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The use of psychostimulants and alcohol disrupts blood-brain barrier (BBB) integrity,
resulting in alterations to cellular function, and contributes to neurotoxicity. The BBB is
the critical boundary of the central nervous system (CNS) where it maintains intracellular
homeostasis and facilitates communication with the peripheral circulation. The BBB
is regulated by tight junction (TJ) proteins that closely interact with endothelial cells
(EC). The complex TJ protein network consists of transmembrane proteins, including
claudins, occludins, and junction adhesion molecules (JAM), as well as cytoskeleton
connected scaffolding proteins, zonula occludentes (ZO-1, 2, and 3). The use of
psychostimulants and alcohol is known to affect the CNS and is implicated in
various neurological disorders through neurotoxicity that partly results from increased
BBB permeability. The present mini review primarily focuses on BBB structure and
permeability. Moreover, we assess TJ protein and cytoskeletal changes induced by
cocaine, methamphetamine, morphine, heroin, nicotine, and alcohol. These changes
promote glial activation, enzyme potentiation, and BBB remodeling, which affect
neuroinflammatory pathways. Although the effect of drugs of abuse on BBB integrity
and the underlying mechanisms are well studied, the present review enhances the
understanding of the underlying mechanisms through which substance abuse disorders
cause BBB dysfunction.

Keywords: blood-brain barrier, cocaine, methamphetamine, morphine, heroin, nicotine

INTRODUCTION

The blood-brain barrier (BBB) is formed by an endothelial cell (EC) monolayer between the
blood and central nervous system (CNS) that contributes to maintaining structural and functional
homeostasis in the brain. The BBB structure interacts with perivascular pericytes, microglial
cells, astrocytes, and neurons that, together, form the neurovascular units (Abbott et al., 2010;
Obermeier et al., 2013; Chow and Gu, 2015; Banks, 2016). Notably, BBB permeability is –in part- a
function of pericyte-regulated endothelial transcytosis. The BBB is formed by an EC network rigidly
connected by complex junction systems comprised of smaller trans-membrane tight junction
(TJ) proteins, including junction adhesion molecules (JAM), endothelial cell-selective adhesion
molecules, occludins, and claudins (Ballabh et al., 2004; Van Itallie and Anderson, 2014). This
creates a boundary between the CNS and peripheral circulation for regulating blood-CNS exchange
(Kousik et al., 2012).
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The BBB is critical to the maintenance of brain homeostasis
as it regulates the entry of macromolecules, ions, and
neurotransmitters from the blood to the brain (Abbott et al.,
2010; Lippmann et al., 2013; Wilhelm and Krizbai, 2014; Erickson
and Banks, 2018). Notably, the BBB limits the entry of neurotoxic
substances from the periphery and contributes to maintenance
of a stable microenvironment for optimal neuronal function to
prevent critical CNS damage (Abbott et al., 2010). This highly
selective permeable barrier allows passive diffusion of certain
gases, water, and lipid-soluble molecules, which is necessary for
efficient neural function (Bellettato and Scarpa, 2018). Recent
research has found that drugs of abuse, including cocaine,
methamphetamine (METH), morphine, heroin, nicotine, and
alcohol, cause BBB dysfunction by altering TJ formation and
protein expression (Hawkins and Davis, 2005; Abbott et al.,
2006). The concentration and distribution of a drug regulate its
passage (Pardridge, 2012).

Globally, studies have shown that approximately 240 million
people are alcohol-dependent, more than one billion are smokers,
and roughly 15 million are illicit drug users. Substance use
disorder is either directly or indirectly responsible for 11.8
million annual deaths; moreover, the use of different drugs varies
across geographical locations. In 2017, 70,237 people in the USA
died from drug overdoses (Kariisa et al., 2019). The National
Survey on Drug Use and Health estimated that approximately 20
million Americans have used illicit drugs within the past month,
which is expected to reach 9.2% of the United States population.
Moreover, there are significant gender-based differences in the
initiation of drug usage, as well as neurotransmitter systems
and neural circuitries, among individuals with substance use
disorders. Individual differences in addiction behaviors depend
on several factors, including the method of drug administration,
sociocultural factors, genetics, personality traits, and several
biological processes (Becker et al., 2017). Furthermore, preclinical
studies have shown that females often show higher responsivity to
drugs compared to males.

