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Abstract
In the past decades, there has been a growing scientific interest in characterizing neural correlates of meditation training. 
Nonetheless, the mechanisms underlying meditation remain elusive. In the present work, we investigated meditation-related 
changes in functional dynamics and structural connectivity (SC). For this purpose, we scanned experienced meditators and 
control (naive) subjects using magnetic resonance imaging (MRI) to acquire structural and functional data during two condi-
tions, resting-state and meditation (focused attention on breathing). In this way, we aimed to characterize and distinguish both 
short-term and long-term modifications in the brain’s structure and function. First, to analyze the fMRI data, we calculated 
whole-brain effective connectivity (EC) estimates, relying on a dynamical network model to replicate BOLD signals’ spatio-
temporal structure, akin to functional connectivity (FC) with lagged correlations. We compared the estimated EC, FC, and SC 
links as features to train classifiers to predict behavioral conditions and group identity. Then, we performed a network-based 
analysis of anatomical connectivity. We demonstrated through a machine-learning approach that EC features were more 
informative than FC and SC solely. We showed that the most informative EC links that discriminated between meditators 
and controls involved several large-scale networks mainly within the left hemisphere. Moreover, we found that differences 
in the functional domain were reflected to a smaller extent in changes at the anatomical level as well. The network-based 
analysis of anatomical pathways revealed strengthened connectivity for meditators compared to controls between four areas 
in the left hemisphere belonging to the somatomotor, dorsal attention, subcortical and visual networks. Overall, the results 
of our whole-brain model-based approach revealed a mechanism underlying meditation by providing causal relationships 
at the structure-function level.
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Introduction

“The mind is definitely something that can be transformed, 
and meditation is a means to transform it,” wrote in 2015 
the world’s foremost Buddhist leader, the 14th Dalai 
Lama, in his book “The Wheel of Life: Buddhist Perspec-
tives on Cause and Effect”.

Despite having its roots in an ancient Eastern tradition, 
in the last years, meditation has become increasingly prac-
ticed in the Western society, becoming a focus of scientific 
interest (Ricard et al. 2014; Millière et al. 2018; Hilton 
et al. 2017; Vieten et al. 2018; Davidson and Dahl 2018; 
Afonso et al. 2020).

The term meditation entails all those training practices 
designed to get aware of mental and bodily processes, 
which can be clustered into two broader types: concen-
trative and open awareness practices. The former type 
requires attention to be voluntarily directed and sustained 
toward either an internal or external object (e.g., breath-
awareness, bodily sensations, musical mantras), whereas 
the latter implies letting attention opened to whatever 
comes to the mind.

In line with the above statement from the Dalai Lama, 
several studies have shown an association between medita-
tion practice and behavioral benefits that result in improve-
ments in attention (Lutz et al. 2008; Valentine and Sweet 
1999), emotional regulation (Miller et al. 1995; Wenzel 
et al. 2020), and well-being more in general (Peterson and 
Pbert 1992; Grossman et al. 2004). In the last decades, 
different studies have found that experienced meditators 
show changes in brain morphology compared to matched 
controls. The first morphometric study conducted by Lazar 
and colleagues demonstrated that areas involved in inter-
oception and attentional processes, such as the anterior 
insula and the prefrontal cortex (PFC), were thicker in 
experienced meditators than controls (Lazar et al. 2005). 
Since then, several studies investigated meditation-induced 
brain morphology changes, mainly by measuring corti-
cal thickness (Lazar et al. 2005; Grant et al. 2013; Kang 
et al. 2013), gray matter volume (Hölzel et al. 2008, 2010; 
Vestergaard-Poulsen et al. 2009; Pagnoni and Cekic 2007; 
Tang et al. 2020), and white-matter integrity (DTI) (Tang 
et al. 2010, 2015; Luders et al. 2011; Fayed et al. 2013; 
Posner et al. 2014).

Along with anatomical changes, several cross-sectional 
studies have found functional changes in experienced 
meditators compared to controls across large-scale net-
works, such as the central executive network (CEN), the 
default mode network (DMN) and the salience network 
(SN) (Doll et al. 2015; Hasenkamp et al. 2012; Froeliger 
et al. 2012; Garrison et al. 2015; Kong et al. 2016; Moon-
eyham et al. 2017; Gard et al. 2014; Irrmischer et al. 2018; 

Lim et al. 2018). A recent study explored information pro-
cessing across the whole-brain network, reporting higher 
dynamical complexity during resting-state in experienced 
meditators than in healthy controls. At the same time, 
they found that meditation appears to be characterized 
as a state of reduced information processing, indicating a 
switch to a less complex regime compared to the resting 
state (Escrichs et al. 2019). Similar evidence comes from 
the work conducted by Toutain et al. (2020), in which 
they investigated topological stability across relaxation 
state and meditation in experienced meditators using the 
electroencephalogram (EEG). The authors demonstrated 
an increase in stability of global topological patterns 
during meditation compared to relaxation state (Toutain 
et al. 2020). Nonetheless, these phenomenological stud-
ies cannot by nature provide a mechanistic explanation 
about how long-term meditation practice shapes the global 
spatio-temporal BOLD structure via the underlying inter-
regional connections, which instead requires a model-
based approach.

