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The interstitial cells in bladder lamina propria (LP-ICs) are believed to be involved
in sensing/afferent signaling in bladder mucosa. Transient receptor potential (TRP)
cation channels act as mechano- or chemo-sensors and may underlie some of
the sensing function of bladder LP-ICs. We aimed to investigate the molecular and
functional expression of TRP channels implicated in bladder sensory function and
Piezo1/Piezo2 channels in cultured LP-ICs of the human bladder. Bladder tissues were
obtained from patients undergoing cystectomy. LP-ICs were isolated and cultured,
and used for real-time reverse transcription-quantitative polymerase chain reaction,
immunocytochemistry, and calcium-imaging experiments. At the mRNA level, TRPA1,
TRPV2, and Piezo1 were expressed most abundantly. Immunocytochemical staining
showed protein expression of TRPA1, TRPV1, TRPV2, TRPV4, TRPM8, as well as
Piezo1 and Piezo2. Calcium imaging using channel agonists/antagonists provided
evidence for functional expression of TRPA1, TRPV2, TRPV4, Piezo1, but not of
TRPV1 or TRPM8. Activation of these channels with their agonist resulted in release
of adenosine triphosphate (ATP) from LP-ICs. Inhibition of TRPV2, TRPV4 and Piezo1
blocked the stretch induced intracellular Ca2+ increase. Whereas inhibition of TRPA1
blocked H2O2 evoked response in LP-ICs. Our results suggest LP-ICs of the bladder
can perceive stretch or chemical stimuli via activation of TRPV2, TRPV4, Piezo1 and
TRPA1 channels. LP-ICs may work together with urothelial cells for perception and
transduction of mechanical or chemical signals in human-bladder mucosa.

Keywords: bladder interstitial cells, Ca2+ imaging, lamina propria, Piezo channel, TRP channel

Abbreviations: AITC, Allyl isothiocyanate; ATP, adenosine triphosphate; DLP, deeper lamina propria; GSK, GSK1016790A;
LP-ICs, Interstitial cells in the lamina propria; PDGFRα, platelet-derived growth factor receptor alpha; α-SMA, alpha-smooth
muscle actin; TRP, Transient receptor potential; ULP, upper lamina propria.
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INTRODUCTION

Interstitial cells (ICs) in the bladder have attracted much research
attention in recent years (Andersson and Mccloskey, 2014; Koh
et al., 2018). Based on their location, two populations of ICs in the
bladder have been characterized: LP-ICs, which are between the
urothelium and detrusor and ICs in the detrusor (detrusor-ICs)
(Andersson and Mccloskey, 2014; Gevaert et al., 2014). LP-ICs
can be sub-grouped further into ICs in the upper lamina propria
(ULP-ICs, which are immediately beneath the urothelium) or
sub-urothelial ICs and ICs in the deep lamina propria (DLP-ICs,
which lie between the ULP and detrusor) (Gevaert et al., 2014).

Several molecular markers are used to characterize bladder
ICs: the broad mesenchymal marker vimentin (Vim) (Davidson
and Mccloskey, 2005; Gevaert et al., 2014), the myogenic
differentiation marker alpha-smooth muscle actin (Monaghan
et al., 2012; Neuhaus et al., 2018) (α-SMA), platelet-derived
growth factor receptor alpha (PDGFRα) (Monaghan et al.,
2012; Gevaert et al., 2014) and the protooncogene c-Kit
(Mccloskey and Gurney, 2002). It should be noted that c-Kit,
the assumed specific marker for interstitial cells of Cajal
(ICC), recently has been found to be expressed only on
mast cells in urinary bladder (Gevaert et al., 2017). Upper
lamina propria in the human bladder are characterized as
Vim + /αSMA + /PDGFRα + /c-kit-. In contrast, DLP-ICs are
Vim + /αSMA-/PDGFRα + /c-kit-. Detrusor-ICs have a similar
phenotype to that of DLP-ICs (Monaghan et al., 2012; Gevaert
et al., 2014; Steiner et al., 2018).

Considerable progress has been made regarding the cellular
markers, calcium signaling, ion channels, and receptor expression
of bladder ICs (Andersson and Mccloskey, 2014; Koh et al.,
2018), but their exact physiologic functions in the bladder are not
known. Based on morphology, spatial distribution, and limited
functional data, ULP-ICs and DLP-ICs are thought to have
important roles in afferent signaling processing in the bladder
mucosa (Fry et al., 2007; Gevaert et al., 2011; Andersson and
Mccloskey, 2014), whereas detrusor-ICs have been proposed
to modulate detrusor spontaneous contractions or excitability
(Koh et al., 2018).