The menstrual cycle and estrogen are essential for treatment
outcome in female drug users. Specifically, withdrawal symptom
severity may differ between the luteal and follicular menstrual
phase (Snively et al., 2000; Terner and de Wit, 2006; Allen
et al., 2010). Males have a higher metabolic rate, which affects
neural mechanisms (Fattore et al., 2014). Regardless, both males
and females exhibit brain changes after using drugs of abuse
(Leyton, 2007; Wegener and Koch, 2009; Willuhn et al., 2010;
Andersen et al., 2012).

Drugs of abuse increase BBB permeability, which, in turn,
increases influx of peripheral toxins into the brain. Consequently,
BBB dysfunction activates neuro-inflammatory pathways by
increasing astro-glial activation, which –in turn- increases BBB
permeability and susceptibility of the CNS to foreign molecules
(Kousik et al., 2012; Ronaldson and Davis, 2015). BBB integrity
loss contributes to changes in transport pathways, disruption
of EC-cell interactions, redistribution, and/or downregulation of
TJ protein modifications (Kousik et al., 2012; Rochfort et al.,
2014; Yang et al., 2019). The present review summarizes the
signaling mechanisms that contribute to drug abuse-related BBB
dysfunction (Figure 1).

COCAINE

The World Drug Report estimates that worldwide, 18.8 million
people used cocaine in 2014 (United Nations Office on Drugs
and Crime, 2016). In 2016, the National Institute on Drug
Abuse reported an age-adjusted cocaine-mediated death rate
of 52.4% in the USA. Cocaine is a highly addictive stimulant
that restricts dopamine and monoamine reuptake through
dopamine transporter (DAT) antagonism (Kousik et al.,
2012). Monoamine oxidase inhibition leads to imbalanced
free-radical production, which generates oxidative stress
and neuroinflammation. Continuous cocaine administration
has been shown to contribute to a 50% increase in BBB
permeability, with a concomitant decrease in trans endothelial
electrical resistance (TEER) due to basement membrane and
neurovascular capillary disruption, due to up-regulated matrix
metalloproteinase (MMP) and tumor necrosis factor (TNF-
α) expression (Sharma et al., 2009). Moreover, TJ protein
loss and alteration, specifically decreased JAM-2 and zonula
occludens-1 (ZO-1) levels, are characteristic of cocaine transit
across the BBB (Dietrich, 2009). CCL2 (C-C motif chemokine
ligand-2) and CCR2 (C-C motif chemokine receptor-2)
expression upregulation has also been reported (Fiala et al.,
2005). Cocaine use affects intercellular junctions and causes
cell ruffling, which contributes to increased permeability and
decreased TEER values across BBB monolayers (Fiala et al., 2005;
Srinivasan et al., 2015).

An alternate pathway for cocaine-induced BBB permeability
alteration involves platelet-derived growth factor (PDGF)
intermediates (Yao et al., 2011). Cocaine binding to sigma
receptors evokes a proteolytic signal cascade that initiates PDGF-
B chain assembly, a fundamental intermediate for increased
membrane permeability that inhibits store-operated calcium
entry (Yao et al., 2011; Cristina Brailoiu et al., 2016; Rosado,
2016). Moreover, cocaine binding to sigma receptors has been
associated with dopamine uptake inhibition and enhanced
dopamine release that neutralizes the effects of antibody reversal
on increased PDGF expression (Kumar, 2011). In rats, chronic
cocaine exposure has been shown to increase BBB permeability in
the hippocampus and striatum, suggesting that the hippocampus
could be affected by glial and cytokine migration without
significant changes in cortical or cerebellar permeability (Riley
et al., 2017). Furthermore, it has been recently revealed that acute
cocaine administration alters BBB permeability and may increase
neurotoxicity in free-moving rats (Barr et al., 2019).

