
Vol.:(0123456789)1 3

Archives of Toxicology (2021) 95:3049–3062 
https://doi.org/10.1007/s00204-021-03114-z

TOXICOGENOMICS AND OMICS TECHNOLOGIES

Metabolomic analysis to discriminate drug‑induced liver injury (DILI) 
phenotypes

Guillermo Quintás1,4   · Teresa Martínez‑Sena2 · Isabel Conde2,5 · Eugenia Pareja Ibars2,6   · Jos Kleinjans7   · 
José V. Castell2,3,8 

Received: 5 February 2021 / Accepted: 29 June 2021 / Published online: 17 July 2021 / Published online: 17 July 2021 
© The Author(s) 2021

Abstract
Drug-induced liver injury (DILI) is an adverse toxic hepatic clinical reaction associated to the administration of a drug that 
can occur both at early clinical stages of drug development, as well after normal clinical usage of approved drugs. Because of 
its unpredictability and clinical relevance, it is of medical concern. Three DILI phenotypes (hepatocellular, cholestatic, and 
mixed) are currently recognized, based on serum alanine aminotransferase (ALT) and alkaline phosphatase (ALP) values. 
However, this classification lacks accuracy to distinguish among the many intermediate mixed types, or even to estimate 
the magnitude and progression of the injury. It was found desirable to have additional elements for better evaluation criteria 
of DILI. With this aim, we have examined the serum metabolomic changes occurring in 79 DILI patients recruited and 
monitored using established clinical criteria, along the course of the disease and until recovery. Results revealed that free 
and conjugated bile acids, and glycerophospholipids were among the most relevant metabolite classes for DILI phenotype 
characterization. Using an ensemble of PLS–DA models, metabolomic information was integrated into a ternary diagram to 
display the disease phenotype, the severity of the liver damage, and its progression. The modeling implemented and the use 
of such compiled information in an easily understandable and visual manner facilitates a straightforward DILI phenotyping 
and allow to monitor its progression and recovery prediction, usefully complementing the concise information drawn out 
by the ALT and ALP classification.
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Introduction

Drug-induced liver injury (DILI) is a serious toxic event 
that can occur in the course of early drug development as 
well upon clinical usage or over-the-counter drug self-
consumption. It is among the most frequent manifesta-
tion of liver toxicity, and the most cited reason for drug 
development discontinuation and withdrawal from the 
market. As such, it is of public health interest and growing 
concern for poly-medicated patients in western societies. 
DILI represents the leading cause of acute liver failure 
in Europe and the United States with an estimated inci-
dence varying from 2.4 to 19 per 100,000 patient-years, 
and is the main cause for urgent liver transplantation due 
to acute liver failure (Björnsson et al. 2013; Sgro et al. 
2002; Abajo et al. 2004). Besides its intrinsic morbidity, 
the number of DILI events is raising in parallel to the 
introduction of new drugs, the increased life expectancy, 
poly-medication in elderly people, and the widespread use 
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of self-prescribed complementary dietetic or herbal prod-
ucts (Lin et al. 2019). DILI events are classified according 
to their clinical and pathological presentations as choles-
tatic, hepatocellular, or mixed types (i.e., sharing chole-
static and hepatocellular features) (Zimmerman 2000). 
Hepatocellular toxic reactions are the most straightfor-
ward identifiable and abrupt onset type of DILI reactions, 
constituting up to 90% of all cases (Larrey 2000). These 
reactions are characterized by liver cell necrosis and a 
concomitant inflammation, mild bile stasis, and markedly 
elevated levels of serum alanine aminotransferase (ALT) 
and aspartate aminotransferase (AST), and rather moder-
ate elevations of alkaline phosphatase (ALP) and gamma-
glutamyl transferase (GGT). Cholestatic DILI resembles 
bile duct mechanical obstruction (cholelithiasis), with bile 
flux stasis, jaundice, portal inflammation, proliferation or 
injury of bile ducts, ALP and GGT levels substantially 
elevated, while ALT and AST levels remain minimally 
elevated. The mixed-type injury share both characteristics 
and is characterized by elevations in both serum ALT/AST 
ratio (ALT/AST) and ALP.

The identification of the different phenotypes of DILI 
by clinical biochemistry end/points relies on the, so-called 
“R-score” defined as

where [ALP] and [ALT] are the patient’s ALP and ALT 
serum activities and [ALP]UNL and [ALT]UNL are the 
average upper normal limits. The R-score ratio is used as 
a first approach to the clinical characterization of DILI. 
R-scores > 5 indicates the predominance of hepatocel-
lular transaminases over ductal alkaline phosphatases, 
and denotes principally hepatocellular liver injury; 
2 < R-scores < 5 denote mixed liver injury; and R-scores < 2 
are indicative of the predominance of ductal over hepato-
cellular enzymes, and hence, cholestatic liver injury. Minor 
differences in how the R-score is calculated also leads to 
discrepancies in defining the phenotype of liver injury for a 
given patient. Thus, whereas some clinicians use the enzyme 
values from the first analytical test showing elevations above 
normal to calculate the R-score, others use peak values in 
the course of DILI disease, leading to R-scores that may 
significantly differ. In addition, uncertainties in assessing 
DILI diagnosis occur, because these analytical parameters 
are not specific of DILI. Currently, we lack specific analyti-
cal biomarkers that could be unequivocally useful for early 
detection, diagnosis, monitoring, and prognosis of DILI. 
ALT continues to be recognized and recommended as best 
to identify hepatocellular DILI, while jaundice is a clear 
indicator of cholestatic DILI (FDA 2009). Nevertheless, the 
physician’s evaluation of patients and the use of attrition 

R-score =
[ALT]

/

[ALT]UNL

[ALP]
/

[ALP]UNL

,

scales (García-Cortés et al. 2011; Andrade et al. 2019; Maria 
and Victorino 1997) remain cornerstones to diagnosis.