Whole-brain computational modeling is one of the most 
potent tools used to study the link between macroscopic 
functional dynamics and the underlying structural con-
nectome (Deco and Kringelbach 2014; Deco et al. 2017; 
Jobst et al. 2017). They have been mostly used to study 
the resting-state as well as cognitive functions, including 
“consciousness” and alterations thereof. These studies have 
focused on generating empirical FC with empirical anatomi-
cal SC, for psychedelic states (Deco et al. 2018; Herzog 
et al. 2020; Kringelbach et al. 2020), sleep stages (Jobst 
et al. 2017; Ipiña et al. 2020) and consciousness disorders 
(Lopez-Gonzalez et al. 2020; Cofré et al. 2020). In contrast 
with this work, another line of research has focused on the 
estimation of the “effective connectivity”, which describes 
the directional influence that one region exerts on another 
in a dynamic model (Friston 2011). Effective connectivity 
profiles provide new insights into the causal mechanisms 
of neuroimaging results by determining the propagation of 
activity (as a proxy for information) between different areas. 
Indeed, a challenge of interpreting FC patterns at the whole-
brain level is that the BOLD correlation between each pair 
of areas does not simply follow from connections between 
them, but also involve network effect via third-party areas. 
On the biological side, EC estimates represent the modula-
tion of synaptic efficacies due to various factors like neuro-
modulation, changes in local excitability, etc. that occur in 
a task-specific manner. A recent approach has developed a 
model and estimation method, the ‘MOU-EC’, to constrain 
EC using the SC topology, which forces the model to gener-
ate FC by modulating anatomical connections (Gilson et al. 
2016, 2020). The MOU-EC model relies on the multivari-
ate Ornstein-Uhlenbeck (MOU) process whose diffusion-
type dynamics are used to reproduce the propagation of 
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BOLD signals across the whole brain, and explain them 
by the structure of the directional EC. Importantly, the EC 
is masked by the underlying anatomy (DTI tractography), 
which allow us to evaluate the influence of the measured 
differences in SC across the two subject groups on the gen-
erated BOLD signals. This method has proven capable of 
extracting biomarkers for cognition as well as subject iden-
tification (Senden et al. 2018; Pallares et al. 2018). Moreo-
ver, effective connectivity profiles have been proved to be 
helpful to understand the mechanisms behind brain disease 
(Adhikari et al. 2020), mental illness (Rolls et al. 2018) and 
developmental disorders (Rolls et al. 2020).

In this work, we aimed at investigating the association 
between meditation-induced changes in the anatomical path-
ways with the reorganization of the spatio-temporal structure 
using a dataset consisting of 19 experienced meditators and 
19 healthy controls scanned during meditation and resting-
state. To do so, we applied the MOU-EC whole-brain model 
(Gilson et al. 2016, 2020), which uses the underlying SC to 
explain FC and EC. We compared the effective, functional, 
and structural connectivity measures as features to train the 
multinomial linear regression (MLR) and the first-nearest 
neighbor (1NN) classifiers in distinguishing conditions 
and groups. Since EC profiles hold information about the 
underlying structural connectome, we expected EC features 
to hold more predictive power than FC or SC alone, allow-
ing us to disentangle characteristic information propagation 
patterns of both groups and conditions. Finally, we explored 
whole-brain changes in anatomical connections following 
extensive meditation training using a network-based non-
parametric approach to relate changes in functional dynam-
ics to the modulation of structural pathways. We hypoth-
esized that meditators would show enhanced anatomical 
connectivity across different large-scale networks.

Methods

Participants

A total of 19 experienced meditators and 19 healthy con-
trols were selected from a dataset previously described 
in Escrichs et  al. (2019). In brief, the meditator group 
was recruited from Vipassana communities of Barce-
lona, Catalonia, Spain (7 females; mean age = 39.8 years 
(SD = 10.29); education = 13.6 years; and meditation expe-
rience = 9.526,9 h (SD = 8.619,8). Meditators had more 
than 1000 h of meditation experience and maintained the 
daily practice ( > 1 h/day). Healthy controls were well-
matched participants for age, gender, and educational level, 
with no previous meditation practice experience (7 females; 
mean age= 39, 75 years (SD = 10,13); education = 13.8 
years). No significant differences in terms of age ( p > 0.05 ), 

educational level ( p > 0.05 ), and gender ( p > 0.05 ) were 
found between groups. All participants reported no history 
of past neurological disorder and gave written informed con-
sent. The study was approved by the Ethics Committee of 
the Bellvitge University Hospital according to the Helsinki 
Declaration on ethical research.

Experimental conditions

Functional data were acquired for two conditions, resting-
state and meditation, for a total scanning time of ( ≈ 30 min). 
Participants were asked to stay still in the scanner and move 
as little as possible throughout the experiment. First, we 
asked subjects to fixate a cross in the middle of the screen 
while trying not to think about anything in particular to 
acquire resting-state data ( ≈ 15 min).

Then, we acquired functional data during meditation 
(focused attention on breathing) ( ≈ 15 min). Both groups 
were asked to practice Anapanasati meditation. Participants 
had to focus on their natural breathing patterns, trying to 
recognize whenever their minds were wandering to switch 
back attention on their breathing. Before the scanning, we 
instructed control subjects to perform meditation follow-
ing the instruction given by S.N. Goenka. All subjects con-
firmed that they understood the procedure before entering 
the scanner.

MRI data acquisition

MRI images were acquired on a 3T (Siemens TRIO) using 
32-channel receiver coil. The high resolution T1-weighted 
images were acquired with 208 contiguous sagittal slices; 
repetition time (TR) =  1970 ms; echo time (TE) =  2.34 ms; 
inversion time (IT) =  1050 ms; flip angle =  9 ◦ ; field of 
view (FOV) =  256 mm; and isotropic voxel size 1 mm. 
Resting-state and meditation fMRI images were performed 
by a single shot gradient-echo EPI sequence with a total 
of 450 volumes (15 min); TR = 2000 ms; TE =  29 ms; 
FOV =  240 mm; in-plane resolution 3 mm; 32 transversal 
slices with thickness = 4 mm; flip angle = 80◦ . Diffusion-
weighted Imaging (DWI) data were acquired using a dual 
spin-echo DTI sequence with 60 contiguous axial slices; 
TE = 92 ms; FOV  =  236 mm; isotropic voxel size 2 mm; 
no gap, and 118 × 118 matrix sizes. Diffusion was measured 
with 64 optimal non-collinear diffusion directions by using 
a single b value =  1500 s/mm2 interleaved with 9 nondiffu-
sion b0 images. A frequency-selective fat saturation pulse 
was applied to avoid chemical shift misregistration artifacts.

