as several

heat shock proteins, pathogenesis related proteins, senescence

related genes, zinc induced facilitator-like proteins and WRKY

DNA binding proteins were present among the up-regulated genes

in low KPY (low growth) samples.

Overall, 32,903 and 30,570 transcripts were predicted in

Meunna and Florentine trials, respectively. After filtering for low

expression transcripts, 26,279 and 23,917 transcripts from

Meunna and Florentine trials were used in DGE analysis. Log2

fold changes between low and high KPY samples ranged from 2

6.79 to 6.26 in Meunna and from 27.75 to 8.18 in Florentine. To

reduce false positives, only transcripts that were differentially

expressed at 5% FDR level were declared as DE genes. At 5%

Figure 1. Distribution of Kraft Pulp Yield for samples collected from the Meunna and Florentine trials.
doi:10.1371/journal.pone.0101104.g001

RNA-seq of KPY and Growth in Eucalyptus nitens

PLOS ONE | www.plosone.org 3 June 2014 | Volume 9 | Issue 6 | e101104



FDR level, a total of 6122 and 7240 transcripts (4479 and 5528

unique genes based on E. grandis annotations) showed differential

expression between low and high KPY samples in Meunna (Table

S1) and Florentine (Table S2) respectively. Of these, 3615 (59%)

transcripts were down-regulated and 2507 (41%) up-regulated in

low KPY samples in Meunna. In Florentine, 3674 (51%) were

down-regulated and 3566 (49%) were up-regulated in low KPY

samples. Heatmaps were generated for both the trials using

log2CPM of the top 500 genes that were differentially expressed in

both trials (Fig. 2). Within a treatment (e.g low KPY) gene

expression was similar among the three replicates while it was

distinct between treatments in both the trials. To determine the

relationship between gene expression in Florentine and Meunna

the data used for drawing the heatmaps was used to generate

dendrograms based on hierarchical clustering (Figure S2). The low

and high KPY samples from both the trials were assigned to two

separate major groups confirming the similarity between biological

replicates within and between trials.

Comparing the DGE between the two trials, 3972 transcripts

were significantly differentially expressed in both the trials at 5%

FDR level. Of these, only 19 transcripts (0.5%) showed opposite

patterns of expression. Of the 3953 transcripts that had gene

expression changes in the same direction in both trials, 2551 (65%)

were down-regulated and 1402 (35%) were up-regulated in low

KPY (low growth) samples (Table S3). Correlation between Log

fold changes in Meunna and Florentine for these 3953 transcripts

is very high (Figure S3). Differential expression of the top 25 down-

regulated genes and top 25 up-regulated genes are shown in

Tables 1 and 2, respectively. Transcript gene coordinates and gene

identities of all significantly (FDR,0.05) differentially expressed

transcripts in both the trials are shown in Table S3.

Gene Ontology (GO) enrichment analysis of differentially
expressed genes

We performed gene ontology (GO) enrichment analyses to

functional characterisation of genes showing differential expres-

sion. The gene ontology analysis by High-Throughput GoMiner

revealed differential enrichment of genes into various biological

processes. The genes up-regulated in low KPY (low growth)

samples were enriched in biotic and abiotic stress responsive

processes. On the other hand, most of the down-regulated genes

(up-regulated in high KPY and high growth samples) belonged to

gene categories involved in wood formation and growth (Table 3).

Figure 2. Heatmap of 500 most differentially expressed genes between low and high KPY samples in the Meunna and Florentine
trials.
doi:10.1371/journal.pone.0101104.g002
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In Meunna, 57 gene categories were enriched among the genes

differentially expressed between low and high KPY samples at the

5% FDR level. Of these, 18 were up-regulated and 39 were down-

regulated in the low KPY samples. Thirty nine gene categories

were enriched among the genes differentially expressed between

low and high KPY samples in Florentine. Of these, five categories

were up-regulated and 34 down-regulated in the low KPY

samples. Five gene categories were up-regulated and 26 down-

regulated in the low KPY samples in both trials, providing more

confidence in the enrichment of these gene categories.

