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Abstract
Background: This paper proposes that interoperability across biomedical databases can be
improved by utilizing a repository of Common Data Elements (CDEs), UML model class-attributes
and simple lexical algorithms to facilitate the building domain models. This is examined in the
context of an existing system, the National Cancer Institute (NCI)'s cancer Biomedical Informatics
Grid (caBIG™). The goal is to demonstrate the deployment of open source tools that can be used
to effectively map models and enable the reuse of existing information objects and CDEs in the
development of new models for translational research applications. This effort is intended to help
developers reuse appropriate CDEs to enable interoperability of their systems when developing
within the caBIG™ framework or other frameworks that use metadata repositories.

Results: The Dice (di-grams) and Dynamic algorithms are compared and both algorithms have
similar performance matching UML model class-attributes to CDE class object-property pairs.
With algorithms used, the baselines for automatically finding the matches are reasonable for the
data models examined. It suggests that automatic mapping of UML models and CDEs is feasible
within the caBIG™ framework and potentially any framework that uses a metadata repository.

Conclusion: This work opens up the possibility of using mapping algorithms to reduce cost and
time required to map local data models to a reference data model such as those used within
caBIG™. This effort contributes to facilitating the development of interoperable systems within
caBIG™ as well as other metadata frameworks. Such efforts are critical to address the need to
develop systems to handle enormous amounts of diverse data that can be leveraged from new
biomedical methodologies.

Introduction
There is a data tsunami of genomic, imaging, proteomic
and other high-throughput technologies that is converg-
ing upon the field of biomedical informatics. The task at

hand is to integrate and synthesise this information into
knowledge that can enhance our understanding of biolog-
ical and clinical systems. The difficulties of channelling
such large amounts of data into useful systems often result
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in sophisticated data structures and data models that
strand users on isolated islands of information. Since
these data models are created for specific needs at differ-
ing institutions, these data models can result in the gener-
ation of many heterogeneous data sources and are referred
to as data silos [1-3]. These silos are collected, stored,
managed, and analyzed using different conceptual repre-
sentations of the same or similar underlying scientific
domains. In essence the data tsunami engenders a multi-
plicity of tongues due to the creation of isolated islands of
information.

Given the many data elements that bench and clinical
researchers need to draw on: genomics data, clinical data,
expression array data, SNP array data, proteomics data,
and more yet to be created; the need for interoperable data
sets and systems is becoming paramount. Organizations,
researchers, clinicians and ultimately patients will benefit
by better integration across data sets and systems [1]. The
goal is to enable the interoperability of data and systems
by joining data and analyses between organizations to
increase the size of the data analyzed and the ease with
which research can be replicated. The hope of such inter-
operable systems is that the speed and impact of the
research will be increased.

The purpose of the research presented in this paper is to
explore enhancing a metadata infrastructure, such as the
National Cancer Institute (NCI)'s cancer Biomedical
Informatics Grid (caBIG™), with algorithms that facilitate
the creation of interoperable systems. NCI's caBIG™
framework was selected because it utilizes a metadata
repository and has terminology curators that work with
developers to map models to Common Data Elements
(CDEs) and to maintain the interoperability of the
caBIG™ framework. Consequently, the algorithms' per-
formance with mapping the models can be compared
against the model mappings developed by experts.

Background
Many industry and research projects require some form of
model mapping. Data from one clinic or research facility
will not be readable by another unless they have the same
data model or a method to translate between the two. The
current process to allow such exchanges is costly and time
consuming since it requires resources such as database
specialists or knowledge engineers to communicate and
manually map data elements from one facility to another
or to a reference model. Currently this is done manually
in a labor-intensive and error-prone process without tools
to automate the process [4-6].

This problem promises to worsen in the future as biomed-
ical data rapidly increase due to scientific advancements;
particularly with the innovations made in genetic research

and molecular biology. For example, UniProt, a universal
protein resource that is referenced for many biomedical
research projects, reports having to add many new terms
and database cross-references [7]. This can result in fre-
quent changes to its model. Another example of changing
vocabulary is the NCI vocabulary services that are released
monthly to keep information up to date [8]. Manual iden-
tification of equivalent model elements consumes time
and resources, and may often be the rate-limiting techno-
logical step in integrating disparate data sources [9].