The use of the R-score for diagnosis also presents impor-
tant limitations when certain mechanisms of toxicity are 
involved (García-Cortés et al. 2011). The inhibition of the 
mitochondrial respiratory chain at early stages, for instance, 
although hepatocellular DILI in nature is neither accom-
panied by elevated ALT nor ALP values (Russmann et al. 
2009). Increased ALT and AST serum levels can also be 
typical of muscle and cardiac damage, respectively, evi-
dencing a limited tissue specificity (Yang et al. 2014). In 
addition, ALT, ALP, and AST are not aetiology specific 
and a basal alterations could be present in case of previous 
liver diseases (e.g., viral, alcoholic and non-alcoholic stea-
tohepatitis, NASH) (Watkins 2013). The major degree of 
uncertainty occurs in the mixed-type DILI, where the levels 
of liver enzymes may correlate poorly with histological pat-
terns and lesion severity (Devarbhavi 2012). On the other 
hand, elevated levels of ALT that occur during treatment 
with a potential hepatotoxic drug may return to normal lev-
els upon continuous exposure, despite cell dysfunction con-
tinues to evolve (Watkins 2013). Furthermore, the half-life 
of transaminases is too long biasing the dynamic monitoring 
of the liver metabolic status, the type of toxic liver injury 
may change during the course of the illness, and a drug is 
not always associated to a particular damage pattern (Aithal 
et al. 2011).

Recent research has identified DILI diagnostic (e.g., pro-
tein derived acetaminophen (APAP)-cysteine, for APAP 
overdose), predictive (e.g., genetic associations), prognos-
tic (e.g., miR-122, high mobility group box 1 (HMGB1) 
protein, Keratin-18), and mechanistic biomarkers (e.g., 
HMGB1, Keratin-18, glutamate dehydrogenase (GLDH), 
mitochondrial DNA or nuclear fragments) (McGill and Jae-
schke 2019). In spite of that, major advances are still needed 
for accurate DILI diagnosis and to translate the biochemical 
information to decision making in clinical practice.

We have approached this problem by examining any 
relevant metabolic changes that, occurring in the liver in 
the course of a DILI event, are reflected in the patient’s 
sera as well. We monitored these changes in the different 
DILI types until the patient’s recovery, with the hope of 
identifying characteristic metabolic signatures of the dif-
ferent DILI phenotypes, as compared to the recovered sta-
tus. Metabolomics is recognized as a useful phenotyping 
tool for the disclosure of dysregulated metabolic pathways 
in cells and tissues and so, for the analysis of disease and 
treatment responses. The metabolome is considered to pro-
vide a global and direct readout of the dynamic biochemi-
cal status of a biological system and has been increasingly 
applied to the study of liver diseases, such as xenobiotic 
hepatotoxicity, non-alcoholic fatty liver disease (NAFLD), 
steatosis, fibrosis, cirrhosis, hepatocellular carcinoma, and 
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cholangiocarcinoma (Cañaveras et al. 2016; Araújo et al. 
2017; Mattes et al. 2014; Robles-Díaz et al. 2016). Despite 
some preliminary exploratory research (Tang and Xu 2014; 
García-Cañaveras 2015; O’Connell and Watkins 2010; Iru-
zubieta et al. 2015) its use still remains largely unexplored 
in the study of liver hepatotoxicity and DILI. Assuming 
that hepatocyte endo-metabolome is likely to be reflected 
in the liver exo-metabolome to a certain extent, our aim was 
to identify metabolic changes in sera of DILI patients that 
reflect the type and extent of any DILI event, to be then 
used for diagnosing and monitoring DILI progression over 
time. To this aim, a longitudinal observational clinical study 
was designed to enable the metabolomic analysis of serum 
samples from cholestatic, hepatocellular, and mixed DILI 
patients over time. Results showed that the metabolic pro-
files of hepatocellular and cholestatic DILI, and recovered 
patients displayed significant differences, particularly in 
the bile acids and lipid profiles. Based on the singularities 
detected, we constructed a set of binary classification mod-
els to facilitate the identification of the three different DILI 
phenotypes, and to generate ternary diagrams that enable a 
visual and straightforward interpretation of the disease out-
comes for the monitoring its progression over time.

Materials and methods

Compliance with ethical standards

The present study was approved by the Ethics Committee 
for Biomedical Research of the Instituto de Investigación 
Sanitaria, Hospital Universitario y Politécnico La Fe (Valen-
cia, Spain) (approval Nr. 2012/0452) and was conducted in 
accordance with the relevant guidelines, good clinical prac-
tices and legal and ethical regulations. All patients gave 
written informed consent prior to participate in the clinical 
study.