Astrocytes have complex morphologies involving extensive
processes that communicate within the neurovascular unit
and maintain the BBB. Cocaine exposure potentiates aberrant
astroglial responses in cellular and animal models, which
leads to loss of BBB integrity and function (Fattore et al.,
2002; Yang et al., 2016). Other studies have reported cocaine-
induced neuroinflammation and BBB disruption mediated by the
activation of brain microglial cells to secrete several cytokines,
chemokines, and other neurotoxic factors (Yao et al., 2010; Buch
et al., 2012). Cocaine upregulates these inflammatory mediators
and cell adhesion molecules, including intercellular adhesion
molecule-1, vascular cell adhesion molecule, and activated
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FIGURE 1 | Schematic representation showing drug-induced loss of blood brain barrier (BBB) permeability and the associated neurodegeneration. The
neurovascular unit and the BBB are affected by various drugs of abuse, which alter vessel permeability via disruption of tight junction proteins complexes (junction
adhesion molecules, endothelial cell-selective adhesion molecules, occludins, and claudins), transport systems, and intracellular signaling. BBB disruption, which
affects immune cell transmigration and neuroinflammation and contributes to an imbalanced redox system, affects the brain’s microenvironment and homeostasis,
leading to neurotoxicity (Created with Biorender.com).

leukocyte cell adhesion molecule in the BBB endothelium (Fiala
et al., 1998; Yao et al., 2011).

Previous in vitro findings have shown that exposure of
pericytes to cocaine upregulates pro-inflammatory cytokines
[TNF-α, interleukin (IL)-1β, and IL-6] in both intracellular
and extracellular compartments. In addition, cocaine activates
the Src–PDGFR-β–NF-κB pathway, which enhances CXCL10
[chemokine (C-X-C motif) ligand-1] secretion. This causes
increased neuroinflammation in human brain vascular pericytes
(Table 1), which further leads to neurovascular unit disruption
and immune cell transmigration across the BBB (Niu et al., 2019;
Sil et al., 2019).

METH

METH is a highly addictive and illicit psychostimulant and is the
second most widely abused drug in the USA. It adversely affects
brain homeostasis through BBB dysfunction and hyperthermia
(O’Shea et al., 2014). Its high lipophilicity allows for rapid and
comprehensive transmigration across the BBB. METH binding to
the DAT induces reversal transport of norepinephrine, serotonin
(5HT), and dopamine, which causes their excessive release
into the synapse (Kousik et al., 2012). Moreover, it inhibits
monoamine reuptake that leads to post-synaptic cleft stimulation

(Kousik et al., 2012). Chronic METH administration causes
irreversible impairment of serotonin and dopamine transport
into synaptic terminals in various brain regions, especially in
the hippocampus.

Various METH dosing paradigms significantly disturb
endothelial TJ assembly by inducing downregulation,
fragmentation, or redistribution of major TJ proteins, including
claudin-5 and ZO-1, which are mediated by MMP-1 and MMP-9
peptidases. This leads to reduced endothelial barrier tightness
and increased BBB paracellular permeability (Mahajan et al.,
2008; Ramirez et al., 2009; Banerjee et al., 2010; Liu et al.,
2012; Toborek et al., 2013; Sajja et al., 2016; Rubio-Araiz et al.,
2017). Moreover, repeated intravenous METH administration
downregulates TJ proteins, which causes glutathione depletion
and increases endothelial reactive oxygen species (ROS) levels.
This triggers actin polymerization that possibly involves
activation of actin-related protein 2/3 complex or myosin light
chain kinase and its downstream target RhoA (Mahajan et al.,
2008; Ramirez et al., 2009; Banerjee et al., 2010; Park et al.,
2013). In mice, research has shown that METH-induced glucose
transporter and uptake downregulation is an important causative
factor for BBB integrity loss (Abdul Muneer et al., 2011).
Further, METH reduces TJ protein expression, rearranges the
F-actin cytoskeleton, and increases BBB permeability through
Rho-associated protein kinase-dependent pathway activation in
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the frontal lobes and isolated primary microvascular endothelial
cells (Xue et al., 2019).