Mapping of models is also common in the area of control-
led medical vocabularies. Several controlled medical
vocabularies (CMVs) are currently available. However,
they usually cover diverse domains with different scopes
and objectives. The absence of an accepted "standard"
method for representing medical concepts, and the need
to translate clinical data to existent CMVs has made auto-
mated vocabulary mapping an active area of medical
informatics research [10]. An accepted method is to map
vocabularies to a reference terminology. This eliminates
the combinatorial explosion of mappings that would be
required otherwise [11]. While the use of a reference ter-
minology is helpful in reducing the cost of mappings by
reducing the number of mappings, it is still expensive to
map a local model to a reference model. This requires the
selection of appropriate metadata components called
Common Data Elements (CDEs) that are equivalent
between resources that are destined to interoperate.

caBIG™
caBIG™ https://cabig.nci.nih.gov/ is designed as an open
source infrastructure that connects resources to enable the
sharing of data and tools for cancer research. The NCI
launched caBIG™ in 2004 and it includes the develop-
ment of standards, policies, common applications, and
middleware infrastructure to enable more effective shar-
ing of data and research tools. While caBIG™ is designed
to provide the framework around use-cases in cancer
research, this effort can benefit the entire biomedical
informatics community where large-scale data integration
becomes a necessity.

The systems developed in the caBIG™ initiative are con-
structed using a model driven architecture (MDA; http://
www.omg.org/mda/). The MDA approach is used for the
construction of well-specified application program inter-
faces (API) that the grid middleware [4,5] uses to pass
semantically and syntactically meaningful data. All data
transmitted by the grid is transformed to objects that are
derived from models expressed in the Unified Modelling
Language (UML) [12,13].

UML allows developers of resources such as data services
and analytical services to describe their services in an
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abstract manner while constructing meaningful APIs that
the grid middleware uses to pass data. UML modelling is
used to specify the classes and attributes of the system (See
Figure 1).

For systems to interoperate, it is necessary for these two
components of the model (i.e., classes and attributes) to
be harmonized with identical components in other mod-
els across the systems. This paper is examining using lexi-
cal matching algorithms to identify the classes and
attributes that are common between domain models by
mapping to a reference CDE repository.

Harmonization scaling problem
Currently developers go through a manual process of har-
monizing new service elements (e.g., UML class-
attributes) with those stored in the NCI's Cancer Data
Standards Resource (caDSR; metadata repository) in order
to achieve interoperability certification of a resource. The
caDSR is NCI's implementation of the metadata standard
ISO11179 which consists of metadata binding object

classes and properties within a data element to controlled
terminologies in NCI's Enterprise Vocabulary Service
(EVS). Since the space of models within caBIG™ is com-
plex and getting more complex (See Figure 2 for a small
subset of the space), the need for tooling to navigate the
model space is urgent. In caBIG™, UML models are bound
to the components of a CDE with UML classes being
bound to object classes, UML attributes being bound to
properties and UML data types being bound to value
domains (See Figure 3). Consequently, the process of
mapping UML models to CDEs in the caDSR is arduous
and currently requires an NCI curator (a trained terminol-
ogist who is familiar with the NCI model) to work one-
on-one with the developer of the new data model to
develop the mapping between the UML model class-
attributes and the CDEs.

A number of UML models have already gone through this
manual mapping processes to CDEs. The difficulties of
CDE mapping become even greater with the increasing
amount of CDEs available within caDSR and the size of

caBIG™ UML modelFigure 1
caBIG™ UML model. This is an example of a portion of a UML model of a system available in caBIG™. The model describes 
the classes and attributes of the system and information about function and relationships. Note the class Race has attributes id 
(a string identifier of a race) and raceDesc (a string description of a race). This Race class is mapped to a CDE within caBIG™ 
to give a semantic definition and allow reuse of this type of data element.
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this space is getting larger with every caBIG™ data service
or application that is developed.

Proposed solution to improve scalability
The goal is to mitigate the work involved in reusing CDEs
through the reduction of the information an expert is
required to examine in order to achieve interoperability
and harmonization. In particular, this paper discusses a
baseline comparison of two algorithms (di-grams and
dynamic programming methodologies) used to map bio-
medical data models into caBIG™'s CDE space. The ques-
tion is how close simple lexical algorithms can get to the
selection of the appropriate mappings.