Clinical study: patients

A total of 79 patients that had been referred to the Clini-
cal Hepatotoxicity Unit between 2013 and 2018 for DILI 
evaluation, agreed to participate and gave written informed 
consent to participate in the study. DILI diagnosis was estab-
lished following international criteria of causality involv-
ing: a compatible clinical history and standard analytical 
results, an adequate chronological relationship, the exclusion 
of other causes (e.g., alcoholism, viral, metabolic, genetic, 
tumour, autoimmune, biliary diseases), consumption of a 
drug with a known hepatotoxic potential, and an elevated 
score in attrition scales of causality (CIOMS/RUCAM > 6) 
(Danan and Benichou 1993). Based on the CIOMS/RUCAM 
score (García-Cortés et al. 2011; Benichou et al. 1993), 

episodes classified as defined, possible or probable (score 
6 or higher) were included in this study. Reference diag-
nosis and classification of the type of hepatic damage into 
hepatocellular, cholestatic or mixed-type DILI was made 
by expert clinicians. Patients were classified as cholestatic 
DILI if ALP ≥ 147 unit/L and R-score < 2, as hepatocellu-
lar DILI if ALT ≥ 56 unit/L and R-score ≥ 5, mixed DILI 
when 2 < R-score < 5, and ‘recovered’ if ALT < 56 unit/L and 
ALP < 147 unit /L and absence of any clinical or analytical 
sign of disease. Timing of blood sampling during patient 
follow-up was selected to match the scheduled clinical moni-
toring visits. Therefore, the number of samples collected 
from each patient varied depending on their clinical follow-
up and prompt recovery. Blood samples were collected into 
BD Vacutainer® SST™ II Advance Tubes (BD Biosciences, 
Spain). After collection, the blood was allowed to clot at 
room temperature for 15–30 min, followed by centrifuga-
tion at 1500×g for 10 min in a refrigerated centrifuge at 
6 °C. The resulting supernatant was immediately transferred 
into 100 µL aliquots in clean polypropylene tubes and stored 
at − 80 °C until analysis. For each patient, gender, age, and 
standard liver function indicators (ALT, GGT, ALP, total bil-
irubin, and albumin), and other current variables reflecting 
liver function were recorded. Altogether, 79 DILI patients 
were recruited the number of samples collected from each 
one of them varied between 1 and 9. A total of 283 serum 
samples were collected and analysed. Among them, 34 
were collected from patients showing hepatocellular DILI, 
80 cholestasic DILI, 54 mixed DILI, and 115 samples were 
collected from clinically recovered patients (see Table 1).

Standards and reagents

Liquid chromatography–mass spectrometry (LC–MS) 
grade acetonitrile (CH3CN) and methanol (CH3OH) were 
obtained from Scharlau (Barcelona, Spain), and formic acid 
(HCOOH, ≥ 95%) from Sigma-Aldrich Química SL (Madrid, 
Spain). Ultra-pure water was generated employing a Milli-Q 
Integral Water Purification System from Merck Millipore 
(Darmstadt, Germany). Internal standards phenylalanine-D5, 
tryptophan-D5, and caffeine-D9 were purchased from C/D/N 
Isotopes Inc. (Quebec, Canada).

Sample preparation

A 100 μL sample of the serum fraction were thaw at room 
temperature. Then, 300 μL of cold (4 °C) CH3OH was added 
for protein precipitation. The sample was homogenized 
(Vortex shaker, 10 s) and centrifuged at 15000×g (10 min, 
4 °C). Then, 300 μL of the supernatant was collected and 
evaporated to dryness under vacuum at 25 °C. The residue 
was reconstituted in 150 μL of a 1 μM internal standard 
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solution containing phenylalanine-D5, tryptophan-D5 and 
caffeine-D9 in H2O:CH3CN (98:2, 0.1% v/v HCOOH).

Metabolomic analysis

Metabolomic analysis was performed on an Agilent 1290 
Infinity ultraperformance liquid chromatograph (UPLC) 
using a Kinetex C18 (100 × 2.1 mm, 1.7 µM) column (Phe-
nomenex, Torrance, USA). Autosampler and column tem-
peratures were set to 4 °C and 55 °C, respectively, and the 
injection volume was 4 µL. Gradient elution was performed 
at a flow rate of 400 µL/min as follows: initial conditions 
of 98% of mobile phase A (H2O, 0.1% v/v HCOOH), held 
for 0.5 min, followed by a linear gradient from 2 to 20% of 
mobile phase B (CH3CN, 0.1% v/v HCOOH) in 4 min and 
from 20 to 95% B in 4 min. 95% B was held for 1 min and 
then, a 0.25 min gradient was used to return to the initial 

conditions, which were held for 2.8 min. Full scan MS data 
from 70 to 1200 m/z was collected on an iFunnel quadrupole 
time of flight (QTOF) Agilent 6550 spectrometer (Agilent 
Technologies, CA, USA). Samples were analyzed using pos-
itive and negative electrospray ionization (ESI) in separate 
batches. The following ESI parameters were selected: gas 
temperature (T), 200 °C; drying gas, 14 L/min; nebulizer, 
37 psig; sheath gas T, 350 °C; sheath gas flow, 11 L/min. 
MS spectra recalibration during the analysis was carried 
out introducing a reference standard into the source via a 
reference sprayer valve and using the 149.02332 (phthalic 
anhydride), 121.050873 (purine) and 922.009798 (HP-0921) 
m/z in ESI+, as well as 119.036 (purine) and 980.0163 (HP-
0921, [M–H + CH3COOH]−) m/z in ESI−, as references.