In addition to their sensitivity to adenosine triphosphate
(ATP), low pH, and acetylcholine (ACh) (Fry et al., 2007;
Johnston et al., 2008), ULP-ICs have been shown to have
mechanical sensitivity, and that mechanical stimuli such as
stretch, shear stress, or hypotonicity, can evoke an increase in
the intracellular Ca2+ concentration [(Ca2+)i] (Neuhaus et al.,
2020). That study also suggested that ULP-ICs are the active
elements in afferent signaling processing in the bladder. Active
participation of ULP-ICs is also supported by a study that
reported increased ATP release from cultured ICs from pig
bladders by hypotonic stimulation (Cheng et al., 2011). In line
with those findings, ULP-ICs network has been proposed to
function as a stretch receptor for perception of physical and
chemical stimuli (Wiseman et al., 2003; Vannucchi and Traini,
2018). Although purinergic (P2X3 or P2Y6) (Sui et al., 2006) or
muscarinic receptors have been found in bladder ICs, it is not
clear if other receptors that can perceive mechanical or chemical
stimuli are present on LP-ICs.

Transient receptor potential (TRP) channels are important
sensors for cells in response to mechanical and chemical stimuli
or temperature change. TRPA1, TRPV1, TRPV2, TRPV4, and
TRPM8 expressed in bladder sensory afferents or urothelial
cells have pivotal roles in the sensory function of the bladder
(Vanneste et al., 2021). However, few studies have investigated
the expression and function of TRP channels in bladder ICs,
particularly in ULP-ICs. Recently, the bladder ICs of humans,
guinea pigs, and pigs have been shown express TRPA1 (Steiner
et al., 2018). TRPA1 expression has also been found in Vim+ ICs
of the ureter (Weinhold et al., 2018) and prostate gland (Gratzke
et al., 2010) of humans. However, whether TRPA1 is functionally
active in LP-ICs is not known.

The recently recognized mechanically sensitive channels
Piezo1/Piezo2 have been shown to be expressed in the
human urothelium as well as in neurons of dorsal-root
ganglia innervating the bladder, and have been implicated in
mechanical sensory transduction in the bladder (Miyamoto
et al., 2014; Marshall et al., 2020). We examined if these
sensory channels (TRPA1, TRPV1, TRPV2, TRPV4, TRPM8, and
Piezo1/Piezo2) are expressed in LP-ICs of the human bladder.
Real-time reverse transcription-quantitative polymerase chain
reaction (RT-qPCR), immunofluorescence staining, and Ca2+

imaging were utilized. Vim and α-SMA were used as molecular
markers for ICs.

MATERIALS AND METHODS

Ethical Approval of the Study Protocol
The study protocol was approved [KYLL-2016(GJ)A-0027] by
the Ethics Committee of the Second Hospital, Cheeloo College
of Medicine of Shandong University (Jinan, China). All patients
provided written informed consent for their tissue to be used in
our experiments.

Bladder tissues (body or dome) were obtained from 10
patients (four women, 6 men; mean age, 51.2 ± 10.1 years)
undergoing cystectomy for bladder carcinoma. Bladder tissues
were transported immediately to the laboratory for cell
culture. Some of the tissues were fixed in formalin for
immunofluorescence experiments.

Culture of Lamina Propria-Interstitial
Cells and Urothelial Cells
Culture of LP-ICs was conducted as described previously
(Neuhaus et al., 2020). Briefly, after tumor-free bladder tissue
(body or dome) was obtained, the bladder mucosa was dissected
from the detrusor layer. Then, small fragments (∼1 mm2) were
digested with trypsin in 37◦C for 15 min, and digestion was
stopped by 10% fetal bovine serum. Then, tissue was plated
into tissue culture flasks for incubation in an atmosphere of
5% CO2 at 37◦C. Smooth Muscle Cell Growth Medium 2
(Procell, Wuhan, China) was used as the culture medium to
limit the growth of urothelial cells (Neuhaus et al., 2020). Cells
from passage-2 to passage-8 were used. For Ca2+ imaging
and immunocytochemistry experiments, cells were plated onto
poly-L-lysine (Sigma–Aldrich)-coated glass coverslips (8 mm in
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TABLE 1 | Oligonucleotide primer sets for quantitative real-time PCR (RT-PCR).