The ability of the two algorithms to select the appropriate
mapping is also compare across two conditions: Per
Project and Combined Project. In practice, developers
constrain their UML model comparisons to similar mod-
els. This restricted model comparison, referred to as the
Per Project condition, restricts the matching of UML class/

attribute pairs to the CDEs within the same model space.
The Combined Project condition is searching the entire
model space. These comparisons are used to explore the
feasibility of deploying an open source tool that can be
used to map models and enable the reuse of existing infor-
mation objects and CDEs in the development of new
models for translational research applications.

Methods
In order to map the UML model class-attributes to CDEs,
the UML models and the CDEs must be converted to a for-
mat that the lexical algorithms can process (Formatting
Data Phase). After the data are formatted, data are submit-
ted to each algorithm: Dice's coefficient with di-grams
[14] and Dynamic programming using Smith-Waterman's
algorithm [15] The algorithms produce similarity ratings
that are used to find the best match between the UML
model class-attributes to CDE class object-property pairs.
To evaluate the goodness of the match, the algorithms'
matches are compared to a "Gold Standard" – the matches

Visual representation of several caBIG™ UML modelsFigure 2
Visual representation of several caBIG™ UML models. An example of several UML models available in caBIG™ for 
reuse.
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established through NCI caBIG™ curators. We compare
application mappings already in use and currently stored
as metadata in the caBIG™ infrastructure by extracting all
application UML models and their corresponding CDEs.

UML model class-attribute data
We tested the algorithms ability to map UML model class-
attributes data available from 66 UML models (referred to
as projects; see Table 1) to CDE class object-property pairs.
In addition, only caBIG™ CDEs that are considered
"Released CDE" are used in the mapping. "Released
CDEs" are CDEs that have gone through a series of reviews
within caBIG™.

Per project
Each of the 66 UML projects was mapped to a restricted
collection of CDEs to which it uses (i.e., restricted to its
own model space). This restriction of the search space to
corresponding CDEs is reasonable since typically a devel-
oper will compare their UML models/projects with simi-

lar projects within caBIG™. This condition can be viewed
as a curator guided algorithm to mapping models. It is
possible to reduce the curator guidance by building an
ontology for the models/projects.

Combined project
Each of the 66 UML project was mapped to the combined
set of all the CDEs in the 66 UML models. This condition
is more computationally difficult (larger search space)
and can be viewed as an automated approach to mapping
models.

Matching UML model class-attributes to CDEs
For both algorithms, the process of matching UML model
class-attributes to CDE class object-property pairs consists
of two phases: formatting the data and mapping via simi-
larity measures.

UML and ISO/IEC11179Figure 3
UML and ISO/IEC11179. The mapping of UML elements to the ISO 11179 Common Data Elements (CDE) within the 
caDSR. UML Class maps to Object Class, UML Attribute to Property, and UML Data Type to Property. Object Class and 
Property components of the Data Element Concept are then mapped to Terminology concepts stored in EVS.
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Formatting data phase
The formatting data phase extracts the UML class-attribute
pair names and tokenizes them into text strings of words.
UML classes and attributes are converted from program-
ming notation to space delimited words. For example the
UML attribute "raceDescription" would be converted to
"race description."

Next the UMLS Lexical tools lvg2007 API is used to nor-
malize the UML class attribute pairs and the Object Class
Property pair of the CDE http://lexsrv3.nlm.nih.gov/SPE
CIALIST/Projects/lvg/current/index.html. The normaliza-
tion process includes removal of genitives, replacement of
punctuation with spaces, removal of stop words, lower-
casing words, un-inflection of each word, and word order
sorting. This formatting data process produces tokenized
strings of UML class/attribute pairs that can be matched to
their corresponding object class/property pairs (See Figure
3). Note that only names of the classes and attributes
along with the names of the object classes and properties
are used.

Mapping phase
The mapping phase is where Dynamic and Dice's algo-
rithms are applied. The algorithms differ by the similarity
measures. For each algorithm, the mapping consists of
calculating all the similarity measures between the UML
model class-attributes and the CDEs. The similarity scores
are rank ordered with the highest similarity scores listed
first as likely candidates for the mapping. This is listed on
the graphs as percentage of correctly matched CDEs
within a given ranking.