fMRI preprocessing: resting‑state and meditation

Functional MRI images (resting-state and meditation) 
were preprocessed using version 3.14 of the Multivariate 
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Exploratory Linear Optimized Decomposition into 
Independent Components (Beckmann and Smith 2004, 
MELODIC), which is part of FSL (http:// fsl. fmrib. ox. ac. uk/ 
fsl). Images were preprocessed as follows: removal of the 
first five time-points, motion correction through MCFLIRT 
(Jenkinson et al. 2002), non-brain removal using the Brain 
Extraction Tool (Smith 2002, BET), rigid-body registra-
tion, smoothing with 5 mm FWHM Gaussian Kernel, and 
a high-pass filter cutoff set at 100.0 s. To discard artifactual 
components, we applied FIX (Griffanti et al. 2014, FMRIB’s 
ICA-based Xnoiseifier) using the default parameters to clean 
the data independently for each subject. Then, the cleaned 
functional fMRI data were co-registered to the T1 image 
and the T1 was co-registered to the MNI (Montreal Neu-
rological Institute) space by using FLIRT (Jenkinson and 
Smith 2001). The resulting transformations were applied to 
warp the atlas from MNI space to the cleaned functional 
data in native space using a nearest-neighbor interpolation 
method. Finally, time series in the native EPI space were 
extracted using fslmaths and fslmeants for 100 cortical using 
the 7-Networks Schaefer Parcellation (Schaefer et al. 2018) 
and 16 subcortical regions from the Melbourne subcortical 
functional parcellation (Tian et al. 2020).

Probabilistic tractography analysis

A whole-brain structural connectivity matrix (SC) was com-
puted individually for each subject in their native MRI dif-
fusion space with the same parcellation mentioned above. 
Analysis was performed using the FMRIB’s Diffusion 
Toolbox (FDT) in FMRIB’s Software Library http:// www. 
fmrib. ox. ac. uk/ fsl. First, DICOM images were converted to 
Neuroimaging Informatics Technology Initiative (NIfTI) 
format using dcm2nii http:// www. nitrc. org/ proje cts/ dcm2n 
ii. The b0 image in native space was co-registered to the 
T1-weighted image using FLIRT (Jenkinson and Smith 
2001), and the co-registered T1 image was transformed to 
the standard space using non-linear transformation (FNIRT). 
The resulting transformation was inverted and applied to 
warp the atlas in MNI space to the native MRI diffusion 
space by applying a nearest-neighbor interpolation algo-
rithm. Second, diffusion-weighted images were analyzed 
using the processing pipeline of the FMRIB’s Diffusion 
Toolbox (FDT) in FMRIB’s Software Library http:// www. 
fmrib. ox. ac. uk/ fsl. First, non-brain tissues were extracted 
using the Brain Extraction Tool (Smith 2002, BET), eddy 
current distortions and head motion were corrected using 
eddy-correct tool (Andersson and Sotiropoulos 2016), and 
the gradient matrix was reoriented to correct for subject 
motion (Leemans and Jones 2009). Then, crossing fibers 
were modeled using BEDPOSTX, and the probability of 
multi-fiber orientations was computed to improve the sen-
sitivity of non-dominant fiber populations (Behrens et al. 

2007). Then, Probabilistic Tractography was performed for 
each subject in native MRI diffusion space using the default 
settings of PROBTRACKX (Behrens et al. 2007). The con-
nectivity probability SCij between brain areas i and j was 
calculated as the total proportion of sampled fibers in all 
voxels in brain area i that reach any voxel in brain area j . 
Since probabilistic tractography analysis does not capture 
fiber directionality, the SCij matrix was then symmetrized 
by computing their transpose matrix SCij and averaging both 
matrices. White matter paths of interest were reconstructed 
using PROBTRACKX (Behrens et al. 2007), in which a 
given pair of nodes was defined as seed and waypoint masks. 
After applying a threshold to remove the 10% of less intense 
voxels, the resultant path was binarized and transformed 
back to the MNI space using both FLIRT and FNIRT algo-
rithms. Paths were overlapped among participants within 
each group in order to create heatmaps of white matter paths.

Whole‑brain MOU‑EC model and parameter 
estimation

As described in Fig. 1, the dynamic generative model MOU-
EC was used to obtain whole-brain connectivity estimates 
from the datasets parcellated into 116 ROIs as previously 
described. First, we used the SC matrices extracted through 
the probabilistic tractography analysis (black and white 
matrix at the left top of Fig. 1) to constrain the model’s 
topology by setting a threshold to retain a 30% density of 
anatomical pathways. For within-group comparisons, we 
extracted two probabilistic SC matrices, one for medita-
tors and one for controls, by computing the average SC of 
participants of each group. In contrast, to compare groups 
within each task, we converged the overlapping links that 
were above threshold in both groups, as shown in Fig. 2. We 
intersected the SC matrix of meditators with the SC matrix 
of controls, resulting in a 27% density of structural path-
ways. For each fMRI session, the BOLD autocovariance was 
calculated, both with and without time lag (blue FC0 and 
green FC1 matrices in Fig. 1), and then reproduced by the 
model. Before calculating autocovariance matrices, fMRI 
data were further filtered with narrowband 0.04–0.07 Hz 
to avoid artifacts (Glerean et al. 2012). This framework 
relies on a dynamic system with linear feedback to extract 
spatio-temporal information about the BOLD dynamics and 
directed connectivity estimates (i.e, EC), namely the Mul-
tivariate Ornstein-Uhlenbeck (MOU) process. The MOU 
process, analogous in continuous-time of the discrete-time 
multivariate autoregressive process, can be mathematically 
described as follows:

(1)dxi =

(

−xi

Tx
+

∑

j≠i

Cji xj

)

dt + dBi,

http://fsl.fmrib.ox.ac.uk/fsl
http://fsl.fmrib.ox.ac.uk/fsl
http://www.fmrib.ox.ac.uk/fsl
http://www.fmrib.ox.ac.uk/fsl
http://www.nitrc.org/projects/dcm2nii
http://www.nitrc.org/projects/dcm2nii
http://www.fmrib.ox.ac.uk/fsl
http://www.fmrib.ox.ac.uk/fsl
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Fig. 1  Model parameters estimation (adapted from Gilson et  al. 
2020). To capture BOLD dynamics, the model uses the time-series 
parcellated into 116 ROIs (box on the left top) to calculate two auto-
covariance matrices (FC0 and FC1 matrices) both with and without 
time lag (blue and green lines in the central box on top). The SC 
connectivity matrix (black and white matrix on the left) is used as a 
binary matrix to constrain the model’s topology to existing connec-
tions. Besides the effective connectivity estimates (Pink matrix at 
the left bottom), the autocovariance matrices (green and blue matri-

ces at the right bottom) are also reproduced by the dynamic model. 
The model undergoes an optimization procedure so that, at each step, 
the estimated FC matrices are evaluated with regards to the empiri-
cal FC0 and FC1 matrices. The optimization steps are repeated until 
reaching a high Pearson correlation coefficient between the model’s 
and the empirical FC matrices, reducing this way the model error 
(depicted as the green and black lines in the central box on the left of 
the figure)
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where xi denotes the activity of ROI i, which is influenced 
by the activity of other nodes and decays exponentially by 
the time constant Tx . The information about the direct con-
nection between ROIs(i,j) (i.e., EC) is stored in the matrix 
Cji (pink matrix at the left bottom of Fig. 1), whose skeleton 
is determined by the SC matrix so that weights for non-
existent connections are kept to 0 while those for existing 
links are estimated from the FC matrices. The variable dBi 
refers to independent fluctuating inputs (i.e., local variabil-
ity), consisting of the diagonal covariance matrix Σ (vector 
of variances at the bottom of Fig. 1). The estimated FC is 
determined by the propagation of the local variability gener-
ating network feedback via the EC. The model’s parameters 
Σ , and Cji undergo an iterative gradient-descent optimiza-
tion procedure such that the model is tuned to reproduce 
the empirical FC0 and FC1 with the minimal error and the 
maximum values of Pearson correlation coefficient mean 
for each session. The use of an iterative gradient-descent in 

the optimization procedure ensure to find a single solution 
to the optimization such that the initial values (taken to 0 
for all weights) do not significantly affect the estimate. For 
further mathematical details, we refer the readers to Gilson 
et al. (2016, 2020). The code related to model optimiza-
tion and classification is based on the open-source language 
python, and it is available at github.com/MatthieuGilson/
WBLEC_toolbox.

Classification based in EC/FC weights

The classification procedure was run using the scikit-learn 
package (Pedregosa et al. 2011) based on Python language. 
We performed four binary classification types: classifica-
tion of conditions (resting-state vs. meditation) within 
each group (controls and meditators, separately) and then 
group classification (control group versus meditators), one 
for each state. To construct the feature arrays, we used the 

Fig. 2  Intersected SC matrix for each group. To estimate functional 
dynamics of both groups during each condition, we intersected the 
SC matrix specific to each group (two matrices on the left side) and 

we generated a new SC matrix with all the links above-threshold 
common to both meditators and controls (SC matrix on the right side)
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probabilistic SC matrix together with model’s FC and esti-
mated EC matrices. First, we vectorized the SC, FC and EC 
matrices for each session (e.g., resting-state or meditation). 
To reduce dimensionality, we selected the lower triangle of 
the symmetric SC and FC matrices, resulting in a vector of 
6670 SC links and one of 6670 FC links for each session. 
We applied the SC mask specific for each group, or the inter-
sected matrix between the two groups, to the EC matrix in 
order to extract the EC vectors. Then, we z-scored within 
each session the SC, FC and EC links using the mean and 
standard deviation of the corresponding vectorized connec-
tivity measures. Therefore, for each session of each subject, 
here referred to as sample, we had the ranking of the vec-
torized elements of EC, FC, and SC as features to train two 
different classifiers, namely the 1-Nearest Neighbor (1NN) 
and the Multinomial linear regression (MLR). This choice is 
because the two algorithms capture the data’s different prop-
erties. Indeed, for the 1NN, we used Pearson correlation as a 
metric to evaluate the inverse distance between samples (i.e., 
vectorized connectivity matrices). In this way, the 1NN clas-
sifier predicts the test-set session’s class by identifying the 
trainset’s most similar session. On the other hand, the MLR 
is a supervised learning algorithm for high-dimensional data 
optimal for linear classification. To predict the class (i.e., 
group or condition), the model regressors are adjusted. The 
MLR tunes weights for each dimension of the input features, 
allowing efficient feature selection procedures.

To train and cross-validate the two classifiers (1NN and 
MLR), we used 80% of the datasets for training the algo-
rithms and the remaining 20% for testing, from which 
we evaluate the classification accuracy that is reported in 
Results. We repeated the random splitting procedure 50 
times to assess the impact on the performance of different 
splits of data in train/test sets. Only the accuracy of the 50 
predictions on unknown data from the test-set were consid-
ered to evaluate models’ performance.

We compared accuracy distributions using the Wilcoxon 
rank-sum method understand which combination of clas-
sifier and metric performed better. Moreover, to investi-
gate whether classification results were significantly above 
chance, we compared accuracy distributions of real-labeled 
data with surrogate data using the Wilcoxon rank-sum test.