The analysis of the full sample set was split into two 
batches to minimize potential drifts in the UPLC–MS system 
response during the analysis of a large number of samples 

Table 1   Clinical and demographic data of the samples collected from DILI patients, included in the study, classified according to clinical vari-
ables

Values within box brackets represent the range
Chol. cholestatic DILI, Mixed mixed DILI, HepC. hepatocellular DILI, ALT alanine aminotransferase, AST aspartate aminotransferase, ALP 
alkaline phosphatase, GGT​ gamma-glutamyl transferase
† Comparison of mean values: t test p value (unequal variances)
‡ Comparison of proportions: N − 1 Chi-squared test p value

Cholestasic Mixed type Hepatocellu-
lar (HepC)

Recovered Chol. vs. HepC Chol. vs. Mixed Mixed vs. HepC

Samples (n) 80 54 34 115 NA NA NA
R-score 0.8 ± 0.4 

[0.2–2.0]
2.5 ± 0.9 

[1.3–4.8]
15 ± 13 

[5.0–71.5]
0.9 ± 0.5 

[0.2–2.5]
< 0.0001† < 0.0001† < 0.0001†

ALT 103 ± 105 
[13–675]

133 ± 94 
[56–438]

744 ± 645 
[125–2341]

28 ± 12 [7–54] < 0.0001† 0.09† < 0.0001†

ALP 341 ± 280 
[148–1617]

138 ± 83 
[53–487]

128 ± 66 
[60–413]

87 ± 27 
[36–145]

< 0.0001† < 0.0001† 0.5†

AST 74 ± 62 
[11–374]

82 ± 75 
[25–460]

482 ± 578 
[47–2237]

29 ± 14 
[12–139]

< 0.0001† 0.5† 0.0003†

GGT​ 472 ± 616 
[10–3268]

189 ± 207 
[27–1068]

249 ± 189 
[25–895]

61 ± 60 [8–298] 0.004† 0.0002† 0.2†

Total bilirubin 7 ± 10 [0.2–
56.8]

2 ± 5 [0.3–36.1] 8 ± 14 [0.4–
47.6]

0.7 ± 0.6 
[0.2–4.0]

0.7† 0.0003† 0.02†

Albumin 3.9 ± 0.6 
[2.9–4.9]

4.1 ± 0.5 
[2.8–5.1]

3.9 ± 0.6 
[2.4–4.7]

4.3 ± 0.4 
[3.2–5.2]

0.9† 0.01† 0.06†

Tryglycerides 122 ± 127 
[0–459]

115 ± 127 
[49–748]

34 ± 43 [0–205] 122 ± 72 
[12–334]

0.0003† 0.0004† 0.9†

Cholesterol 289 ± 262 
[50–1621]

207 ± 44 
[80–321]

166 ± 73 
[25–297]

198 ± 53 
[32–356]

0.0005† 0.01† 0.008†

Glucose 91 ± 16 
[54–157]

94 ± 30 
[64–232]

99 ± 35 
[63–249]

94 ± 21 
[61–205]

0.2† 0.5† 0.5†

Creatinine 0.9 ± 0.4 
[0.4–2.29]

0.7 ± 0.2 
[0.19–1.79]

0.9 ± 0.9 
[0.3–5.6]

0.8 ± 0.4 
[0.21–3.18]

0.8† 0.005† 0.2†

Age 49 ± 21 [9–90] 46 ± 17 [9–78] 46 ± 18 [15–77] 51 ± 17 [20–79] 0.5† 0.4† 0.9†

BMI 24 ± 3 [18–28] 25 ± 3 [17–35] 25 ± 5 [17–34] 25 ± 3 [19–32] 0.1† 0.2† 0.6†

Sex (male/
female)

(46/34) (24/30) (16/18) (47/68) 0.9‡ 0.9‡ 0.9‡
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arising from system contamination. Batch 1 included the 
analysis of QC replicates (QC1) analysed every eight sam-
ples, and two blanks at the end of the sequence. QCs were 
prepared as a pool of the processed samples included each 
batch. Batch 2 included the analysis of QC replicates (QC2) 
analyzed every ten samples, 15 randomly selected samples 
analyzed in batch 1 for between-batch normalization, and 
six blanks at the end of the sequence. A set of 10 QCs was 
injected at the beginning of each batch for system condi-
tioning. Data obtained during column conditioning was 
excluded from analysis. MS/MS data acquisition for metabo-
lite annotation was carried out using a collision energy set 
to 25 V, and with automated selection of three precursor 
ions per cycle and an exclusion window of 0.25 min after 
two consecutive selections of the same precursor. The QC 
was repeatedly analyzed using an auto MS/MS method 
with the following inclusion m/z precursor ranges: 70–200, 
200–350, 350–500, 500–650, 650–800, 800–950, 950–1100, 
and 1100–1200 Da using a rate of 3 spectra/s in the extended 
dynamic range mode (2 GHz).