Dice algorithm
Dice's similarity coefficient is a similarity score to measure
the lexical similarity [14]. This algorithm requires no
knowledge about word formation or semantics and pro-
vides resilience to noise (such as abbreviations and mis-
spellings) [10,15]. The algorithm breaks the strings into
two letter pairs called di-grams (or N-grams where n
equals 2) and then uses Dice's similarity coefficient as fol-
lows:

Dfc = (M × 2) ÷ (S + T) where:

M = number of common elements

S = number of elements from source

T = number of elements from target

Dynamic algorithm
The Dynamic algorithm is inspired by DNA-sequencing
algorithms such as Smith-Waterman [15], a popular edit-
distance algorithm. The power of the algorithm comes

Table 1: caBIG™ projects/application sizes – 66 UML projects. 
caBIG™ enabled projects/models used in this research with their 
corresponding UML element size (class-attribute pairs)

Project name Size

Bioconductor 1 75
BiospecimenCoreResource 1 286
BRIDG 1 343
C3PR 1.1 58
C3PR 2 185
CaAERS 1 308
CaArray 2 440
CaArray_1.1 318
caBIO 4 302
CaElmir 1 174
caFE Server 2 80
caGrid 1 14
caIntegrator 2 271
caIntegrator 2.1 328
Caisis 3.5 67
caNano 1 150
caNanoLab 621
Cancer Models Database 2.0 242
Cancer Models Database 2.1 272
Cancer Molecular Pages 1 152
CAP Cancer Checklists 1 194
caTIES 1.0 38
caTIES 2.0 219
caTISSUE CAE 1.2 284
caTISSUE Core 1 287
caTissue_Core 1.1 327
caTissue_Core_1_2 329
caTissue_Core_caArray 1 329
caTRIP Annotation Engine 1 63
CaTRIP Tumor Registry 1 114
CDC NCPHI Proof of Concept .1 9
CGWB 1 91
ChemBank 1 19
Clinical Trials Lab Model 1 84
Clinical Trials Object Data System (CTODS) .53 434
CoCaNUT 1 244
CTMS Metadata Project 1 51
DemoService 1 4
DSD 1 31
GeneConnect 1 59
GenePattern 1 88
Generic Image 1 39
Genomic Identifiers 1 12
geworkbench 1 80
GoMiner 1 69
Grid-enablement of Protein Information Resource (PIR) 1.1 183
Grid-enablement of Protein Information Resource (PIR) 1.2 200
LabKey CPAS Client API 2.1 364
LexBIG 2.2 206
MicroArray Gene Expression Object Model (Mage-OM) 1 140
NCI-60 Drug 1 124
NCI-60 SKY 1 109
NCIA_Model 3 110
NHLBI 1 772
Organism Identification 1 10
PathwayInteractionDatabase 1 59
Patient Study Calendar 2 67
Potential CDEs for Reuse 1 185
ProteomicsLIMS 1 200
Reactome Database Sharing 1 83
RProteomics 1 40
Seed 1 17
SNP500Cancer 1 29
TobaccoInformaticsGrid 1 15
Training Models 1 37
Transcription Annotation Prioritization and Screening System 1 92
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from its ability to account for gaps in strings where
sequences of non-matching characters can be found. The
process of comparing the similarity between two strings
proceeds by creating a two dimensional matrix where the
axes are the strings being compared. Scores are calculated
by scanning through each row in the matrix and compar-
ing the letter for the row against the letters in the string at
the top of the columns of the matrix. The weighting
method gives unique matching score (+8), mismatch
score (-8), and gap penalty (-8). The point of the scoring
process is to find consecutive sequence of similar sub-
string within the strings being compared. This process is
continued until all the scores are calculated in the matrix.
Then the algorithms backtrack through the matrix to find
a path with the highest score. This score is used to rank the
similarity of the two strings.

"Gold standard"
The "Gold Standard" mappings have been constructed by
NCI curators who have created and validated mappings
between UML models and CDEs. These existing map-
pings, serving as our "Gold Standard," are stored in the
caDSR and are publicly available for download through
the UML Model Browser or by programmatic access via
the caDSR API. The caDSR API allows runtime access to
metadata, the UML models, and their corresponding
mappings to CDEs. This API can be found as part of the
caCORE SDK and is publicly available [16].