Signatures extraction: support networks

We applied the Recursive-Feature Elimination with the MLR 
to extract group-specific signatures. This algorithm is largely 
used in machine learning to rank the features according to 
their relevance for the classification (Guyon et al. 2002). RFE 
applied to MLR allows to iteratively select a subset of fea-
tures by pruning at each iteration the least important features 
from the whole set until only the most relevant links are left. 
We applied the RFE algorithm to group classification during 

meditation and resting-state, separately, to disentangle the 
EC links (akin, support network) specific to the group. For 
each application, we randomly selected 80% of data to train 
and fit the MLR using RFE. Simultaneously, the remaining 
samples were used to evaluate the accuracy of MLR using a 
different number of features based on the order given by the 
RFE ranking. We repeated this cross-validation procedure ten 
times, randomly selecting 80% of samples for the train set and 
20% for the test set. Finally, we chose a subset of features for 
which the classifier performance was stable across iterations 
and including additional features did not provide a significant 
increase in classification accuracy.

Network‑based statistics

To explore group differences at the anatomical level, we ana-
lyzed the intersected SC matrix with all the links above-thresh-
old common to both meditators and controls, as described in 
the previous section (Fig. 2) using the “Network-Based Sta-
tistic Toolbox v1.2 (NBS)” (Zalesky et al. 2010). The NBS, 
which has been designed to test the hypothesis under the con-
nectome framework, is the network-based equivalent of the 
suprathreshold cluster-based test (Bullmore et al. 1999; Nich-
ols and Holmes 2002).

We implemented the NBS to test the hypotheses of struc-
tural (SC) over-connectivity (meditators > controls) or under-
connectivity (meditators < controls) following extensive train-
ing. A non-parametric permutation approach, with 10,000 
random permutations, was used to estimate the null distribu-
tion of the maximal component size for each of the mentioned 
hypotheses. At each permutation, values stored in each sub-
ject’s SC matrix were used to compute a t-test for each pair-
wise association contrasting the two groups. Then, we estab-
lished a primary threshold, t = 3 to the t-statistic to determine 
a set of suprathreshold links from which the connected com-
ponents and their respective size were identified. The decision 
to set the primary threshold, t, at three for the t test was based 
on the fact that we were only interested in a medium or above 
effect-size, calculated as follows: t = sqrt(N) × 0.5 , where N 
is the number of subjects, in our case 38, and 0.5 is the Cohen’s 
coefficient. Finally, for each contrast (meditators > controls 
and meditators < controls), topological clusters of structural 
links that showed significant differences ( p < 0.05 ) between 
the two groups were extracted and represented using the Mat-
lab toolbox “BrainNet Viewer” (Xia et al. 2013).

Results

Classification of conditions within each group

First, we investigated changes in brain dynamics between 
meditators and controls, as quantified by FC and EC. For 
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EC, we fitted the dynamic whole-brain model informed by 
the SC for the two groups of subjects, meditators and con-
trols. We investigated using machine-learning algorithms 
whether meditation condition would be accurately differen-
tiated from resting-state in meditators and in controls sub-
jects who were naive to meditation practice. Average accura-
cies corresponding to the classification of conditions (i.e., 
meditation and resting-state) within each group following 
the described feature extraction and validation methods are 
shown in Fig. 3. Moreover, we compared the distributions 
of accuracies for different features or classifiers using the 
Wilcoxon rank-sum test, reporting p-values.

For features extracted with the estimated EC, we reported 
a significantly higher performance with an average increase 
in accuracy of 6% compared to FC features for the MLR 
classifier in the meditator group (Fig. 3A; p = 0.004 ). Dif-
ferences in MLR performance, depending on the type of fea-
tures, were not significant ( p > 0.05 ) for the control group 
(Fig. 3B). Performance of 1NN for distinguishing resting-
state from meditation in the meditator group appeared 
to improve when using FC features compared to EC 
( p < 0.0001 ), indicating that FC patterns are overall more 
similar between the two conditions, while differences in EC 
measures are more localized. However, MLR significantly 
outperformed the 1NN, both when using EC ( p < 0.0001 ) 
and FC features ( p < 0.0001 ) for the meditator group. This 
suggests that the it is less the global EC (captured by the 
Pearson correlation as a similarity measure for the 1NN) 
profile than specific EC links that significantly vary across 
conditions in the meditator group. In contrast, EC signifi-
cantly improved 1NN accuracy for the control group, with a 

performance drop of 14% on average using FC ( p < 0.0001 ) 
while the MLR performance was not affected by the type of 
features for control subjects ( p > 0.05 ). Nevertheless, the 
performance of classifiers was highly above chance-level 
both for meditators and controls ( p < 0.0001 ) using all met-
rics and classifiers.

These results showed that meditation induces character-
istic connectivity patterns in brain activity which can be dif-
ferentiated with high precision even in control subjects naive 
to the meditation practice.

Group classification within each condition 
and signatures extraction

To further investigate the relationship between the impact 
of extensive training on the whole-brain functional dynam-
ics, we classified the groups (meditators vs. controls) sepa-
rately in the two conditions (meditating and resting). We also 
included a third set of features consisting of the vectorized 
SC matrix specific to each subject. The group classification 
results for each condition are shown in Fig. 4.

The results of classification using resting-state sessions 
(Fig. 4A) suggested that the better combination of classifier 
and metric is the 1NN with EC features, with an average 
accuracy of 67%. The 1NN appeared to be better suited for 
discriminating meditators and controls in rest, suggesting 
that data are overall clustered and that samples with the 
same labels are closer (i.e., showing similar EC profiles). In 
particular, we found significant higher accuracy using EC 
features compared to FC features in the group classification 
during resting-state, both for the MLR ( p = 0.01 ) and the 

Fig. 3  Resting-state vs. meditation: classification accuracies within 
each group. Accuracy distributions are shown for meditators (left 
panel) and controls (right panel) The violin plots in green show the 
accuracies for the MLR classifier using the features related to EC, 
while the blue ones represent MLR performance using FC features. 

Accuracies related to 1NN are shown in orange for EC and in pink for 
FC features. For both groups, all the combinations between classifiers 
(MLR and 1NN) and metrics were significantly higher than chance-
level ( p < 0.0001)
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1NN ( p = 0.002 ). EC features also yielded higher accuracies 
for the MLR compared to FC features, but the difference did 
not reach significance ( p = 0.06 ). There were no difference 
in performance between FC and SC, both when using the 
1NN ( p > 0.05 ) and the ( p > 0.05 ), nor between EC and SC 
when using the 1NN ( p > 0.05).