Name Sequence (5′-3′) Length Tm

Piezo1 F ACTTTCCCATCAGCACTCGG 20 64

Piezo1 R CCACGAAGTCCTTGAGACCC 20 64

Piezo2 F ACTGCTGGGAAAGTCGTTGT 20 60

Piezo2 R TTGGGTGGAACTGCCTCTTG 20 60

TRPM8 F AGCAGCGATGAAGACTTGGC 20 62

TRPM8 R TGGGCGATGAAATGCTGGTC 20 62

TRPA1 F CAGAAGACAAGTCCTGCCGA 20 62

TRPA1 R TTGAGGGCTGTAAGCGGTTC 20 62

TRPV1 F GAGAGACCTGTGCCGTTTCA 20 62

TRPV1 R TCCCGTCTTCAATCAGCGTC 20 62

TRPV4 F TCTCACCGCCTACTACCAGC 20 64

TRPV4 R GTAGAGGGCTGCTGAGACGA 20 62

TRPV2 F TCGCTGTATGACCTGGCTTC 20 62

TRPV2 R GCTCCAAAACGACCATTCGG 20 62

β-Actin F CATGTACGTTGCTATCCAGGC 21 57.6

β-Actin R CTCCTTAATGTCACGCACGAT 21 55.6

F: forward; R: reverse; Tm: melting temperature.

diameter) and grown to 80% confluence and 50% confluence,
respectively.

Culture of urothelial cells was undertaken as described in
our previous study (Wen et al., 2021). Briefly, the mucosa
(1.5 cm × 1.5 cm) dissected from the bladder wall was placed
in Minimum Essential Medium containing dispase and HEPES
(2.5 mg/mL) overnight at 4◦C. Urothelial cells were scraped
and placed in trypsin (0.25% wt/vol) for 5 min at 37◦C, and
dissociated by trituration. Cells were plated on poly-L-lysine-
coated glass coverslips, and used for Ca2+ imaging 48–96 h after
dissociation.

Reverse Transcription-Quantitative
Polymerase Chain Reaction and
Real-Time Polymerase Chain Reaction
When the confluence of cultured cells reached >90% in culture
flasks (25 mL), cells were treated with 0.25% trypsin and
collected. Total RNA was extracted using the RNA Simple Total
RNA kit (Tiangen, Beijing, China). The RNA concentration
was determined using an ultraviolet spectrophotometer. Reverse
transcription was conducted using a SPARKscript II RT plus
Mix kit (Sparkjade, Qingdao, China) according to manufacturer
instructions, and complimentary-DNA was amplified (40 cycles
of denaturation for 15 s at 95◦C, and primer annealing and
elongation for 30 s at 60◦C). RT-qPCR was carried out using a
SYBRTM Green qPCR Mix (Sparkjade) and an QuantStudioTM 5
system (Thermo Fisher, Waltham, MA, United States). Specific
primers for β-actin as well as TRP and Piezo channels were
generated by BioSune (Shanghai, China) and the sequences of
primers are shown in Table 1. Expression was measured using
the 2−11Ct method.

For RT-PCR, Total RNA was extracted from the cultured
cells using TRIzol (Invitrogen) and a DNA-free kit (Ambion).
cDNA was synthesized using Superscript (Invitrogen). PCR was
performed using Surestart Taq polymerase (Sparkjade).

Immunofluorescence Staining
Sections of bladder tissue (5 µm) or cultured ICs on coverslips
were fixed in 4% paraformaldehyde for 15 min following three
times wash by PBS. Then blocked with 5% normal goat serum
for 30 min and incubated with mixed two primary antibody
(1:100; Table 2) at 4◦C overnight on the shaker. Subsequently,
washed with PBS and incubated with appropriate secondary
antibody for additional 1 h at room temperature— Alexa
Fluor 594-conjugated goat anti-mouse IgG (H + L; diluted
1:200 in phosphate-buffered saline; Elabscience Biotechnology,
Wuhan, China) or fluorescein-conjugated goat anti-rabbit IgG
(H + L; 1:50 dilution). To test the specificity of the primary
antibodies, RNA interference for TRP/Piezo channels were
applied. The siRNAs for TRP/piezo channels and the mismatch
were produced by GenePharma (GenePharma, Shanghai, China),
and their sequence were shown in Supplementary Table 1.
They were transfected using transfection reagent siRNA-mate
(GenePharma, Shanghai, China) according to the manufacturer’s
protocol. Successful knock down of these channels was
demonstrated by the qPCR experiments (mRNA level was
decreased by 79.4% for Piezo1, 89.6% for Piezo2, 71.6% TRPM8,
79.4% for TRPA1, 75.8% for TRPV1, 73.2% for TRPV4 and 85.2%
for TRPV2, respectively). The immunofluorescence for these
channels were accordingly reduced (Supplementary Figure 1).
Staining was analyzed using a confocal laser scanning microscope
(Observer Z1; Carl Zeiss Microscopy, Baden Wurttemberg,
Germany). Images were acquired using ZEN 2.1 (blue edition;
Carl Zeiss Microscopy).