Results
The comparisons of the Dice and Dynamic algorithms to
the "Gold Standard" are made by plotting the percentage
of correct "Gold Standard" matches for each CDE pro-
vided by the algorithms. The graphs depicted in Figures 4,
5 are accumulative functions in which the first point cor-
responds to the percentage of correct matches (e.g., 60%)
for a single CDE and the second point corresponds to the
total percentage of matches for both the first and second
CDE and so forth.

Per project
Table 2 highlights the percentage of correct "Gold Stand-
ard" matches for the Per Project ranking of the Dice and
Dynamic algorithms. The Per Project condition only ranks
the UML class/attribute pairs against the CDE class object/
property pairs within the project. The percent of correct
"Gold Standard" matches that occurred in the top rank
were 58.2% and 56.3% for the Dice and Dynamic algo-
rithms, respectively. Within the top five ranked matches,
85.1% and 82.6% correctly matched the "Gold Standard"
for the Dice and Dynamic algorithms, respectively. The
percentages are cumulative and will eventually reach a
100% when all the correct "Gold Standard" matches are
within the ranking set. Figure 4 provides the graph of the
average percentages for the Per Project condition for all
the ranks of the Dice and Dynamic algorithms. As dis-

Combined project dice vs dynamicFigure 5
Combined project dice vs dynamic. Total percentage of 
"Gold Standard" matches per cumulative rank for all 
"RELEASED" CDEs.

Per project dice vs dynamicFigure 4
Per project dice vs dynamic. Total percentage of "Gold 
Standard" matches per cumulative rank per project
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played in the figure the results of both algorithms are
comparable.

Combined project
Table 3 highlights the percentage of correct "Gold Stand-
ard" matches for the Combined Project condition of the
Dice and Dynamic algorithms. The Combined Project
condition ranks the UML model class-attribute pairs and
CDE class object-property pairs for all projects listed in
Table 1. The top rank of the Dice algorithm reaches 45.1%
and the Dynamic algorithm reaches 47.6% of the "Gold
Standard" correct matches. In the top five ranked matches,
72.1% for the Dice algorithm are correct "Gold Standard"
matches while 70.9% for the Dynamic algorithm are cor-
rect "Gold Standard" matches. Both algorithms increase
to 100% at a slower rate than the Per Project condition.
Figure 5 provides the graph of the average percent correct
across the Combined Project comparison for all the ranks
of the Dice and Dynamic algorithms. As seen from the fig-
ure the results of both algorithms are comparable. The
cumulative average of Figure 5 does not rise as quickly as
the per project cumulative average in Figure 4.

Figure 6 offers a detailed look at the 20 of the 66 projects
in how they perform individually for the Dice algorithm
in the Per Project condition.

Discussion
Notice the graphs start with a high percentage of "Gold
Standard" matches within the first 5 returned results. This
suggests that developers can use the results to help find an
appropriate CDE using these automated methods. The
class-attribute pairs of the UML models that were ana-
lyzed are highly similar to the EVS class-property pairs
demonstrating that this could be a valid and effective

approach and that mapping of different but similar model
types (UML vs. CDE) is feasible.

Figures 4 and 5 illustrate this in terms of the 80-20 rule,
where 80% of the gold standard CDE matches are in the
top 4 or 5 ranked matches for the Dice and Dynamic algo-
rithm respectively. This would be equivalent of a Google
search returning the correct link(s) 80% of the time in the
top 4 or 5 listed links. Since currently searching for CDEs
to reuse is very labor intensive this can reduce roughly
80% of that work simply by matching developer models
against the correct project. Since developers are aware of
the domain they are developing systems within, it is rea-
sonable to expect them to compare proteomic models
against other proteomic models in the repository (i.e., Per
Project comparison) instead of comparing them against
tissue banking models or the entire set of models (i.e.,
Combine Project comparison).

Comparing against the combined models space, the per-
formance of the algorithms degrade somewhat. Given the
simple nature of the lexical matching algorithms, they
perform relatively well in the Combined Project condi-
tion. Still the results suggest that a tool to help the devel-
opers navigate the model space would facilitate
identifying a higher number of correct matches. The find-
ings from the Combined Project comparison point to the
need for an ontological space of models. This will help the
developer navigate the space in order to identify the cor-
rect model to compare his or her UML class/attributes
against or one that algorithms could utilize to constrain
the comparison space.