SNP identification and Differential allelic expression
analysis

We studied differential allelic expression of SNPs from

candidate genes to identify potential functional markers. In

Meunna, 303,648 and 318,733 SNPs were identified in high and

low pulp yield samples, respectively. Of these, 280,610 SNPs were

present in both the samples. In Florentine, 139,408 and 149,633

SNPs were identified in high and low pulp yield samples,

respectively. A total of 135,886 SNPs were common between the

two samples. In total, 114,667 SNPs were common to both

Meunna and Florentine. Most of these SNPs (45%) were

synonymous and the remainder were non-synonymous, 39UTR,

intron and a small proportion of them were 59UTR (Fig. 3).

To identify putatively differentially expressed alleles between

low and high pulp yield samples based on allele frequency

differences, a chi-square test was performed using 114,667 SNPs

that are common to both the trials. Using a conservative

Bonferroni corrected P value of 0.0001, we identified 27,708

and 9076 SNPs that were differentially expressed in Meunna and

Florentine, respectively (Table 4, Table S4). Of these, 3390 SNPs

showed DAE in both the trials and 2103 (62%) of these had allelic

frequencies in the same direction in both the trials indicating the

robustness of allelic expression of these SNPs. These 2103 SNPs

come from 1068 unique genes (Table S4).

Of the 2103 SNPs showing DAE, 640 SNPs (30%) occurred in

313 unique genes that showed DGE (total gene expression). These

SNPs may be the cis-acting regulatory variants that influence total

gene expression directly or SNPs in high linkage disequilibrium

with the cis-acting polymorphisms. In other words, 313 genes had

both differential gene and differential allelic expression between

low and high KPY samples. Most of the SNPs (61%) which

showed DAE and DGE were synonymous SNPs (Fig. 3),

suggesting a common role of synonymous SNPs as cis-acting

variants. Genes that showed differential expression at both gene

and allele levels included cellulose synthases, COBRA-like

proteins, FASCICLIN-like arabinogalactan proteins, protein

kinase superfamily protein, S-adenosylmethionine synthetases

Table 1. Top 25 down-regulated transcripts in low KPY samples.

Gene ID Meunna Florentine TAIR gene annotation

LogFC FDR LogFC FDR

Eucgr.E01020 22.4 7E-10 22.0 4E-06 ABL interactor-like protein 2

Eucgr.J01011 22.8 1E-06 22.0 2E-05 cytochrome P450, family 77, subfamily A, polypeptide 4

Eucgr.I01292 22.6 4E-06 22.0 5E-06 Dehydrin family protein

Transcript_23294 23.3 8E-10 22.3 1E-07 delta(3), delta(2)-enoyl CoA isomerase 1

Eucgr.E04327 24.9 2E-11 22.0 2E-05 DNA glycosylase superfamily protein

Eucgr.F03723 22.7 4E-06 22.1 2E-05 expansin 11

Eucgr.E01366 22.5 9E-08 22.0 3E-05 FASCICLIN-like arabinogalactan protein 8

Eucgr.J00937 23.4 2E-05 22.4 3E-06 FASCICLIN-like arabinogalactan-protein 11

Eucgr.J00938 23.0 1E-08 22.2 5E-08 FASCICLIN-like arabinogalactan-protein 12

Eucgr.B02486 23.0 8E-09 22.1 8E-06 FASCICLIN-like arabinogalactan-protein 12

Eucgr.C00602 22.1 2E-05 22.0 3E-09 GATA transcription factor 12

Eucgr.K03566 23.3 1E-09 22.3 4E-06 GDSL-like Lipase/Acylhydrolase superfamily protein

Eucgr.B00543 22.3 2E-05 23.5 2E-13 Malectin/receptor-like protein kinase family protein

Eucgr.K01501 23.3 9E-11 22.2 5E-06 plasma-membrane associated cation-binding protein 1

Eucgr.J02930 23.6 3E-12 22.0 5E-05 profilin 5

Eucgr.H04207 23.1 2E-06 22.0 1E-05 Protein of Unknown Function (DUF239)