Ca2+ Imaging
Cultured IC on glass coverslips were loaded with Fura-2-
acetoxymethyl ester (Fura 2-AM; 2 µM; Dojindo Laboratories,
Tongren, Japan) for 30 min. Fura 2-AM was dissolved in Hank’s
balanced salt solution containing (in mM): 138 NaCl, 5 KCl, 0.3
KH2PO4, 4 NaHCO3, 2 CaCl2, 1 MgCl2, 10 HEPES, and 5.6
glucose, pH 7.4. Ca2+ imaging was undertaken as described in
our previous study (Wen et al., 2021). Briefly, coverslips were
placed in a recording chamber. Fura 2-AM was excited with
ultraviolet light alternately at 340 nm and 380 nm. Wavelength
selection, timing of excitation, and image acquisition were
controlled using MetaFluor R©(Molecular Devices, Sunnyvale, CA,
United States). The ratio of the fluorescence signal measured at
340 nm divided by the fluorescence signal measured at 380 nm
was used to measure the increase in [Ca2+]i. A significant
increase in [Ca2+]i was considered if the ratio change > 0.1.

Adenosine Triphosphate Measurement
Samples of perfusate were collected 2 min before and
immediately after agonist stimulation during calcium imaging
study. The ATP concentration was measured using luciferin–
luciferase bioluminescence, as described previously (Wen et al.,
2021). Briefly, a mixture of 100 µL of luciferin–luciferase
was added to 100 µL of sample according to manufacturer
instructions using the CellTiterGloTM Luminescent Cell Viability
Assay kit (Promega, Fitchburg, WI, United States). Adenosine
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TABLE 2 | Primary antibodies used in immunohistochemistry experiments.

Antibody Host Supplier Code Dilution

a-SMA Rabbit Abcam (Cambridge, United Kingdom) ab124964 1:100

Piezo1 Rabbit Affinity Biosciences LTD (JiangSu, China) DF12083 1:100

Piezo2 Rabbit Alomone Labs (Jerusalem, Israle) APC-090 1:100

TRPA1 Rabbit HUABIO (HangZhou, China) ER1803-91 1:100

TRPM8 Rabbit Novus Biologicals (Littleton, CO, United States) NBP1-97311 1:100

TRPV1 Rabbit Novus Biologicals (Littleton, CO, United States) NB100-1617 1:100

TRPV2 Rabbit Sigma-Aldrich (Munich, Germany) SAB1101376 1:100

TRPV4 Rabbit Novus Biologicals (Littleton, CO, United States) NBP2-41262 1:100

Vim Mouse Invitrogen (Califonia, United States) MA1-06908 1:100

triphosphate detection was evaluated using the GloMaxTM 20/20
luminometer (Promega).

Single Cell Mechanical Stimulation
We referred Neuhaus et al. (2020) for single cell mechanical
stimulation. Briefly, a motorized MP-285 Micromanipulator
(Sutter Instruments, Novato, CA, United States) was used
for controlling glass micropipette movement. Single cell was
mechanically stimulated by deflection of the plasma membrane
using a glass micropipette with a fine closed and rounded tip
(about 2 µm). The micropipette was lowered in steps of 1 µm
to induce the membrane deflection.

Statistical Analyses
Data are the mean ± SEM. Significance was tested on raw
data using a paired or unpaired t-test. ExcelTM (Microsoft,
Redmond, WA, United States) and Prism 8.0.2 (GraphPad, San
Diego, CA, United States) were used for analyses. P < 0.05 was
considered significant.

RESULTS

Cultured Interstitial Cells Have the
Phenotype of Vim+ αSMA+

Most of our experiments were conducted on cultured ICs, so their
identity was first examined using the commonly used IC markers
Vim and α-SMA. Immuno-cytochemical imaging demonstrated
that > 95% of cultured ICs were Vim+, and >90% Vim + ICs
were α-SMA+ (Figures 1A–C). An immunohistochemistry-
based study (Gevaert et al., 2014) on human bladder tissue
revealed that α-SMA + Vim + ICs were located mainly in the
ULP and packed densely in the sub-urothelial layer (Figure 1A).
α-SMA-ICs were located at the DLP as well as between or within
the detrusor (Figure 1B), which suggested that most of our
cultured ICs were from the ULP. However, we cultured ICs from
the bladder mucosa, so we could not exclude the presence of
DLP-ICs. Thus, in the following sections, we describe them as
“LP-ICs.”