Other neurotoxicity mechanisms have also been suggested,
including the METH-induced increase in reactive oxidative
stress and ROS levels, which activate myosin light chain protein
kinase, thereby reducing TJ protein expression (Gonçalves et al.,
2010). Additionally, METH-induced TJ protein downregulation
and resulting BBB integrity disruption may involve activation
of NF-κB transcription and pro-inflammatory cytokines (TNF-
α) in BBB endothelial cells (Coelho-Santos et al., 2015; Rom
et al., 2015). METH transit across the BBB damages the
nucleus accumbens shell region and prefrontal cortex and
causes hyperthermia, neuroinflammation, and brain edema
(Kousik et al., 2012). Recent studies have reported METH-
induced pericyte migration via sigma-1 receptor activation,
p53 upregulated modulator of apoptosis expression, and
downstream mitogen-activated protein kinase and Akt/PI3K
pathways in C3H/10T1/2 cells, leading to BBB dysfunction
(Zhang et al., 2017). METH-activated microglia and astrocytes in
the neurovascular unit may promote neurotoxicity and astroglial
reactivity and induces BBB integrity loss (Asanuma et al., 2004;
Dietrich, 2009). In addition, METH increases the expression of
the glial fibrillary acidic protein, σ1 receptors, TNF-α, IL-6, and
IL-8 in mouse and rat astrocytes. This leads to METH-induced
inflammation in microglial cells where increased TNF-α release
can activate BBB endothelium, which increases transmigration of
circulating leukocytes through the leaky BBB (Malaplate-Armand
et al., 2005; Shah et al., 2012; Zhang et al., 2015; Table 1).

MORPHINE

Opioids are widely-used analgesics that bind with opioid and/or
toll-like receptors (TLR) in the CNS (Chaves et al., 2017;
Yang et al., 2018). Transcellular solute and xenobiotic transport
across the BBB is selectively controlled by the local influx
and efflux transporters, including ATP-binding cassette (ABC),
P-glycoprotein (P-gp, ABCB1), breast cancer resistance protein
(ABCG2), multidrug resistance-associated proteins (ABCC)
transporters, and solute carrier transporters (Abbott et al., 2010;
Chaves et al., 2017). Among the four central opioid receptor
families [mu (µ), delta (δ), kappa (κ), and opioid receptor like-
1 (ORL1) receptor], µ-opioid receptors are primarily responsible
for the analgesic effects. Microvascular endothelial cells have high
affinity and specific opiate binding sites that mediate morphine’s
effects on the CNS (Stefano et al., 1995).

Morphine exerts its effects by directly acting on the CNS
with its illicit use leading to tolerance and drug dependence
(Gach et al., 2011). Drug transmigration is essential to
psychological dependence. Morphine alters BBB homeostasis
and permeability through pro-inflammatory cytokine activity,
intracellular calcium release dysregulation, and myosin light
chain protein kinase activation, which results in ROS-mediated
neurotoxicity (Kousik et al., 2012).

P-gp limits the net transport of several foreign substrates
into the brain through active unidirectional efflux. This
transporter regulates foreign-agent pharmacokinetics in the

TABLE 1 | Summary of cocaine- and methamphetamine-induced neurotoxicity
based on their effect on the structural integrity of the blood brain barrier and their
respective molecular pathways.

Drugs Pathways involving in BBB
leakiness-gene/proteins of interest

Effect on BBB

Cocaine Activated leukocyte cell adhesion molecule
(ALCAM)

↑

C-C Motif CheniokineLigand-2 (CCL2) ↑

C-C Motif Chemokine receptor- 2 (CCR2) ↑

CXCL10(eheniokine (C-X-C motif) ligaud-1) ↑

Intercellular adhesion molecule-1 (ICAM-1) ↑

Junction n 1 adhesion molecule 2 (JAM-2) ↓

Matrix metalloproteinase (MMP) ↑

Pro-inflammatory cytokines (TNF-α, IL-l β, and
IL-6)