When comparing the two groups while meditating 
(Fig. 4B), we found that the MLR showed better perfor-
mance (average accuracy =  68%) than the 1NN (average 
accuracy = 55%) when using EC features. This indicates 
that differences between the two groups while meditating 
are based on specific weights of some EC features rather 
than the overall EC profile. Again, EC features yielded to a 
better MLR performance compared to FC ( p < 0.0001 ), and 
compared to SC ( p = 0.005 ). In contrast, we found a signifi-
cant increase in 1NN performance when using SC features 
compared to EC ( p = 0.03 ). Difference in 1NN performance 
when contrasting FC and SC features were not significant 
( p > 0.05).

These results suggested that meditation condition is in 
general better to distinguish between subjects of the two 
different groups, as compared to resting-state. Moreover, EC 
features appeared to be more informative than FC and SC 
in discriminating the two groups, both when resting (using 
MLR and 1NN) and meditating (only for MLR). This indi-
cates that the combination of information of SC and FC by 

the anatomo-functional whole-brain model better charac-
terizes the differences between the two groups. Note that 
the performance of combination of classifiers (1NN and 
MLR) and metrics (EC,FC,SC) was significantly higher than 
change-level ( p < 0.05 ) for all cases except the combina-
tion MLR with SC features which did not reach significance 
( p > 0.05).

Following the results of classification performance, we 
performed Recursive-Feature Elimination (RFE) with the 
MLR classifier during meditation and resting-state condi-
tions, separately. We investigated which EC links contrib-
uted the most to the accurate distinction between subjects 
of the two groups. Results of RFE for group comparison 
during meditation are presented in Fig. 5. We found that fea-
tures relevant for the group classification during meditation 
were less (15 edges) than those of the resting-state condition 
(23 edges). In both cases, the support networks showed a 
prominence of connections within the left hemisphere and 
inter-hemispheric connections, distributed across frontal 
and posterior regions. The most relevant features extracted 
during meditation mostly involved top-down regulation 
between high-level functioning areas belonging to the con-
trol, dorsal attention, salience/ventral attention, DMN, and 
the somatomotor networks. In contrast, the support network 
of the resting-state condition showed a larger involvement 
of the visual network and subcortical structures (including 

Fig. 4  Results of group classification during meditation and resting-
state. The performance of 1NN and MLR in discriminating the two 
groups are shown for resting-state condition (A) and meditation task 
(B). Significant differences in performance depending on the type of 
features are shown in black for the contrast EC-FC features and in 
purple for the contrast EC-SC features. Violin plots colored in gray 
represent accuracy distributions of surrogate data. EC features led 

to the highest average accuracies with either the MLR or the 1NN, 
depending on the condition. While the 1NN yielded the best perfor-
mance for the resting-state sessions (average accuracy of 67%), the 
MLR outperformed the 1NN when comparing the two groups during 
the meditation task (average accuracy of 68% against 55%, respec-
tively)
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the thalamus, the amygdala and the putamen), together with 
large-scale networks. In particular, the precuneus/posterior 
cingulate cortex areas belonging to the DMN were found to 
exert direct influence on nodes belonging to the visual, sali-
ence/ventral attention and the posterior dorsal attention net-
work. Moreover, the left PFC areas belonging to the DMN 
showed a top-down regulation over the putamen together 
with projections to somatomotor and control networks. At 
the same time, the left PFC section of the DMN received 
direct influence from the frontal operculum/insular region 
belonging to the salience/ventral attention network. This 
areas was also found to receive top-down projections from 
the orbito-frontal cortex, part of the limbic network. Con-
nections going from and to the frontal operculum/insular 
region were also found to be relevant when using meditation 
sessions. In fact, this area appeared to be modulated by the 
orbito-frontal cortex, together with the left PFC part of the 
DMN and the lateral PFC part of the control network.

Together these results suggest that there are distributed 
differences between meditators and control subjects in infor-
mation propagation across large-scale networks, which are 
more prominent in the left hemisphere (8 out of 15 edges 
for meditation condition, and 10 out of 23 edges for resting-
state sessions).

White‑matter changes induced by long‑term 
meditation practice: NBS results

Next, we used the NBS toolbox for identifying network 
connectivity differences at the anatomical level following 
extensive training. We compared the intersected probabil-
istic whole-brain SC matrices of experienced meditators 
and controls used in our whole-brain model, and tested for 
both increased (meditators > controls) and decreased (con-
trols > meditators) probability of white-matter connectivity.

Fig. 5  RFE results: support network for group classification during 
meditation. The group signatures (i.e., highest-ranked EC features) 
are presented for the two conditions in sagittal, medial, and dorsal 
views, both for the right and left hemispheres. The color of the nodes 
is determined by their belongingness to one of the eight resting-state 
networks (red = visual; orange = somatomotor; light orange = dorsal 
attention; light green = salience/ventral attention; dark green = lim-
bic; light blue =  control; blue = DMN; dark blue = subcortical). The 

networks are drawn from the parcellation in 100 ROIs comprising 7 
functional divisions (Schaefer et al. 2018) together with 16 subcorti-
cal regions (Tian et al. 2020). Gray arrows show the directionality of 
connection (EC-links) between ROIs of distinct networks. In contrast, 
direct links between nodes belonging to the same network are colored 
according to network-specific hue. Visualization of results was gener-
ated using the BrainNet Viewer Toolbox (Xia et al. 2013)
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Significant results of non-parametric statistical analysis 
on anatomical matrices using the NBS toolbox are shown in 
Fig. 6. When testing the hypothesis of increased WM con-
nectivity following extensive training (meditators>controls), 
we found a component of three edges and four nodes, involv-
ing connections only within the left hemisphere, that was 
significantly enhanced in meditators compared to controls 
( p = 0.02).