In agreement with the results of a previous study (Neuhaus
et al., 2020), ∼75% of cultured LP-ICs exhibited spontaneous
Ca2+ activity (Supplementary Figure 2A). Usually, spontaneous
Ca2+ activity was present ≥ 10 min after placement of

cells in the perfusion chamber. ATP (100 µM) application
could elicit a significant increase in [Ca2+]i in these LP-IC
(Supplementary Figure 2B).

mRNA Expression of Transient Receptor
Potential and Piezo1/Piezo2 Channels in
Cultured Lamina Propria-Interstitial Cells
mRNA expression of TRP and Piezo channels was examined by
simple PCR (Figure 2A) or RT-qPCR (Figure 2B). Among all the
channels examined, the relative expression of TRPA1 and TRPV2
was the highest, Piezo1, TRPM8, and TRPV4 was moderate,
whereas that of Piezo2 and TRPV1 was the lowest (Figure 2B).

Cellular Expression of Transient
Receptor Potential and Piezo1/Piezo2
Channels in Cultured Lamina
Propria-Interstitial Cells
Protein expression of TRP and Piezo1/Piezo2 channels in
cultured ICs was measured using immunocytochemistry.
Prominent staining was observed for all examined channels in
cultured ICs (Figures 3A–G).

Functional Expression of Transient
Receptor Potential and Piezo1/Piezo2
Channels in Cultured Lamina
Propria-Interstitial Cells
All the examined channels were highly permeable to Ca2+

(Vanneste et al., 2021), so their functional expression in cultured
ICs was examined with Ca2+ imaging (Figure 4). Each agonist
at its saturated concentration was applied before the presence
of spontaneous Ca2+ activity. A specific agonist of the TRPV4
channel, GSK (500 nM), evoked a [Ca2+]i increase in 89.3%
of ICs (n = 700 cells from 13 coverslips), and this effect was
blocked with pretreatment of HC-067047 (1 µM), a specific
antagonist of TRPV4. Yoda 1 (30 µM), a specific agonist of Piezo1
channels, evoked a significant increase in [Ca2+]i in 71.4% of ICs
(n = 560 cells from 12 coverslips), and this effect was significantly
blocked with pretreatment with the Piezo1-specific antagonist
DooKu1 (10 µM). The TRPA1 agonist AITC (100 µM) evoked
an increase in [Ca2+]i in 65.5% of ICs (n = 598 cells from 15
coverslips), and this effect was blocked with pretreatment by
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FIGURE 1 | Confocal immunofluorescence for Vim (red) and α-SMA (green) showing ULP-ICs and cultured ICs having the phenotype of Vim+ α-SMA+. (A,B)
Immunofluorescence of the bladder wall showing Vim+ (red) ICs distributed in the ULP [(Aa), densely packed cells immediately beneath the urothelium], DLP [(Ba),
loosely distributed between the ULP and detrusor] as well within or between the detrusor muscle (Ba). Vim+ staining is also seen in endothelial cells of blood vessels
(V). α-SMA+ (green) staining is present on ULP-ICs (Ab) and the detrusor muscle [SM, (Bb)] but not on DLP-ICs or detrusor-ICs (Bb). Perivascular smooth muscle
also expresses α-SMA. Co-expression of Vim and α-SMA is shown in merged images (Ac and Bc). (Ca–Cc) Immunofluorescence of Vim and α-SMA in cultured
LP-ICs showing most of the Vim+ ICs are α-SMA+. DLP: deep lamina propria; ULP: upper lamina propria; U: urothelium; V: vessels; SM: smooth muscle. Dashed
line indicates the transition between the ULP and DLP.

the TRPA1-specific antagonist HC030031 (30 µM). A specific
agonist of TRPV2, cannabidiol (10 µM), elicited an increase
in [Ca2+]i in 56.4% of ICs (n = 672 cells from 15 coverslips),
and this effect was blocked significantly by pretreatment with
Tranilast (10 µM), a TRPV2-specific antagonist. However, the
TRPV1 agonist capsaicin (10 µM) and TRPM8 agonist methanol
(100 µM) did not evoke a significant increase in [Ca2+]i. There
is no commercially available agonist for Piezo2, so its functional
expression could not be investigated.

Next, we compared the functional expression of the channels
mentioned above in cultured ICs and cultured urothelial cells
under identical recording conditions. Unexpectedly, only the
TRPV4 agonist GSK (500 nM) evoked a significant increase in
[Ca2+]i in human urothelial cells, and responses were not found
for agonists of the other channels (Supplementary Figure 3).