Peak table generation and batch effect correction

Peak detection, integration, deconvolution and alignment 
were carried out for each batch separately using XCMS 
(Smith et al. 2006) in R 3.2.1. The centWave method was 
used for peak detection with the following parameters: 
mass accuracy = 12 ppm, peak width = (3, 6), snthresh = 6 
and prefilter = (3, 10000). A minimum difference in m/z 
of 7.5 mDa was selected for overlapping peaks. Intensity 
weighted m/z values of each feature were calculated using 
the wMean function. Peak limits used for integration were 
found through descent on the Mexican hat filtered data. 
Matching peaks across samples was performed using the 
nearest method with mz-retention time (RT) balance of 2, 
RT tolerance of 3 s and kNN = 2. Missing data points were 
filled by reintegrating the raw data files in the regions of the 
missing peaks using the fillPeaks method. Peak integration 
and alignment accuracies were assessed by comparing auto-
mated and manual integration results for internal standards 
and endogenous metabolites, obtaining linear correlation 
coefficients higher than 0.99.

Within batch effect correction was carried out using the 
non-parametric QC–SVRC approach employing a Radial 
Basis Function kernel using a pre-selection of C and opti-
mization of � and � using a grid search, leave-one-out cross 
validation and the RMSECV as target function (Kuligowski 
et al. 2015; Sánchez-Illana et al. 2018a). C was selected for 
each LC–MS feature as the median value of the intensities 
observed in QC replicates. The � search range was selected 
to match the expected instrumental precision (2.5–8% of 
the median value of the intensities observed for the whole 
set of QC replicates). The � search interval selected was 

[1, 104]. LC–MS features with D-ratio* > 20% after within-
batch effect correction were removed from analysis (Broad-
hurst et  al. 2018). Between-batch effect correction was 
carried out using replicated samples across batches by scal-
ing the intensity of each metabolic feature in each sample. 
The scaling factor was calculated as the ratio between the 
median intensity in the batch 2 and the median intensity 
across batches (Sánchez-Illana et al. 2018b). Finally, sam-
ples replicated across batches were excluded form batch 1, 
and samples for which the values of ALP or ALT were not 
available (17 in total) were excluded from further analysis. 
This clean up step left two data sets, XESI+ (283 × 4306) 
and XESI− (283 × 5016), where each row represents a chro-
matogram and each column an LC–MS feature, from the 
analysis of samples collected from 79 patients. LC–MS fea-
tures were also excluded if the maximum peak area value in 
blanks multiplied by 10 was larger than the median value in 
samples, and those annotated as drug metabolites or food 
components. Metabolite annotation was carried out based 
on MS/MS data using the Human Metabolome Database 
(http://​www.​hmdb.​ca) and METLIN (http://​www.​metlin.​
scrip​ps.​edu) databases, and LipiDex (Hutchins et al. 2018) 
as described elsewhere (Ten-Doménech et al. 2020) with 
0.015 Da or 20 ppm accuracy. Information regarding classes 
and subclasses of the metabolites was downloaded from the 
HMDB (http://​www.​hmdb.​ca) and automatically incorpo-
rated to the annotation. Further data analysis included 283 
samples and 686 annotated ESI ± LC–MS features with 
median intensity values in at least one of the groups (hepa-
tocellular DILI, cholestatic DILI, mixed DILI or recovered 
patients) > 15000 AU (see Supplementary Information, SI). 
Figure SI1 shows the scores of two-components principal 
component analysis (PCA) models explaining 32% and 43% 
of the data variation in the ESI+ and ESI− data sets, respec-
tively. The relative position in the scores plot of the QCs 
(Fig. SI1, top), and the clustering of the samples analysed in 
both batches (Fig. SI1, bottom), supported the instrumental 
stability and accuracy of the batch correction algorithm.

Software and analysis

t tests assessed the null hypothesis that the data of two 
groups (e.g., cholestatic DILI vs. recovered patients) came 
from independent random samples with equal means with 
unknown and unequal variances. LC–MS features with t test 
FDR-adjusted p values < 0.05 were selected as significantly 
altered (Benjamini and Hochberg 1995).

Multivariate supervised analysis was carried out by par-
tial least squares–discriminant analysis (PLS–DA). PLS 
aims to build a linear multivariate model to relate two data 
matrices X and y (i.e., the metabolomic data and response 
variable, which codes for class membership as follows: 1 for 
the members of one class, 0 (or − 1) for members of the other 

http://www.hmdb.ca
http://www.metlin.scripps.edu
http://www.metlin.scripps.edu
http://www.hmdb.ca
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class) (Wold et al. 2001). Double cross validation (2CV) 
(Smit et al. 2007) was selected to estimate the out-of-sample 
PLS–DA prediction error using subjectwise CV. The num-
ber of latent variables (LVs) used for each inner PLS model 
was selected using the sample classification CV-accuracy 
as target function. PCA, PLS–DA, and univariate analysis (t 
test) were carried out in MATLAB 2017b (Mathworks Inc., 
Natick, MA, USA) using in-house written scripts and the 
PLS Toolbox 8.7 (Eigenvector Research Inc., Wenatchee, 
USA). Ternary plots were build using the ternaryc MAT-
LAB function available in FileExchange (http://​www.​mathw​
orks.​com/​matla​bcent​ral). SVR models were carried out 
in MATLAB using the LIBSVM library (Chang and Lin 
2011). Raw data conversion into suitable formats to support 
metabolite annotation was carried out using ProteoWizard 
(http://​prote​owiza​rd.​sourc​eforge.​net/). LipiDex (Hutchins 
et al. 2018) was used for metabolite annotation by match-
ing the measured MS/MS spectra to an in-silico generated 
library (LipidBlast) (Kind et al. 2013). A workflow of the 
data analysis and the strategy to generate the ternary dia-
grams is depicted in Fig. 1.