↑

Src-PDGFR-p-NF-KB ↑

Tumor Necrosis factor-alpha (TNF-α) ↑

Vascular cell adhesion molecule (VCAM), ↑

Zonula occludens-1 (ZO-1) ↓

METH Actin related protein 2/3 (3Arp2/3) complex ↑

Claudin-5 ↓

Glial fibrillary acidic protein (GFAP) ↑

Glucose transporter (GLUT1) ↓

Glutathione (GSH) ↓

Interleukin (IL)-6 ↑

Interleukin (IL)-8 ↑

Matrix metalloproteinase- 9 (MMP-9) ↑

Matrix metalloproteinase-1 (MMP-1) ↑

Nuclear transcription factor- KB (NF-KB) ↑

p53 upregulated modulator of apoptosis
(PUMA)

↑

Reactive oxygen species (ROS) ↑

Rho-associated protein kinase (RhoA ROCK) ↑

Sigma-1 receptor ↑

Tumor Necrosis factor-alpha (TNF- α) ↑

Zonula occludens-1 (ZO-1) ↓

brain by inhibiting or augmenting their movement across the
BBB, which restrains morphine entry into the brain (Tournier
et al., 2011). Moreover, P-gp attenuates morphine-induced
migratory properties and transcriptional effects (Miller, 2010).
Acute morphine treatment inhibits P-gp expression, which
increases morphine uptake in the brain, which modifies the
acute analgesic and locomotive morphine effects and selectively
alters critical transcriptional responses in the nucleus accumbens
(Seleman et al., 2014). This indicates that the transporter
system significantly contributes to mediating BBB integrity and
permeability of carrier mediated transport (Table 2).

HEROIN

There has been a rapid increase in opioid abuse in the USA
with approximately 580 new heroin users every day. Deaths
resulting from opiate overdose, including pain relievers and
heroin, increased by 200% between 2000 and 2014 (Rudd et al.,
2016). Heroin can be reversibly metabolized into morphine; upon
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TABLE 2 | Summary of morphine-, heroin-, nicotine-, and alcohol-induced
neurotoxicity according to their effect on the structural integrity of the BBB and
their respective molecular pathways.

Drugs Pathways involving in BBB
leakiness-gene/proteins of interest

Effect on BBB

Morphine Myosin light chain protein kinases ↑

P-glycoprotein ↓

Reactive oxygen species (ROS) ↑

Heroin Junctional adhesion molecule-2 (JAM-2) ↑

P-glycoprotein ↓

Zonula occludens-1 (ZO-1) ↓

Nicotine Claudin-1 and -5 N.D.

Claudin-3 ↓

Junctional adhesion niolecule-l (JAM-1) ↓

Nitric oxide (NO) ↑

P-glycoprotein ↓

Reactive oxygen species (ROS) ↑

Zonula occludens-1 (ZO-1) ↓

Zonula occludens-2 (ZO-2) N.D.

Alcohol ERK1/2 and p-38 ↑

Matrix metalloproteinase- 9 (MMP-9) ↑

Matrix metalloproteinase-3 (MMP-3) ↑

Reactive oxygen species (ROS) ↑

Toll like receptor- 2 (TLR-2) ↑

Toll like receptor-3 (TLR-3) ↑

Toll like receptor- 4 (TLR-4) ↑

Transient receptor potential cation channel
(TRP7)

↓

selective transmigration across the BBB, heroin is transformed
into morphine and metabolized into 6-monoacetylmorphine (6-
MAM). The superior heroin lipophilicity allows faster transit
across the BBB than morphine (Boix et al., 2013). The
acetylation of both hydroxyl groups while synthesizing heroin
increases its BBB penetration rate by 100-fold, which could
contribute to its high addictive potential (Boix et al., 2013).
These addictive properties are regulated by the µ-opioid
receptor (MOR), which mediates the rewarding effects of heroin.
A recent study reported that 6-MAM has a higher affinity
for µ-opioid receptor G-protein activation than morphine
(Seleman et al., 2014).