Eucgr.H04514 22.9 4E-11 22.0 1E-06 respiratory burst oxidase homolog B

Eucgr.C00771 22.6 4E-07 22.0 5E-07 SAUR-like auxin-responsive protein family

Eucgr.I00074 22.7 2E-08 22.0 2E-05 sucrose synthase 2

Eucgr.I00074 22.7 2E-08 22.0 2E-05 sucrose synthase 2

Eucgr.H03496 22.8 7E-08 22.0 9E-07 sucrose synthase 4

Eucgr.F02183 22.1 2E-06 22.0 7E-08 Tubulin/FtsZ family protein

Eucgr.C01361 22.4 1E-07 22.1 3E-05 No-Hit

Eucgr.H01054 23.9 1E-06 22.8 7E-10 Unknown Protein

Eucgr.H03407 24.1 5E-08 22.5 3E-07 Unknown Protein

E. grandis gene names are used when the predicted genes are mapped to E. grandis gene coordinates otherwise the predicted gene names are used with a prefix
‘‘Transcript’’.
doi:10.1371/journal.pone.0101104.t001
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and beta-tubulins. Among the 640 SNPs that showed both DGE

and DAE 389 SNPs were synonymous, 120 were nonsynonymous,

91 were 39UTR, 18 were 59UTR and 10 were intronic SNPs.

These intronic SNPs may come from unspliced pre-mRNAs.

Gene Ontology (GO) enrichment analysis of genes having
differentially expressed alleles

GO enrichment analysis was conducted at two levels: 1) for

genes that showed both DGE and DAE and 2) for genes that

showed only DAE but no DGE. GO enrichment analysis revealed

24 categories (FDR 5%) for genes that had both DGE and DAE

(Table 5). Most of these gene categories belonged to processes

related to cell wall development. A total of 56 gene categories were

enriched for genes that had only DAE but no DGE (Table S5).

Most of these categories included genes involved in catabolic and

metabolic processes (growth) and genes responding to abiotic stress

factors.

Genes showing selection signature based on Ka/Ks ratios
To identify the genes showing patterns of positive selection

among the genes expressed in the cambial tissue we compared

Ka/Ks ratios. The Ka/Ks ratios compare the number of

nonsynonymous substitutions per nonsynonymous site (Ka) to

number of synonymous substitutions per synonymous site (Ks)

which can help identifying genes under selection. To estimate the

Ka/Ks ratios we combined the sequence alignment files (BAM)

from all the six bulks in each trial. In Meunna, using ‘Popoolation’

package, we identified 422,674 SNPs from within 24,068 genes.

The Ka/Ks ratios among the genes ranged from 0.02 to 6.62 with

a mean of 0.57 suggesting most genes are under purifying

selection. Signatures of positive selection were observed for 852

genes (3.5% of total genes) that had a Ka/Ks ratio of more than

1.5. In Florentine, 218,446 SNPs from within 21,781 genes were

identified. The average Ka/Ks ratio (0.50) and the range (0.015 to

7.54) are similar to Meunna. Overall, 598 genes (2.8%) had a Ka/

Ks ratios of more than 1.5 suggesting the action of positive

selection on these genes.

By comparing the two trials we observed in total 196 genes

which had Ka/Ks ratios of more than 1.5 in both the trials

strongly suggesting that these genes are under positive selection.

Of these 196 genes, 27 genes also showed DGE between low and

high KPY (growth) samples in both the trials (Table 6). Also, ten

SNPs from seven genes that showed signatures of positive selection

in both trials, showed DAE between low and high KPY (growth)

samples in both the trials (Table S6). Seven of these SNPs were

nonsynonymous, two were synonymous and one was within the

59UTR. None of the genes containing these ten SNPs showed

Table 2. Top 25 up-regulated transcripts in low KPY samples.