Agonists for Transient Receptor
Potential and Piezo1 Channels Evoked
Adenosine Triphosphate Release From
Lamina Propria-Interstitial Cells
Adenosine triphosphate (ATP) release in cultured ICs from
pig bladders by hypotonic stimulation has been demonstrated
(Cheng et al., 2011). We postulated that agonists of TRP and
Piezo1 channels may elicit ATP release from LP-ICs. To test this
possibility, the ATP concentration in the perfusate after agonist
stimulation was measured. As expected, a significant increase in
the ATP concentration was observed after application of GSK
(500 nM), Yoda1 (30 µM), AITC (100 µM) and cannabidiol
(10 µM) compared with that before application (Figures 5A–
D). There was no significant change in the ATP concentration in
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FIGURE 2 | mRNA expression of TRP and Piezo1/Piezo2 channels in cultured LP-ICs. Total RNA was extracted from cultured LP-ICs and RT-PCR (A) or RT-qPCR
(B) was conducted. (A) Typical images demonstrating that Piezo1, Piezo2, TRPM8, TRPA1, TRPV1, TRPV4 and TRPV2 channels are expressed in LP-ICs.
(B) Relative mRNA expression of TRP and Piezo channels to that of beta-actin. Relative mRNA expression of TRPA1 and TRPV2 are the highest, and that of Piezo1,
TRPV4 and TRPM8 are moderate. Summary data are the average from five experiments.

FIGURE 3 | Immunofluorescence for Vim (red) and TRP or Piezo channels (green) in cultured LP-ICs. Double staining reveals the protein expression of TRPV4 (A),
piezo1 (B), TRPA1 (C), TRPV2 (D), TRPV1 (E), TRPM8 (F) and Piezo2 (G) in most of the Vim+ LP-ICs. The nucleus marker (DAPI) is stained in blue.
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FIGURE 4 | Agonists specific for TRP and Piezo1 channels elicit an [Ca2+]i increase in cultured LP-ICs. Left columns are typical traces showing application of the
TRPV4 agonist GSK1016790A (GSK, 500 nM), Piezo1 agonist Yoda 1 (30 µM), TRPA1 agonist AITC (100 µM) and TRPV2 agonist cannabidiol (CBD, 10 µM) to elicit
a remarkable increase in [Ca2+]i, respectively. The TRPV1 agonist capsaicin (10 µM) and TRPM8 agonist methanol (100 µM) did not evoke a significant increase in
[Ca2+]i. Agonists were applied for 30 s to 50 s. Middle columns are typical traces demonstrating that an increase in [Ca2+]i induced by agonists of TRPV4, Piezo1,
TRPA1 and TRPV2 was blocked by pretreatment with the corresponding antagonist. To avoid desensitization impacts, antagonists were applied in different
coverslips with agonist experiments. Right columns are summary data for the blocking effects of antagonists. The number above each bar indicates the cell number.
***P < 0.001.

coverslips without agonist stimulation, or after stimulation with
capsaicin or methanol.

Inhibition of TRPV2, TRPV4, Piezo1
Channels Reduced Stretch Induced
Increase in [Ca2+]i
Upper lamina propria (ULP-ICs) have been shown to have
mechanical sensitivity, and mechanical stimuli such as stretch,
shear stress, or hypotonicity, can evoke an increase in [Ca2+]i.
In order to examine the involvement of above functional active
TRPA1, TRPV2, TRPV4 and Piezo1 in mechanical responses
of LP-ICs, the impacts of these channel antagonists on stretch
(applied via a glass micropipette) induced [Ca2+]i increase
was investigated. TRPV2 antagonist (Tranilast, 10 µM), TRPV4
antagonist (HC-067047, 1 µM) and Piezo1 antagonist (DooKu1,
10 µM) reduced the stretch induced [Ca2+]i increase by 75%,
57.7%, and 51.2%, respectively (Figures 6A,B). TRPA1 antagonist
(HC030031, 30 µM) has no effect on stretch evoked response.

Whereas it could reduce H2O2 (500 µM) induced [Ca2+]i
increase (Figures 6C,D).

DISCUSSION

We measured expression of TRPA1, TRPV1, TRPV2, TRPV4,
TRPM8, and Piezo1/Piezo2 channels in human-bladder LP-ICs at
mRNA, protein, and functional levels. To the author’s knowledge,
this is the first study demonstrating the functional expression of
TRPA1, TRPV2, TRPV4, and Piezo1 channels in human-bladder
LP-ICs. Most importantly, activation of these channels resulted in
ATP release from LP-ICs. Our observation suggests that LP-ICs
could sense mechanical and chemical stimuli via these sensory
channels, and then impact the activity of surrounding urothelial
cells or nerve endings in a paracrine fashion. Our results provide
further evidence for the active role of LP-ICs in the processing of
sensory signals in the bladder mucosa.