The component comprised regions belonging to the dorsal 
attention, the somatomotor, the subcortical, and the visual 
networks. In particular, we found an increased probability of 
connection in the meditator group between the left somato-
motor area and the left putamen. The left somatomotor area 
also showed increased connectivity with the left frontal eye 
field (FEF), part of the dorsal attention network. Finally, 
the results of NBS analysis also highlighted increased con-
nectivity for the meditator group as compared to controls 
between the left visual area and the left putamen.

According to the XTRACT atlas (Warrington et al. 2020), 
the edge connecting the left visual area with the left puta-
men included parts of left inferior fronto-occipital fascicu-
lus and left optic radiation, whereas the edge connecting 
left somatomotor area with the left frontal eye field (FEF) 
included the left superior longitudinal fasciculus. Finally, 
the edge connecting the left somatomotor area with the left 
putamen included parts of the superior thalamic radiation 
and corticospinal tract in the left hemisphere.

On the other side, for the contrast controls > medita-
tors, we obtained no significant results in component extent 
( p = 0.18 ), suggesting that meditators do not show any net-
work-related decrease in anatomical connectivity compared 
to controls.

Discussion

The purpose of this work was to contribute to research in 
contemplative neuroscience by shedding light on the causal 
mechanisms underlying long-term meditation practice. 
First, we applied computational modeling to explore if 
long-term meditation training led to changes in the brain’s 
information propagation. We estimated through a model-
based approach the whole-brain EC profiles of meditators 
and controls, using their underlying anatomical connectiv-
ity to explain functional dynamics during rest and medita-
tion. Using machine-learning tools, we demonstrated that 
EC features generally led to higher performance than FC or 
SC alone especially when classifying groups in each condi-
tion, indicating that there is a synergy between structural 
and functional connectivity patterns that can be captured 
through EC measures. We demonstrated, by applying a fea-
ture selection procedure, that the two groups showed differ-
ences in information propagation across several large-scale 
networks, both during meditation and resting-state. Finally, 

Fig. 6  Increased network-related SC in the meditator group com-
pared to the control group. A The significant network resulting from 
the contrast meditators  >  controls, comprising three edges and four 
nodes, is represented from a lateral view of the left hemisphere. 
Nodes are colored according to the hue of the network they belong 
to as displayed in the legend on the left side. B Visualization of the 
three pathways found to have increased connectivity in the meditator 

group. ROIs are colored as follows: blue for left putamen, pink for 
left somatomotor, red for frontal eye field (FEF), and green for left 
visual area. Pathways are colored according to the number of partici-
pants that have a tract passing through the voxel, with yellow repre-
senting the heighest value and black the smallest, as represented in 
the legend on the right side of the figure
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to understand if the differences in the brain’s information 
propagation were strictly based on the modulation of the 
underlying anatomical connectivity, we computed a network-
based analysis of the intersected probablistic matrices by 
applying a threshold to maintain only the strongest structural 
connections that were shared among the two groups. We 
found that meditators showed increased white-matter con-
nectivity as compared to controls between areas belonging 
to the somatomotor, dorsal attention, visual and subcortical 
networks.

To explore brain dynamics in meditators and controls, 
we applied the generative model MOU-EC, which estimates 
whole-brain EC profiles by integrating both structural and 
functional information, and reproduces time lagged and non-
lagged second order statistics of BOLD time-series, akin to 
FC. We used a machine-learning approach to understand 
the contribution of each type of feature (EC, FC and SC) 
in distinguishing groups and conditions. We demonstrated 
through group classification that meditators could be accu-
rately distinguished from control subjects both during rest 
(MLR average accuracy  = 64%) and meditation (MLR aver-
age accuracy  = 67%), and that the maximum accuracy was 
reached when using EC features. In both meditation and 
resting-state, the group signatures extracted through RFE 
were distributed across the cortex but showed a prominence 
of the left hemisphere and involved EC links between nodes 
belonging to the DMN, the dorsal attention, the salience/
ventral attention, the control, the visual and the somatomotor 
networks. Notably, the support network using resting-state 
sessions was langer and showed a bigger involvement of vis-
ual and subcortical areas, such as the amygdala, the thalamus 
and the putamen, compared to the one of meditation condi-
tion. Additionally, the frontal DMN nodes appeared to exert 
direct influence over the control, salience/ventral attention 
and dorsal attention regions during resting-state. Moreover, 
we found an upregulation from the frontal operculum/insular 
region belonging to the salience/ventral attention network 
sending projections to the PFC area belonging to the DMN 
during resting-state. The frontal operculum/insular region 
appeared to play a central role in differentiating between 
meditator and control groups during resting-state as well 
as meditation. In both cases, we found that the frontal oper-
culum/insular region received projections from the lateral 
PFC (part of the control network) and the orbito-frontal 
cortex (part of the limbic network). This is consistent with 
the hypothesis that the insular regions play a central role in 
switching between different networks (Sridharan et al. 2008) 
and for interoceptive and emotional awareness (Simmons 
et al. 2013), which is a central skill trained through medita-
tion (Lutz et al. 2008). Although here we went beyond FC 
by capturing the direct influence that one region may exert 
on others through EC, these results are in line with previ-
ous literature on meditation-induced functional connectivity 

changes that have found increased coupling for meditation 
practitioners compared to matched control subjects within 
and between nodes of dorsal attention network and areas of 
DMN, and salience networks (Froeliger et al. 2012), as well 
as connections among the nodes of dorsal attention network, 
executive, and visual circuits (Kemmer et al. 2015; Boccia 
et al. 2015).