Gene ID Meunna Florentine TAIR gene annotation

LogFC FDR LogFC FDR

Eucgr.C03986 2.9 9E-13 3.9 5E-12 basic leucine zipper 9

Eucgr.I00675 3.0 6E-07 3.5 2E-11 basic leucine-zipper 5

Eucgr.K00864 2.2 8E-08 3.7 3E-15 B-box type zinc finger family protein

Eucgr.J00646 2.2 3E-07 3.2 6E-14 beta glucosidase 11

Eucgr.H04032 2.0 1E-06 2.4 1E-10 cAMP-regulated phosphoprotein 19-related protein

Eucgr.A00523 4.0 5E-15 3.7 4E-14 cytochrome P450, family 716, subfamily A, polypeptide 1

Eucgr.A00523 4.0 5E-15 3.6 2E-13 cytochrome P450, family 716, subfamily A, polypeptide 1

Eucgr.A00523 4.0 5E-15 2.6 5E-11 cytochrome P450, family 716, subfamily A, polypeptide 1

Eucgr.F00146 2.9 3E-06 3.6 6E-13 cytochrome P450, family 81, subfamily D, polypeptide 2

Eucgr.J02333 4.6 5E-13 4.5 2E-13 Galactose oxidase/kelch repeat superfamily protein

Eucgr.K01641 2.1 8E-06 2.5 7E-11 glucose-6-phosphate dehydrogenase 5

Eucgr.A00159 2.6 8E-07 4.0 9E-11 MLP-like protein 423

Eucgr.D00215 3.2 1E-08 2.7 1E-10 multidrug resistance-associated protein 2

Eucgr.I00060 1.9 3E-06 3.8 9E-13 NAC (No Apical Meristem) domain transcriptional regulator superfamily protein

Eucgr.D01888 5.7 4E-09 5.7 2E-17 osmotin 34

Eucgr.A02434 2.4 4E-07 4.3 2E-17 polygalacturonase inhibiting protein 2

Eucgr.C02985 4.6 2E-10 5.2 1E-14 Protein kinase family protein with leucine-rich repeat domain

Eucgr.E02844 2.3 8E-08 3.6 5E-15 receptor-like kinase in flowers 1

Transcript_12193 2.0 2E-06 3.0 5E-15 RNA polymerase subunit beta

Eucgr.F03603 2.5 5E-10 2.6 3E-11 RNA-binding (RRM/RBD/RNP motifs) family protein

Eucgr.I01260 3.1 3E-07 3.3 3E-13 unknown seed protein like 1

Eucgr.I01260 3.1 3E-07 3.3 9E-13 unknown seed protein like 1

Eucgr.F03955 3.6 1E-06 3.4 3E-14 WRKY DNA-binding protein 40

Eucgr.D01937 2.3 2E-08 2.8 4E-11 Unknown Protein

Eucgr.D01937 2.3 2E-08 2.8 1E-10 Unknown Protein

E. grandis gene names are used when the predicted genes are mapped to E. grandis gene coordinates otherwise the predicted gene names are used with a prefix
‘‘Transcript’’.
doi:10.1371/journal.pone.0101104.t002

RNA-seq of KPY and Growth in Eucalyptus nitens

PLOS ONE | www.plosone.org 6 June 2014 | Volume 9 | Issue 6 | e101104



DGE in both trials suggesting these SNPs might be trans-acting

SNPs.

To identify the biological processes associated with genes

showing selection signatures we conducted GO enrichment tests.

A total of six GO categories were enriched in both trials for genes

showing signatures of positive selection (Table 7). All six categories

include genes involved in apoptosis, cell death and defense

responses.

Discussion

We analysed samples from the extremes of the distribution of

KPY in two E. nitens trials which also differed in growth. By

examining whole transcriptome data we identified several genes

and alleles whose expression is correlated with variation in KPY

and/or growth. Most of the genes down-regulated in low KPY

(low growth) samples (up-regulated in high KPY samples) were

related to cell wall biosynthesis and growth. The down regulation

of growth genes in low KPY samples may be due to the positive

correlation observed between KPY and growth (DBH, Figure S1).

Most of the up-regulated genes in low KPY and low growth

samples (the down-regulated genes in high KPY samples) were

involved in biotic and abiotic stress tolerance. Numerous studies,

particularly in humans, have been reported in which RNA from

extreme phenotypes has been sequenced to identify alleles or genes

with expression correlated with the trait [29–31]. This is one of the

first RNA-Seq studies in forest trees that exploits phenotype

extremes (low and high KPY/growth) to identify differentially

expressed genes and alleles potentially affecting KPY and growth.