Results and discussion

Data overview and strategy

Table 1 summarizes the most relevant clinical information 
concerning the patients and sera samples that were investi-
gated in this study, stratified according to their classifica-
tion as cholestatic (n = 80), hepatocellular (n = 34), mixed 
(n = 54) DILI, or as recovered patients (n = 115) using the 
R index, the values of AST and ALT and other clinical fea-
tures. As expected, ALT, ALP, AST, and GGT were dif-
ferentially expressed between cholestatic and hepatocellular 
patients, and their distributions showed a significant overlap 
with the mixed DILI patients. No statistically significant dif-
ferences (p values > 0.05) were found among the distribu-
tions of total bilirubin, albumin, glucose, creatinine, age, 
body mass index, and sex between cholestatic and hepa-
tocellular DILI patients in this study. In addition, signifi-
cant differences (p values < 0.05) were found between the 
distributions of total bilirubin and cholesterol between the 
mixed DILI patients and the cholestatic and hepatocellular 
DILI groups of patients. Figure SI2 summarizes the main 
subclasses of the LC–MS features annotated in the joint 
ESI ± data set obtained from patient’s sera after data pre-
processing and clean-up. The sub-classes with the largest 
numbers of annotated LC–MS features were steroids and 

Fig. 1   Schematic workflow of 
data analysis and modelling 
strategy

http://www.mathworks.com/matlabcentral
http://www.mathworks.com/matlabcentral
http://proteowizard.sourceforge.net/
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steroid derivatives, glycerophospholipids, carboxylic acids 
and derivatives, prenol lipids, fatty acyls, indoles and deriva-
tives, organooxygen compounds, and imidazopyrimidines, 
accounting for 75% (699) of the initially annotated features.

The overall strategy to generate the discriminant model is 
depicted in Fig. 1. After an initial data overview by PCA, it 
consisted in pairwise comparison of metabolomic features 
of hepatocellular vs. cholestasic DILI, hepatocellular DILI 

vs. recovered and cholestasic DILI vs. recovered by means 
of univariate t tests. Then, PLS–DA analysis of each pheno-
type (hepatocellular DILI, cholestatic DILI and recovered 
patients) vs. the rest was carried out using the complete set 
of features. Finally, results from the selected models were 
integrated into a ternary plot.

PCA was used for the explorative analysis of the 
LC–MS profiles of the samples collected most closely to 

Fig. 2   Pairwise combinations 
of the PC1–PC4 scores (a) and 
PC3 vs. PC4 loadings plot (b) 
from a PCs model build from 
the autoscaled LC–MS profiles 
of the DILI samples collected at 
diagnosis



3056	 Archives of Toxicology (2021) 95:3049–3062

1 3

the diagnosis. Figure 2a shows pairwise combinations of 
the scores from a 4 PCs model explaining 44.59% of the 
variation observed in 51 first samples collected from patients 
after DILI diagnosis and inclusion in the study. As expected, 
a high overlap across the three types of DILI was observed, 
which was likely due to a combination of the effects of dif-
ferent types and degrees of DILI severity, treatments, and 
high inter-individual variability. Nonetheless, PC3 enabled 
a partial clustering of patients clinically diagnosed as hepa-
tocellular and cholestatic DILI phenotypes. The loadings 
plot depicted in Fig. 2b revealed that the partial clustering 
observed in the PC1 vs. PC3 scores space was mainly associ-
ated to changes in the relative levels of glycerophosphoetha-
nolamines and glycerophosphocholines (higher in the mixed 
DILI group), and bile acids and derivatives (higher in the 
cholestatic group). On the basis of these emerging evidence, 
we then run univariate t tests among the subgroups of chole-
static and hepatocellular DILI patients, and that of recovered 
patients to identify metabolic features associated to each of 
the different subcategories. The analysis identified 167 fea-
tures associated to both hepatocellular and cholestatic DILI. 
Besides LC–MS features were identified and selected as dis-
criminant for hepatocellular (n = 55) or cholestatic (n = 101) 
DILI against the recovered group. Figure SI3 depicts the 
number and intersections of the differentially expressed 
metabolomic features (FDR-corrected t test p values < 0.05) 
in the hepatocellular vs. cholestatic DILI, and hepatocellular 

or cholestatic DILI vs. recovered comparisons. The partial 
overlap of the metabolic features associated to cholestatic 
and hepatocellular DILI supported the presence of differ-
ences in their metabolic phenotypes that could be wisely 
exploited for a patient’s DILI phenotype diagnosis.