Despite the differences between the two groups in EC 
links highlighted by the support network of group classifica-
tion, we found that it was possible to discriminate resting-
state from meditation with high precision also for control 
subjects naive to meditation practice. The results of condi-
tion classification within each group showed that differences 
between resting-state and meditation for control subjects 
could be captured with high accuracy both when using EC 
(MLR average accuracy  = 78%, 1NN average accuracy  =
78 %) and FC features (MLR average accuracy  = 79%, 1NN 
average accuracy  = 64%). The significant difference in 1NN 
performance between EC and FC features suggest that the 
overall EC profile of control subjects is more informative 
than their global FC profile in discriminating the two con-
ditions. In contrast, in the meditator group the best perfor-
mance was reached when using the MLR classifier with 
EC features (average accuracy  = 87%), indicating that for 
meditators the differences between the two conditions rely 
on specific EC links rather than on the overall EC profile.

Finally, we showed that extensive meditation training 
leads to a structural reorganization of a restricted number 
of white-matter pathways. We opted for a network-based 
approach since we were more interested in investigating the 
effects of long-term meditation practice on interconnected 
subnetworks rather than focal effects. The second reason is 
simply a matter of power. Indeed, the NBS can offer sub-
stantially greater power in the right circumstances, which is 
advantageous in the context of the graph model due to the 
massive number of multiple comparisons that arise when the 
hypothesis of interest is tested at every connection. Using 
the network-based statistics (NBS) method, we showed that 
experienced meditators, compared to the control group, 
showed enhanced SC in a small subnetwork involving con-
nections within the left hemisphere between areas of the 
somatomotor, dorsal attention, subcortical, and visual net-
works. Again, we found a more prominent involvement of 
the left hemisphere. Moreover, the putamen, the visual and 
somatomotor areas that we found to have enhanced path-
ways in meditators were also part of the support networks 
that allowed discriminating meditators from controls during 
resting-state and meditation. As reported in the results sec-
tions, these edges that we found to be enhanced in medita-
tors involved several major tracts, such as the left inferior 
fronto-occipital fasciculus, left optic radiation, the superior 
thalamic radiation and corticospinal tract in the left hemi-
sphere. This result is in line with a previous study conducted 
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by Luders and colleagues (Luders et al. 2011), in which they 
estimated fractional anisotropy (FA) for 20 major tracts. The 
authors found that experinced meditators showed signifi-
cantly larger FA values for the corticospinal tract, inferior 
fronto-occipital fasciculus and forceps minor (Luders et al. 
2011). However, we were not able to find significant differ-
ences in other white-matter tracts that have been previously 
shown to be enhanced by meditation practice, such as the 
left superior longitudinal fasciculus, left posterior corona 
radiata, and splenium of the corpus callosum (Fox et al. 
2014; Yoon et al. 2019). This inconsistency may have been 
due to the fact that we opted for a more rigorous approach by 
applying a threshold to the probablistic structural connectiv-
ity matrix in order to maintain only the strongest connections 
that were commonly shared among the two groups. This 
choice was made in order to match the topology of the SC 
we used in our model as well as to overcome the limitation 
of diffusion MRI tractography, which is highly susceptible 
to false positive tract reconstructions.

Overall, the consistency of our findings supports the 
structure-function mutual relationship hypothesis, according 
to which there is a high topological correspondence between 
structural and functional connectivity (Straathof et al. 2019). 
However, it is important to notice that effects that we found 
on information propagation (i.e., EC) were much wider 
than the meditation-induced modulation of structural path-
ways, indicating that extensive meditation training leads to 
more substantial changes in brain dynamics than in brain 
structure itself. The findings of our effective connectivity 
model, which provide with a causal explanation of changes 
in brain dynamics induced by extensive meditation, may 
have implications for the application of meditation as a 
tool to improve brain health and psychological well-being. 
Indeed, our results suggest long-term meditation practice 
is able to remodelling the way information is propagated 
across the brain, involving direct connections among areas, 
such as the anterior insula, the prefrontal regions and the 
precuneus/posterior cingulate cortex belonging to the DMN, 
the somatomotor cortex, the orbito-frontal and lateral pre-
frontal cortex, whose functions are associated with largely 
reported meditation-induced behavioral effects, as improved 
emotional regulation and reduced stress (Chiesa and Serretti 
2009; Chung et al. 2012; Tang et al. 2016), enhanced atten-
tional skills (Valentine and Sweet 1999; Brefczynski-Lewis 
et al. 2007; Semple 2010; MacLean et al. 2010), and reduced 
mind-wandering (Brewer et al. 2011).

The present study could be improved in the future in sev-
eral manners. First, the NBS method does not allow for inter-
pretation at the single edge level since it provides only infor-
mation about the network behavior as a whole (Zalesky et al. 
2010). Therefore, we could not directly relate at the node 
level the results of SC with the results of RFE highlighting 
the most informative EC links. An analysis at the link level 

requires more statistical power, hence many more subjects 
than those analyzed here. Another limitation of our cross-
sectional study lies in the statistical relationship between the 
structural and functional changes, which could be studied in 
more depth via a longitudinal experimental design to jointly 
measure the structural and functional changes induced by 
meditation practice over a long training period.

Conclusions

The present work focused on unraveling the anatomical 
mechanisms and their relationship to brain function under-
lying long-term meditation practice. We demonstrated the 
advantage of using a model-based approach to extract effec-
tive connectivity estimates compared to standard correla-
tion analysis of BOLD signals, to highlight differences in 
information propagation between experienced meditators 
and controls. We proposed a causal mechanisms behind 
extensive meditation training effects on brain dynamics. 
We showed that the most discriminative EC links for distin-
guishing meditators and control subjects in resting-state and 
during meditation involved top-down regulation between 
high-level functioning regions of several large-scale net-
works, such as dorsal attention, somatomotor, DMN, limbic 
and visual networks. On the other side, the network-based 
analysis of anatomical pathways revealed a significantly 
smaller cluster of edges, comprising only four areas involved 
in attentional, somatomotory, visual, cognitive functioning 
and reward processes, for which structural was enhanced in 
experienced meditators. Together these results suggest the 
presence of meditation-induced neuroplasticity at the func-
tion-structure level but with more notable effects on brain 
dynamics than on the anatomical structure of the brain itself.
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