Table 3. Gene categories enriched among down-regulated and up-regulated genes in low KPY samples.

GO category Meunna Florentine

Total
genes

Changed
genes FDR

Total
genes

Changed
genes FDR

Down-regulated

GO:0006793_phosphorus_metabolic_process 337 81 0.00 318 91 0.00

GO:0006796_phosphate_metabolic_process 337 81 0.00 318 91 0.00

GO:0005975_carbohydrate_metabolic_process 201 54 0.00 181 57 0.00

GO:0016310_phosphorylation 316 78 0.00 300 86 0.01

GO:0006468_protein_phosphorylation 307 77 0.00 291 85 0.01

GO:0008361_regulation_of_cell_size 34 14 0.01 33 15 0.01

GO:0016049_cell_growth 34 14 0.01 33 15 0.01

GO:0032535_regulation_of_cellular_component_size 34 14 0.01 33 15 0.01

GO:0090066_regulation_of_anatomical_structure_size 34 14 0.01 33 15 0.01

GO:0033036_macromolecule_localization 137 37 0.01 136 46 0.00

GO:0006464_protein_modification_process 420 93 0.01 393 104 0.00

GO:0009825_multidimensional_cell_growth 9 6 0.01 7 5 0.05

GO:0040007_growth 45 17 0.01 42 17 0.01

GO:0015031_protein_transport 102 29 0.01 100 33 0.02

GO:0045184_establishment_of_protein_localization 102 29 0.01 100 33 0.02

GO:0008104_protein_localization 108 30 0.01 106 34 0.01

GO:0007167_enzyme_linked_receptor_protein_signaling_pathway 27 11 0.02 27 12 0.03

GO:0007169_transmembrane_receptor_protein_tyrosine_kinase_signaling_pathway 27 11 0.02 27 12 0.03

GO:0043412_macromolecule_modification 461 96 0.03 432 107 0.01

GO:0023033_signaling_pathway 121 32 0.03 118 35 0.03

GO:0048869_cellular_developmental_process 56 18 0.03 55 19 0.05

GO:0051234_establishment_of_localization 310 68 0.03 289 77 0.02

GO:0000902_cell_morphogenesis 29 11 0.04 29 12 0.05

GO:0051179_localization 319 69 0.05 298 78 0.01

GO:0006810_transport 309 67 0.05 288 76 0.01

GO:0007264_small_GTPase_mediated_signal_transduction 38 13 0.05 40 15 0.05

Up-regulated

GO:0006950_response_to_stress 385 81 0.00 345 103 0.00

GO:0006952_defense_response 156 48 0.00 128 45 0.00

GO:0050896_response_to_stimulus 592 107 0.00 546 140 0.00

GO:0009628_response_to_abiotic_stimulus 97 32 0.00 178 54 0.02

GO:0006915_apoptosis 83 31 0.00 71 25 0.05

FDR – Fisher’s exact p value corrected for multiple comparisons.
doi:10.1371/journal.pone.0101104.t003
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We identified several genes, including some previously unchar-

acterized transcripts that are differentially expressed between

extreme phenotypes. The main advantage of an RNA-Seq

experiment is that in addition to identifying candidate genes,

polymorphisms potentially influencing the traits can also be

obtained from the same data set. Accordingly, we identified a

number of polymorphisms and some of these are potential

functional polymorphisms that showed DAE. These variants,

particularly the functional variants, can be targeted for application

in many downstream analyses including association studies and

genomic selection. In addition, we identified putative signatures of

positive selection in several genes in this study. Comparison of

results from two different trials facilitated the identification genes

and SNPs that are consistently differentially expressed across

environments.