Integrative model of DILI phenotypes

A set of supervised multivariate PLS–DA models were 
used to identify differences among the metabolic profiles 
of cholestatic, hepatocellular, and recovered DILI patients. 
Subjectwise double cross validation (2CV) (Smit et al. 2007) 
was selected for the initial assessment of three one-vs-rest 
models using the complete set of features. The one-vs-rest 
strategy decompose the original three-classes data set into 
three binary sub-data sets in which one class is compared 
with the rest of the classes included in the analysis (Lee 
and Jemain 2019) (i.e., here, cholestatic vs. the group of 
hepatocellular and recovered patients, hepatocellular vs. the 
group of cholestatic and recovered patients, and recovered 
vs. the group of hepatocellular or cholestatic DILI patients). 
Figure 3(top) depicts the distribution of PLS predicted y 
values by 2CV for the assignment of the class membership 
in the three one-vs-rest models. The discrimination among 
classes was assessed using the areas under the receiver oper-
ating characteristic (AUROCs) as figure of merit, and their 
statistical significance was estimated by permutation testing 

Fig. 3   Distribution of predicted 
“y” values obtained for each 
sample by 2CV in each of the 
three considered three one-vs-
rest models
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(100 permutations, p values < 0.05) (Lee and Jemain 2019). 
Results obtained from this analysis support the existence 
of relevant metabolic differences among the cholestatic, 
hepatocellular clinical DILI phenotypes and that of recov-
ered patients. Then, three one-vs-rest PLS–DA models were 
build using again a subjectwise CV for the selection of the 
number of LVs and the estimation of CV-predicted y values 
for recovered, cholestatic, and hepatocellular DILI samples. 
These models were then used for the prediction of mixed-
type DILI patient’s samples.

Figure 4a depicts the number and intersections of the 
features showing VIP > 1 in the three PLS–DA models. 
The analysis identified a slightly lower number of features 
associated to hepatocellular (233) than to cholestatic DILI 
(239), in agreement with the observed better discrimina-
tion of cholestatic samples by PLS–DA. Figure 4b shows 
that the main subclasses of metabolites selected as discri-
minant in the cholestatic DILI vs. rest model were bile acids 
(BAs), amino acids, glycerophosphocholines and steroidal 
glycosides. It is well known that the normal bile flow out 
of the liver is disrupted or severely impaired in the course 
of drug-induced cholestasis. As a consequence of this bile 
stasis and intrahepatic accumulation of cytotoxic bile acids 
occur damaging hepatocytes and ductal epithelium cells 
because of their exposure to high concentrations of BAs. 
This causes metabolic hepatocyte metabolic impairment as 
well local inflammatory infiltration leading to hepatocyte 
cell death. BAs profiles have been recently proposed as 
DILI biomarkers displaying higher sensitivity than bilirubin 

for bile excretory abnormalities. A similar distribution of 
metabolite subclasses was found in the hepatocellular DILI 
vs. rest model (Fig. 4c) and recovered vs. rest (Fig. 4d). In 
the latter case, the presence of cholestatic patients with too 
high serum concentrations of BAs increased the importance 
of these metabolites in the discrimination. To facilitate the 
interpretation of the differences among the three classes, 
a PLS–DA model (2 LVs) was build using the PLS2 algo-
rithm and the set of 390 features selected as discriminant in 
any of the three previous models, where bile acids, alcohols 
and derivatives (118), amino acids, peptides and analogues 
(52), glycerophosphocholines (28), steroidal glycosides (14) 
and fatty acids and conjugates (13) were the metabolic sub-
classes with the highest number of features included. The 
scores plot showed a partial overlap of samples classified 
as hepatocellular, cholestatic and recovered DILI patients 
(see Fig. SI4a). Nonetheless, results showed elevated levels 
of conjugated bile acids (e.g., glycochenodeoxycholic) in 
the cholestatic group as compared to the hepatocellular and 
recovered patients, and lower levels of glycerophosphocho-
lines and glycerophosphoethanolamines in DILI compared 
to recovered patients (see Fig. SI4b). The recovered group 
also showed slightly higher levels of two steroids and ster-
oid derivatives: deoxycholic acid (a bile acid) and 11-beta-
hydroxyandrosterone-3-glucuronide (a steroidal glycoside).

Fig. 4   UpSet plot depicting the number and intersections of the fea-
tures with VIP > 1 in the hepatocellular DILI vs. the group of chole-
static DILI and recovered patients, cholestatic DILI vs. the group of 
hepatocellular DILI and recovered patients, and recovered vs. the 

group of hepatocellular and cholestatic DILI patients PLS–DA mod-
els. Pie plots show the distributions of the main subclasses of the fea-
tures selected as discriminant in the three models. Note: NA: features 
with no subclass included in the HMDB
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A novel approach for an easy characterization 
of DILI sub‑phenotypes

To jointly analyze the results from the three models and 
to facilitate a visual and straightforward interpretation of 
a classification outcome, the set of y predicted values, as 
described above, were integrated into a ternary plot. A ter-
nary plot is a two-dimensional graphical representation on 
three variables that sum to a constant. Under this premise, 
we hypothesize that the different DILI phenotypes could 
be expressed to the relative to expression (0–100%) of the 
features that are typical for cholestasis, hepatocellular or, 
recovered patients. As PLS–DA y predicted values used for 
sample classification are unbound, y predicted values higher 
than 1 or lower than 0 were replaced by 1 or 0, respectively, 

and the position within the ternary plot was defined by the 
relative constrained y values. By doing like this, the ternary 
plot was an equilateral triangle with edges to graphically 
depict the constrained y-predicted values for DILI (PLS–DA 
model: recovered vs. non-recovered), cholestasis (PLS–DA 
model: cholestasis vs. non-cholestatic), and hepatocellular 
(PLS–DA model: hepatocellular vs. non-cholestatic) dam-
ages. As displayed in Fig. 5, plotting of the results evidenced 
a clustering of cholestatic, hepatocellular, and DILI recov-
ered patients in the corners of the ternary diagrams. Recov-
ered patients that displayed neither cholestatic nor hepa-
tocellular metabolomic biomarkers were mostly clustered 
in the upper corner of the ternary diagram. Samples from 
purely cholestatic patients with no markers of hepatocel-
lular damage were located in the bottom-left corner area. In 