Heroin’s effects indirectly involve its metabolites (morphine
and 6-MAM) that act as substrates in P-gp membrane
regulation. Upon heroin transition into the brain, it has a
higher synthesized concentration than morphine. This suggests
that the metabolite is the primary effector of the detrimental
effects of heroin on the BBB. In the extracellular brain fluid,
these metabolites bind and activate MORs, which regulates
crucial neurological automatic processes (Boix et al., 2013). P-gp
inhibition at the BBB acutely disrupts the BBB permeability
and selectivity in the nucleus accumbens (Seleman et al.,
2014). Moreover, increased levels of these metabolites in
the brain downregulate TJ protein expression, especially ZO-
1, which increases BBB permeability. Contrastingly, there
have been reports of increased JAM-2 TJ protein expression
(Seleman et al., 2014; Table 2).

NICOTINE

Nicotine is a stimulant that acts as a nicotinic acetylcholine
receptor agonist. Its high lipophilicity allows for rapid (10–20
s after inhalation) transit across the BBB. Chronic exposure to
nicotine disrupts TJ proteins and results in an ionic imbalance
within the BBB microenvironment. Consequently, this causes
ischemic hypoxia and exacerbates stroke-associated brain edema
and neuronal injury (Paulson et al., 2006; Bradford et al., 2011).
Nicotine exposure alters BBB permeability through TJ protein
modulation. It does not affect ZO-1, 2; claudin-1, -3; or -5
TJ protein expression, however, it disrupts the distribution of
claudin-3 and ZO-1 TJ proteins (Kousik et al., 2012). Moreover,
nicotine-induced BBB impairment has been shown to involve
decreased ZO-1 expression, which affects brain homeostasis
(Hutamekalin et al., 2008). Similarly, static- or flow-based in vitro
BBB model studies have reported tobacco-induced alterations
in TJ protein expression and re-distribution, which increases
intracellular ROS/RNS and the secretory profile of various pro-
inflammatory markers (Hossain et al., 2011; Naik et al., 2014).
This oxidative stress promotes atherosclerotic lesions and injures
biliary epithelial cells (BECs) and TJ proteins via low-density
lipoprotein oxidation enhanced by ROS activity (Kousik et al.,
2012). Moreover, this results in increased transcytotic activity
across the BBB through induced pinocytosis (Kousik et al., 2012).

Direct nicotine binding to nicotinic acetylcholine receptors
on BECs induces acetylcholine-dependent nitric oxide (NO)
release via activation of neurovascular endothelial NO synthase
(Mazzone et al., 2010). Here, increased NO2 enhances vascular
membrane permeability at the BBB. Furthermore, chronic
nicotine administration compromises BBB integrity through TJ
protein loss and alteration (ZO-1, claudin-3, and JAM-1). It
affects regulated BBB transport and receptor systems that are
essential for normal BBB function, as well as decrease the
functional activity of ion transporters (Mazzone et al., 2010).
Nicotine has been shown to decrease TEER and disturb the
BBB transport system, which leads to increased xenobiotic
uptake (Hutamekalin et al., 2008; Manda et al., 2010; Rodriguez-
Gaztelumendi et al., 2011). Nicotine affects the functional activity
of ion transporters, including Na+, K+, 2Cl− cotransporter and
Na+, K+-ATPase on BECs and inhibits P-gp activity in the CNS
(Abbruscato et al., 2004; Paulson et al., 2006; Manda et al., 2010).
Recent studies indicate that the H+/organic cation antiporter
system is involved in blood-to-brain nicotine transport across
BBB endothelial cells TR-BBB13 (Tega et al., 2018; Table 2). The
precipitated ion gradient change induces brain edema, which
further disrupts BBB integrity (Kousik et al., 2012).