Cell wall-related genes down-regulated in low KPY
samples

We identified more than 6000 (23%) and 7000 (30%) genes that

are differentially expressed between low and high KPY samples in

the Meunna and Florentine trials, respectively. In spite of different

site conditions and time of sample collection, around 4000 genes

showed consistent patterns of gene expression across both the

trials, suggesting the expression of these genes is relatively stable in

different environments. About 2500 genes were down-regulated in

low KPY (growth) samples and most of them are related to cell

wall biosynthesis and growth. These biologically relevant genes are

good candidate genes for KPY and growth and other related wood

traits. Genes down-regulated in low KPY (up-regulated in high

KPY) samples include cell wall-related genes (cellulose synthases,

PAL, SAMS, laccases, cinnamate-4-hydroxylase, COBRA-like

protein, FASCICLIN-like arabinogalactan proteins, expansions,

pectin-lyase like, plant invertase/pectin methylesterase inhibitor

superfamily), glycosyl related genes (glycosyl hydrolase, UDP-

Glycosyltransferase superfamily protein), and transcription factors

(NAC, MYB). Genes that are down-regulated in low KPY samples

in our study have also been found to be preferentially expressed in

xylem tissues in several other studies. This includes microarray-

based studies in tree species which compared different tissue types

such as xylem vs phloem [32], shoot apical meristem vs mature

xylem [33] and leaves vs xylem [34].

All of the genes that are up-regulated in low KPY (growth)

samples belong to categories such as biotic and abiotic stress

response, defense response and apoptosis. Since low KPY trees

were generally smaller, this suggests that these trees experienced

environmental stress, most likely due to competition effects in the

trials. A transcriptome study in Arabidopsis thaliana revealed

intra-specific competition resulted in activation of genes related to

biotic and abiotic stresses [35]. Slow growing trees have been

observed to have lower KPY in other tree species including E.

globulus [36] and Populus tremuloides [37]. In a study involving E.

globulus and E. nitens trees, Downes et al. [38] showed that irrigated

trees had higher KPY compared to trees grown in rain-fed

conditions. This suggests that trees with lower growth due to

environmental factors, particularly water availability, are directing

proportionally less carbon into cellulose.

Prevalence of cis-acting polymorphisms
Thirty percent of SNPs with DAE (640) occurred in 313 genes

that had DGE between high and low KPY trees. It is likely that

some of these SNPs may be cis-acting regulatory variants

controlling the expression of the gene in which they occur.

Because there are more than one SNP from a gene in many

instances, some of the SNPs in some genes will be in high linkage

disequilibrium with the true cis-acting SNP. The remaining 1463

SNPs showed DAE but no DGE. Some of these variants may be

trans-acting variants or coding variants in transcription factors that

affect their binding affinities to target genes [39]. Cis-acting

variants that are present within genes influence traits through their

effects on gene expression while trans-acting variants affect

transcript levels in target genes by interacting with cis-regulatory

sequences [40]. While studying regulatory pathways that affect

Figure 3. Distribution of SNPs from different regions of the E. nitens transcriptome. All SNPs – All SNPs identified that are common in both
Florentine and Meunna; DAE SNPs – SNPs that showed differential allelic expression (Bonferonni P,0.0001) in both trials; DAE+DGE SNPs – SNPs with
differential allelic expression present in genes with differential gene expression (FDR,0.05).
doi:10.1371/journal.pone.0101104.g003
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hematopoietic stem cell function using recombinant inbred mouse

stains, Bystrykh et al. [41] showed strong association of the

controlling locus with mRNA expression levels for cis-acting

QTLs. In a similar study, investigating two tissues of rat

recombinant inbred lines important to pathogenesis of the

metabolic syndrome, Hubner et al. [42] observed 85–100% of

eQTLs were regulated in cis in both the tissues. Trans-acting

polymorphisms are difficult to identify compared to cis-acting

polymorphisms for two reasons [43]. Unlike cis variants, trans

variants can be anywhere in the genome relative to the target

gene. Also, the effects of trans variants on gene expression are

generally smaller than the effects produced by cis variants.

In this study, most of the genes (95%) that showed both DGE

and DAE showed down regulation in low KPY samples at the

gene level. That is, most of the cell wall-related genes had both

differential total gene expression and differential allelic expression

suggesting that these variants which showed DAE may be the cis-

acting variants influencing gene expression. However, most of the

growth and stress responsive genes had only differential total gene

expression possibly controlled by trans-acting polymorphisms.