Both Dice and Dynamic algorithms have their own
strengths. Dice is relatively simple and not as computa-
tionally intensive as dynamic programming. Dynamic
programming requires tuning of the scoring variables
such as gap scores and adjusting the gap penalty for large
gaps in the strings where mismatches are found. It is capa-
ble of using longer sequences compared to di-grams;
although for this task this feature does not appear to be
necessary.

Caveats
A look at the datasets in Figure 6 shows that some UML
model mappings performed better than others. As an
example we look at caTissue CORE, caArray and Proteom-
ics LIMS, with 329 and 200 UML class-attribute pairs
respectively because they are similar in size with accepta-
ble but differing mapping performances. caTissue has 96
percent of the correct matches returned within the top 5
ranks while ProtLIMS has 85 percent (see Table 4). By
looking at the mappings that performed poorly we can
improve our algorithms as well as create guidelines for
improving automated mapping.

Table 3: Combined project percentages. Percentage of "Gold 
Standard" mappings correct in cumulative rankings. For 
example Dice had 72.1% of the "Gold Standard" mappings 
returned in the top 5 results.

Algorithm Rank 1 Rank 5 Rank 10 Rank 25 Rank 50

Dice 45.1 72.1 79.5 86.1 90.2
Dynamic 47.6 70.9 78.6 85.3 89.6

Table 2: Per project percentages. Percentage of "Gold 
Standard" mappings correct in cumulative rankings. For 
example Dice had 85.1% of the "Gold Standard" mappings 
returned in the top 5 results.

Algorithm Rank 1 Rank 5 Rank 10 Rank 25 Rank 50

Dice 58.4 85.1 91.8 96.6 98.3
Dynamic 56.3 82.6 89.5 95.4 97.8
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The Dice algorithm did have difficulty with some of the
matches. Table 5 shows a comparison of the UML class-
attribute and its corresponding "Gold Standard" mapping
for caTissue CORE caArray and Proteomics LIMS. These
two were chosen to compare because their similarity in
size. Mapping performance of our implementation of the
Dice algorithm appears to be reduced when abbreviations
and synonyms are used. For example Protlims mapping of
the UML class-attribute "Sample.label" is pre-processed
and converted to "label sample" while the CDE class-
property "Specimen Tracer" (short name
2519354v1.0:2178533v1.0) is formatted and converted
to "specimen tracer". The current implementation of the
Dice algorithm doesn't score this true mapping well when
it should have the highest mapping score. The reason for
this poor performance appears to be due to the inability

to resolve synonyms and determine that specimen and
sample are actually the same and that a tracer refers to a
label. Another challenge illustrated in Table 5 is difficulty
in resolving abbreviations involving numbers. The Dice
algorithm is unable to resolve the similarity between
"gel2d id sample" to "2 dimensional electrophoresis gel
identifier". The gel2d word is not broken down into three
separate words as it should. Also from Table 5 we see in
places where words are duplicated exacerbating the effects
of the algorithms inability to resolve synonyms. Protlims
mapping of the UML class-attribute SampleType.sample-
TypeId is pre-processed and converted to "id sample sam-
ple type type" while the CDE class-property Type
Specimen Identifier (short name
2422846v1.0:2178534v1.0) is pre-processed and con-
verted to "identifier specimen type".

Table 4: Dice caTissue CORE caArray and proteomics LIMS. caTissue CORE caArray and Proteomics LIMS percentage of "Gold 
Standard" mappings correct in cumulative rankings. Differences in mapping scores illustrate various levels of UML class-attribute 
alignments with CDE class-properties.

Project Name Rank 1 Rank 5 Rank 10 Rank 25 Rank 50

CaTissue_Core_caArray 77.2 96.0 98.5 99.7 99.7
ProteomicsLIMS 62 85 91.5 95 97.5

Dice per projectFigure 6
Dice per project. This graph shows 20 of the 66 projects mapped to a restricted set of CDEs using the Dice algorithm. 
Restriction is made by only mapping to corresponding CDEs as indicated in caDSR.
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With adjustments it is likely we will improve both the
algorithms' performance. Adjustments could be made to
the parameters of each algorithm as well as modifying
normalization techniques. Normalization techniques can
hurt or help each algorithm depending upon the proper-
ties of each model such as duplicate words and which stop
words to remove. We chose to go with the default normal-
ization method used in the UMLS API. While both algo-
rithms have similar performance dynamic programming
is considerably more computationally intensive, requiring
more memory and time to execute, and therefore we
would recommend using the faster method of Dice over
Dynamic when comparing only names.