In addition to ICs or stromal cells, bladder ICs have been
called ICC, ICC-like, myofibroblast-like, fibroblast-like cells
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FIGURE 5 | Agonists of TRP (A1, V2, and V4) and Piezo1 channels elicit ATP release from cultured LP-ICs. Samples of perfusate were collected 2 min before (base)
and immediately after stimulation with GSK (500 nM) (A), Yoda-1 (30 µM) (B), AITC (100 µM) (C) and CBD (10 µM) (D), and the ATP concentration in the perfusate
was measured. The data for each figure is the average from 5 to 7 coverslips. *P < 0.05; **P < 0.01; ***p < 0.001.

(Koh et al., 2018; Vannucchi and Traini, 2018), and telocytes
(Vannucchi and Traini, 2018). This heterogeneity in terminology
leads to considerable confusion between research teams working
in this area. Nevertheless, ICs termed differently have a common
property: positive staining with the broad mesenchymal marker
Vim. Thus, Vim + cells were identified as ICs and the common
term ICs was adopted in our study.

Two populations of ICs from the human bladder have been
identified: α-SMA + /Vim + /PDGFRα + /TRPA1 + in the
ULP, and α-SMA-/Vim + /PDGFRα + /TRPA1 + in the DLP
and detrusor muscle (Monaghan et al., 2012; Gevaert et al.,
2014; Steiner et al., 2018). Thus, α-SMA is the key marker to
differentiate ULP-ICs from DLP-ICs. In agreement with this
concept, αSMA + ICs were located mainly in the ULP of the
human bladder wall (Figure 1B). For our cultured LP-ICs, >90%
were α-SMA+, which suggests that cultured ICs were mainly
from the ULP. The predominant population in cultured ICs
was ULP-ICs, which could have been because DLP-ICs account
for a minority of the LP-IC population in the human bladder
(Figure 1B). α-SMA- cultured ICs (∼10% of the total) might
be from the DLP.

For TRPV1 and TRPM8 expression, there is a disparity
between the immunofluorescence staining (Figure 3) and the
functional data (Figure 4). The lack of responses to capsaicin and
menthol in LP-ICs (Figure 4) is in contrasts to the expression

of TRPM8 and TRPV1 demonstrated by immunocytochemistry
or RT-qPCR (Figure 2). Lamina propria may mimic urothelial
cells that TRPV1 or TRPM8 expressions were demonstrated at
mRNA level, but no functional expressions were found (Xu et al.,
2009; Everaerts et al., 2010; Shabir et al., 2013). The reasons for
the absence of capsaicin and menthol response in LP-ICs is not
clear for us, probably because the mRNA expression level of
TRPV1and TRPM8 are relatively low.

TRPA1-immunoactivity has been demonstrated in the bladder
ICs of humans, guinea pigs, and pigs (Steiner et al., 2018). We
demonstrated TRPA1 expression in human LP-ICs at mRNA and
protein levels (Figures 2, 3). Furthermore, TRPA1 functional
expression was found in 65.5% of LP-ICs in our study (Figure 4).
Initially, TRPA1 was characterized as a noxious cold receptor.
Subsequently, TRPA1 was identified as an important chemical
sensor to painful or potentially harmful stimuli (Andersson,
2019). Thus, TRPA1 channels in LP-ICs may have an important
role as sensors of toxic and irritant substances produced in
bladder wall or pass from urine into the bladder wall if
the urothelial barrier is disrupted during bladder infection
or interstitial cystitis. In support of this idea, we found that
H2O2, the product of oxidative stress (ROS), can induce an
increase in [Ca2+]i in LP-ICs, and this effect could be inhibited
by pretreatment of TRPA1 antagonist (HC030031,30 µM;
Figures 6C,D).
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FIGURE 6 | Antagonists of TRP (V2 and V4 but not A1) and Piezo1 channels inhibit stretch induced increase in [Ca2+]i in cultured LP-ICs. (A), Typical traces
demonstrating that pretreatment with the antagonist of TRPV4 (a, HC067047, 1 µM), Piezo1(b, Dooku1, 10 µM), and TRPV2 (c, TRA, 10 µM) but not TRPA1 (d,
HC030031, 30 µM) blocked stretch induced increase in [Ca2+]i. Inset indicates a cell was subjected to a step of 1 µm movement of a stimulation glass
micropipette, and a fluorescence signal change was detected (indicated by a arrowhead). (B), Summary data for the blocking effects of the antagonists. (C), Typical
traces showing that H2O2 (500 µM) induced an increase in [Ca2+]i, which was blocked by pretreatment with TRPA1 antagonist. (D), Summary data for the blocking
effects of TRPA1 antagonist. n above each bar indicates the cell number examined. ***p < 0.001.