Synonymous SNPs are not always ‘‘silent’’
There was a greater tendency for synonymous, rather than non-

synonymous, SNPs to be associated with genes that exhibited DAE

and both DAE and DGE (see Fig. 3). This is in line with the

expectation that nonsynonymous SNPs are more likely to affect

phenotype by altering the amino acid structure, while synonymous

SNPs are more likely to influence the trait through their effects on

gene expression [6,44]. Synonymous SNPs can affect RNA

secondary structure and cause allelic imbalance that could alter

the expression of a gene. For example, a synonymous SNP in the

corneodesmosin gene induced allele-specific gene expression and

led to increased mRNA stability in a psoriasis study across diverse

ethnic groups [45]. A synonymous SNP in EniCOBL4A gene was

associated with cellulose content by affecting allelic expression

[44]. In addition to this, synonymous SNPs can also affect protein

expression at the post-transcriptional level [46]. These results

suggest that synonymous and other silent polymorphisms are also

important in affecting the phenotype and focussing only on

nonsynonymous SNPs in molecular studies will result in many

functional variants being overlooked.

Detection of signatures of positive selection at apoptosis
and defense related genes

Higher Ka/Ks ratios could be due to lower constraints on

nonsynonymous mutations in some genes, or through enrichment

of nonsynonymous mutations by positive selection [47]. As

observed in many studies, most of the genes in this study were

under purifying selection based on low Ka/Ks ratios. However,

196 genes (0.9% of total genes) showed signatures of positive

selection by having Ka/Ks ratios greater than 1.5. Interestingly,

based on GO enrichment analysis, all the gene categories are

related to apoptosis and defense response. In an Eucalyptus

camaldulensis transcriptomics study only 2% of the genes showed

Table 5. Gene categories enriched among genes that had both DGE and DAE.

GO Category Total genes DE genes FDR

GO:0000902_cell_morphogenesis 29 4 0.04

GO:0000904_cell_morphogenesis_involved_in_differentiation 15 3 0.03

GO:0006725_cellular_aromatic_compound_metabolic_process 40 5 0.02

GO:0006886_intracellular_protein_transport 67 8 0.00

GO:0008104_protein_localization 106 10 0.00

GO:0008544_epidermis_development 22 4 0.02

GO:0009698_phenylpropanoid_metabolic_process 22 5 0.00

GO:0009699_phenylpropanoid_biosynthetic_process 17 4 0.01

GO:0009913_epidermal_cell_differentiation 21 4 0.02

GO:0015031_protein_transport 100 10 0.00

GO:0016192_vesicle-mediated_transport 45 6 0.01

GO:0019438_aromatic_compound_biosynthetic_process 27 4 0.03

GO:0019748_secondary_metabolic_process 37 5 0.02

GO:0030154_cell_differentiation 43 5 0.03

GO:0032989_cellular_component_morphogenesis 30 4 0.04

GO:0033036_macromolecule_localization 136 11 0.00

GO:0034613_cellular_protein_localization 68 8 0.00

GO:0045184_establishment_of_protein_localization 100 10 0.00

GO:0046907_intracellular_transport 88 8 0.01

GO:0048869_cellular_developmental_process 55 6 0.02

GO:0051641_cellular_localization 102 8 0.02

GO:0051649_establishment_of_localization_in_cell 95 8 0.02

GO:0070727_cellular_macromolecule_localization 71 8 0.00

GO:0071310_cellular_response_to_organic_substance 29 4 0.04

FDR - Fisher’s exact p value corrected for multiple comparisons.
doi:10.1371/journal.pone.0101104.t005
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signatures of positive selection and most of them are related to

apoptosis and cell death [7]. These consistent results across two

eucalypt species suggest that apoptosis and stress-related genes are

more rapidly evolving. Apoptosis, a process of programmed cell

death, is important for plant development and defense [48].