ALCOHOL

Alcohol is a widely used recreational drug responsible for 5.3%
of deaths worldwide. In the USA, there are 23 million alcohol
addicts with 88,000 people dying from alcohol use disorder.
Alcohol acts on neurotransmitter receptors, including GABA,
glutamate, and dopamine, with each receptor contributing to
various physiologic effects, with chronic alcohol administration
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increasing tolerance and addiction (Burnett et al., 2016). Further,
occasional alcohol consumption could lead to alcohol use
disorder due to addiction and tolerance (Costin and Miles, 2014).
Regular and excessive alcohol consumption causes brain injury,
white matter loss, reduced brain volume, and neuronal loss
associated with the BBB (Mann et al., 2001; Muneer et al., 2012;
Bjork and Gilman, 2014). Moreover, gray matter loss is positively
correlated with years of alcohol abuse (Fein et al., 2002). Chronic
alcohol abuse induces neuroplastic changes and loss of neural
circuit structure and strength (Mende, 2019).

The brains of individuals with alcohol dependence have
increased proinflammatory cytokines, chemokines, microglial
markers, and inflammasome proteins (He and Crews, 2008;
Crews et al., 2013). Inflammatory cytokine and ROS activation
contributes to BBB integrity disruption in TLR4-knockout mice
(Rubio-Araiz et al., 2017). Further, postmortem alcoholic brains
have shown increased TLR2, TLR3, and TLR4 expression in the
orbitofrontal cortex, which correlates with BBB integrity loss
(Crews et al., 2013). Moreover, they indicate that chronic alcohol
intake increases TJ and neuroinflammatory protein (ERK1/2
and p-38) degradation, which may promote leukocyte brain
infiltration (Rubio-Araiz et al., 2017).

Brain microvascular endothelial cells (BMVEC) are
interconnected with TJ to form a tight monolayer in the BBB.
Exposure of BMVEC to alcohol increases oxidative stress
through myosin light chain and TJ protein phosphorylation.
This leads to decreased TEER and increased leukocyte migration
across the BBB (Haorah et al., 2007). Further, alcohol induces
BBB dysfunction and neuroinflammation through MMP-3/9
activation and angiogenesis (VEGF)-A/VEGFR-2) impairment
in primary endothelial cells in the brain (Muneer et al.,
2012). Ethanol (EtOH) disrupts BBB integrity via endothelial
transient receptor potential (TRP) channels, which affects
the intracellular Ca2+ and Mg2+ dynamics. This increases
endothelial permeability and alters inflammatory responses
(Chang et al., 2018). EtOH-mediated TRPM7 expression
downregulation causes BBB dysfunction and endothelium
integrity loss (Macianskiene et al., 2008; Oh et al., 2012).
Overall, TRP channels are involved in alcohol-mediated BBB
dysfunction (Table 2).

CONCLUSION

The BBB is crucial in drug abuse-mediated neurotoxicity. The
BBB network characteristics are involved in functional restriction

and transport control, as well as maintaining a constant
CNS environment. TJ protein disruption, neuroinflammation,
oxidative stress, and ROS production are fundamental
mechanisms through which drugs alter the BBB structure
and integrity. In adults, the mature CNS lacks substantial
regenerative capacity while terminally differentiated neurons
cannot divide and supplant themselves. Increased cell death
due to neurotoxin entry could lead to a premature disabling
condition. Although there has been previous research on the
effects of drugs of abuse on the BBB, there is a need for
further studies to identify novel therapeutic targets. Awareness
regarding the effect of drugs of abuse on BBB integrity is
paramount due to their toxic effects, which could induce immune
reactions and neurodegeneration. There are current studies on
potential therapeutic targets for preventing this neurotoxicity
and propagation. Detailed knowledge regarding the physiology
of drug abuse-associated BBB dysfunction, with respect to
TJ protein complexes, transport systems, and intracellular
signaling pathways, could allow the determination of effective
therapeutic interventions. Moreover, a deep understanding
of brain mechanisms could improve future prevention and
treatment interventions. Comprehensive research on the
mechanistic aspects of drug abuse-mediated BBB dysfunction
could identify better therapeutic targets. Polysubstance abuse
is among the significant challenges faced by drug abusers.
Since each drug of abuse has a different mechanism of BBB
disruption, understanding the effect of polysubstance abuse
on BBB could allow the evaluation of novel therapeutic
agents and systemic prediction of clinical efficacy. Future
studies should explore means of restoring BBB integrity, which
could extend scientific knowledge and contribute to novel
therapeutic targets.
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