TRPV2, TRPV4, and Piezo1 are mechanical or stretch sensors
(Andersson, 2019; Jiang et al., 2021). In our study, functional
expression of these channels was found in most human LP-
ICs. Most importantly, activation of these channels by their
agonists promoted ATP release in LP-ICs. Studies have shown
that ULP-ICs express the Cx43 protein and form gap junctions,
thus behaving as a functional syncytium to propagate chemical or
electrical signals (Fry and Vahabi, 2016). This ULP-IC functional
network has also been proposed to act as a stretch receptor
for the perception of local or bladder-wall distension (Wiseman
et al., 2003; Vannucchi and Traini, 2018). In support of this
notion, sub-urothelial ICs have been shown to have mechanical
sensitivity, and that mechanical stimuli (e.g., stretch, shear
stress, hypotonicity) induce an increase in [Ca2+]i (Neuhaus
et al., 2020). Our study further showed that stretch evoked
intracellular Ca2+ increase could be inhibited by the antagonist of
TRPV2, TRPV4, and Piezo1, respectively (Figure 6). This finding
provides direct evidence that TRPV2, TRPV4, and Piezo1 may
be the stretch sensors for ULP-ICs perceiving local or bladder
filling-induced wall stretching.

Another important finding of our study is that activation of
TRPA1, TRPV2, TRPV4, and Piezo1 channels by their agonists
could elicit ATP release from LP-ICs. Bladder filling-induced
ATP release from urothelial cells activating P2X3 receptors
of sensory afferents has been considered the key underlying
mechanism for generation of a bladder-filling sensation (Yu
and de Groat, 2008). Given the close contact of ULP-ICs with

sub-urothelial sensory nerves (Wiseman et al., 2003), we propose
that ATP released from ULP-ICs may also have an important role
in sensory afferent activation during bladder-filling. ULP-ICs are
located immediately underneath urothelial cells, and urothelial
cells and ICs are responsive to ATP (Supplementary Figure 2B).
Thus, bidirectional communications between the urothelium and
ULP-ICs may occur via ATP, and the two elements may form
a stage for amplification of sensory signals and detection of
bladder-filling (Fry et al., 2007).

In addition to the paracrine fashion (via ATP release)
discussed above, the modulating effects of ULP-ICs on afferent
activity in the bladder may also result from the mechanically
contracting and stimulating impacts on sensory afferents. In
the present study and previous studies (Monaghan et al., 2012;
Gevaert et al., 2014; Steiner et al., 2018), ULP-ICs were found to
contain the contracting element α-SMA. ULP-ICs will contract
if [Ca2+]i is increased in response to chemical or mechanical
stimuli and, finally, alter gain of the sensory pathway.

Under identical recording conditions to that of LP-ICs,
only TRPV4 was functionally expressed in our cultured human
urothelial cells. This finding is consistent with other studies
showing TRPV4 (but not TRPV1) being functionally expressed
on human (Shabir et al., 2013), mouse (Everaerts et al., 2010)
and guinea pig (Xu et al., 2009) urothelial cells. No functional
expression of TRPV1 in human urothelial cells may suggest that
capsaicin effects observed on human bladder may result from
its action (activation or desensitization) on TRPV1 channels
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in primary sensory afferents (Fowler et al., 1992). However,
expression of TRPV2 and Piezo1 channels in urothelial cells may
have a species difference because functional expression of TRPV2
and Piezo1 are found in urothelial cells in mice (Everaerts et al.,
2010) and rats (data not shown). Only TRPV4 is functionally
expressed in human urothelial cells, which is in stark contrast to
LP-ICs, in which TRPA1, TRPV2, TRPV4 and Piezo1 channels
are functionally expressed. Given the important role of these
channels in the sensing of chemical and mechanical stimuli, we
propose that the role of the network of ULP-ICs may be even
more important than that of urothelial cells in the perception of
chemical or mechanical signals in the bladder mucosa.

In summary, we found that human suburothelial ICs
functionally express TRPA1, TRPV2, TRPV4 and Piezo1
channels, and release ATP when these channels are activated.
Our study suggests that LP-ICs can perceive stretch or chemical
stimuli in the bladder LP via activation of TRPA1, TRPV2,
TRPV4, and Piezo1 channels. Bidirectional communications may
be present between LP-ICs and surrounding urothelial or sensory
afferents in a paracrine manner. Given the recognized role of the
urothelium in sensory function of the bladder, LP-ICs may work
together with urothelial cells for perception and transduction of
mechanical or chemical signals in human-bladder mucosa.
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