Similar results were also found in other studies. In rice, an

overrepresentation of genes involved in defense response and

apopstosis in eQTLs were observed [49]. Also, a study comparing

the genomes of humans and chimpanzees to identify positively

selected genes [50] reported an enrichment of immunity, defense

and apoptosis related genes among the positively selected genes.

Similarly, in fish, genes related to immune response and defense

response were overrepresented in the positively selected gene list

[51]. This rapid evolution of apoptosis genes could be due to the

following reasons. First, many apoptosis genes may be newly

evolved genes and thus still evolving rapidly under the action of

natural selection. Second, because apoptosis related genes are

involved in immune and defense response, these genes are rapidly

evolving to adapt to new pathogens [52] as shown in the following

examples. Bishop et al. [53] showed an excess of nonsynonymous

compared to synonymous rates in plant class I chitinase in the

genus Arabis. Plant chitinases confer resistance to diseases by

degrading chitin, a component of fungal cell walls. Likewise, in

wheat, signatures of diversifying selection were observed at the

Pm3 locus, which confers resistance to wheat powdery mildew,

through an excess of nonsynonymous to synonymous nucleotide

divergence [54]. The genes showing signatures of positive selection

in this study could be valuable targets for selecting candidate SNPs

for growth and survival traits in a range of Eucalyptus species as

consistent results were obtained across two Eucalyptus species.

However, results from this study need to be treated cautiously as

pooled samples are used for detecting the positive selection

signatures. These results need to be verified by sequencing of

individual samples.

Conclusions

By conducting RNA-Seq analysis in two trials we identified a

number of candidate genes and alleles whose expression is

correlated with KPY and growth traits in E. nitens. Most of the

down-regulated genes in low KPY samples are cell wall-related

genes, suggesting that the identified candidate genes are biolog-

ically relevant. A number of potential functional polymorphisms

were also identified that showed DAE. We detected positive

selection signatures in numerous genes that are consistent with the

results from RNA-Seq study in E. camaldulensis. The genes and

alleles identified in this study form a valuable resource for

association and genomic selection studies.

Supporting Information

Figure S1 Correlation between Kraft Pulp Yield and
Diameter at Breast Height in Meunna and Florentine.

(TIF)

Figure S2 Dendrogram of log2CPM in Meunna and
Florentine.

(TIF)

Figure S3 Correlation between Log2 fold changes of
3953 differentially expressed genes in Meunna and
Florentine.

(TIF)

Table S1 Differentially expressed transcripts between
low and high KPY samples in Meunna.

(XLSX)

Table S2 Differentially expressed transcripts between
low and high KPY samples in Florentine.

(XLSX)

Table S3 Differentially expressed transcripts between
low and high KPY samples in both Florentine and
Meunna.

(XLSX)

Table S4 Differential allelic expression between low
and high KPY samples.

(XLSX)

Table S5 Gene categories enriched among genes that
had only DAE.

(XLSX)

Table S6 Differentially expressed alleles between low
and high KPY samples from genes showing signatures of
positive selection.

(XLSX)

Acknowledgments

We thank David Spencer and Dean Williams for assisting in cambial tissue

collection for RNA extractions. We thank Hossein Valipour Kahrood and

Terry Weese for assistance in RNA extractions.

Author Contributions

Conceived and designed the experiments: ST BT SS. Performed the

experiments: ST BT. Analyzed the data: ST BT. Contributed reagents/

materials/analysis tools: ST BT. Contributed to the writing of the

manuscript: ST SS BT.

Table 7. Gene categories enriched among genes showing signatures of positive selection.

GO category Meunna Florentine

Total genes Selected genes FDR Total genes Selected genes FDR

GO:0012501_programmed_cell_death 76 19 0 66 13 0

GO:0006915_apoptosis 68 19 0 59 12 0

GO:0008219_cell_death 83 19 0 71 13 0

GO:0016265_death 83 19 0 71 13 0

GO:0006952_defense_response 137 25 0 122 17 0

GO:0006950_response_to_stress 355 36 0 337 24 0.09

Selected genes – Genes having Ka/Ks .1.5; FDR - Fisher’s exact p value corrected for multiple comparisons.
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