The results show that names of UML class-attributes
match well with CDE class-properties. It is possible that
this is an artifact of the mapping process between the UML
models and the EVS concepts. Due to the process and dif-
ficulty of the manual mapping the developers may have
named their UML elements similar to the EVS concepts.

We have shown the possibility of approaching this prob-
lem of mapping UML using lexical algorithms. Given the
simplicity of the approach taken, the number of matches
is surprising. The mapping results suggest that the map-
ping processes could at least be partially automated.
Developers could iteratively identify reusable CDEs and
correctly identify around 80% with relatively small ranked
sets when reducing the search space of CDEs choosing a
similar model space to work in. This would be an
improvement over the current manual mapping process.
Verification will still be need to be part of the caBIG™
review process to ensure accurate mapping but this type of
mapping tool could be used by developers as well as by
reviewers to hasten the process. While this leads to a map-
ping process that is not entirely automated, researchers

such as Sheth and Larson have assumed that automated
mapping is not accurate enough to be used un-supervised
by a human[17]. Thus, a tool that facilitates mapping
UML models to CDEs is a realistic approach to mapping
models in the biomedical informatics domain.

Future work
We believe that applying semantic techniques to this
problem will further enhance the usefulness of this type of
mapping tool as indicated by other mapping efforts [4-
6,9,18-20]. Future goals are to include semantic mapping
tools of UMLS. UMLS have tools that can analyze text and
return UMLS concepts. We plan to map UML model
descriptions and names into UMLS concepts and then use
the mapping stored in EVS to convert to EVS concepts.
These concepts will be used to search the EVS for CDEs
that contain them and then returned to the user as candi-
dates. The challenge of mapping two models is commonly
addressed by lexical methods, logical methods[4], and a
hybrid of both [20,21].

The Dynamic scoring method performs well in our pre-
liminary investigation, but it can potentially be improved
by creating a substitution matrix for assigning different
mismatch scores according to different substitution or
assigning less of a penalty score when having continuous
gaps.

The long-term goal of this research is to produce an open
source tool that has a broad application for mapping
ontologies, data models, and/or terminologies. This tool
will implement the current state of the art mapping algo-
rithms. In addition to developing this tool for comparing
current mapping algorithms it will serve as at test bed for
the development of new algorithms or hybrid algorithms
that combine the techniques.

Table 5: Difficult matches. caTissue and ProtLIMS UML class-attribute compared to CDE class-property pairs are shown here where 
the dice algorithm scored lower than expected. Reduced performance of the algorithms tends to occur when abbreviations and 
synonyms appear. For example ProtLIMS gel2d is used in UML to represent 2 dimensional electrophoresis gel.

caTISSUE CORE caArray (size 329) ProteomicsLIMS (size 200)

UML CDE UML CDE

distribute id item distribution identifier specimen label sample specimen tracer
biohazard id biohazardous identifier substance identification sample name specimen
csm id user user common identifier module security 

user user
gel2d id sample 2 dimensional electrophoresis gel 

identifier
id site identifier site id plate plate sample sample identifier microplate
check check event id out parameter identifier object parameter present 

remove status
gel2d identification 2 dimensional electrophoresis gel 

name
numb participant security social participant ssn id log log sample sample identifier log quantity specimen
container id storage identifier storage unit file file id lim lim file identifier information laboratory 

management system
audit event id user audit event login name id sample sample type type identifier specimen type
date start user begin date user id raw sample sample identifier raw specimen
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Conclusion
This effort contributes to the creation of interoperable sys-
tems within caBIG™ and other similar frameworks. The
Dice and Dynamic algorithms are compared and both
algorithms have similar performance. Results of this study
demonstrate that the names of the UML elements (class
name and attribute name) can be used effectively to map
to existing CDEs. The lexical matching algorithms can
facilitate the reuse of CDEs and reduce the work that
needs to be done by a curator to identify pre-existing
CDEs that match developers UML class/attribute pairs. It
suggests that automatic mapping of UML models and
CDEs are feasible within caBIG™ as well as other metadata
frameworks.
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