Fig. 5   Ternary plots used from the prediction of cholestatic, mixed 
and hepatocellular DILI samples as well as those from recovered 
patients using the PLS–DA models hepatocellular DILI vs. the group 

of cholestatic DILI and recovered patients, cholestatic DILI vs. the 
group of hepatocellular DILI and recovered patients, and recovered 
vs. the group of hepatocellular and cholestatic DILI patients
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the bottom right corner, samples with marked predominant 
expression of hepatocellular damage and fewer indications 
of cholestasis were grouped. Patients classified as mixed-
type according to the R-score were distributed across the 
ternary plot displaying different degrees of cholestatic and 
hepatocellular DILI metabolic phenotypes percentages. The 
distance of the recovered patients to the top corner (i.e., 0% 
cholestatic, 0% hepatocellular) was also an intuitive indica-
tion of how far was the metabolome of the DILI patient from 
the recovered status, and hence it was of potential utility 
to estimate the degree of recovery after the DILI episode. 
An interesting outcome of this representation is that despite 
patients might have been assigned to the same category, 
accordingly with the clinical classification of the DILI phe-
notype based only on clinical biochemical parameters, there 
is a wide range of differential expression of the characteristic 
metabolomic biomarkers of that particular phenotype (as 
expressed as % of belonging to that given category), which 
would enable a more fine-tuning classification.

Longitudinal analysis of DILI metabolic 
sub‑phenotypes during treatment

The integrated model and graphic representation created 
were then used to follow-up patients’ metabolome over 
time after the onset of the DILI event. Figure 6 displays 
representative examples of the results obtained when time-
course monitoring 6 patients. Figure 6a shows a progres-
sive decreasing of a DILI cholestasic profile towards the 
“recovered” phenotype along the time and, in agreement, 
the total bilirubin contents between t1 and t4 decreased (t1–4: 
{12.4, 4.02, 4.02, 1.05}), the R-score (t1–4: {0.64, 0.71, 0.71, 
0.57}) and ALT/ALP (t1–4: {68/277, 32/119, 32/119, 19/87}) 
values changed accordingly. The evolution of the cholestatic 
patient depicted in Fig. 6b showed a gradual progression 
towards recovery after the second sample, in agreement with 
a significant decrease in the total bilirubin concentrations 
(t1–5: {33.6, 21.4, 6.5, 0.6, 0.6}), and ALT/ALP values (t1–5: 
{71/212, 49/254, 118/156, 16/102, 12/80}). The patient 
depicted in Fig. 6c, remained in the cholestasis corner not 
showing any progression towards the recovered status (ALT/
ALP t1–3: {326/1617, 225/1229, 123/919}). Figure 6d shows 
the change in the metabolomic profile of a hepatocellular 

Fig. 6   Time course monitoring of four patients initially diagnosed as 
pure cholestatic, mixed and hepatocellular DILI, towards recovery. 
Dot colour represents the clinical classification at each point: green: 

cholestatic DILI; orange: hepatocellular DILI; grey: mixed DILI; 
blue: recovered patient (color figure online)
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DILI patient towards recovery (R-score t1–5: {32.0, 4.3, 1.5, 
1.1, 1.1}; total bilirubin t1–5: {25.9, 7.6, 4.5, 2.8, 0.7}; ALT/
ALP t1–5: {2293/188, 194/117, 70/119, 44/101, 47/105}). 
However, the clinical situation of the patient depicted in 
Fig. 6e did not improve during the follow-up and his metabo-
lome showed a hepatocellular phenotype again, in clinical 
agreement, with elevated ALT/ALP values (t1–3: {1298/161, 
1188/179, 884/127}). The relative position of the first sam-
ples of patients depicted in Fig. 6d, e correlated with the 
higher severity of the DILI observed in the latter patient and 
the higher levels of total bilirubin contents in the first one. 
Finally, the patient depicted in Fig. 5f, that belonged to the 
mixed-type phenotype, although recovering over time, main-
tained all time the features of a mixed-type injury (ALT/ALP 
t1–5: {229/228, 138/214, 117/168, 106/88, 34/66}).

As disclosed, this novel graphic approach, displays fea-
tures that enable a better description of the phenotype status 
of the patient, and it could be used to monitor the progres-
sion of DILI patients to their recovery and even anticipate 
its clinical evolution.

This research is a fact-finding exercise that, despite the 
limited number of samples studied, has provided a well 
sustained and innovative background information, for the 
study of hepatotoxicity and DILI classification approach. A 
systematic application for the monitoring of a larger set of 
patient’s data will help to reinforce its relevance, to disclose 
potential biases and confounding sources. Metabolite anno-
tation by MS/MS is currently limited and further targeted 
analysis of selected metabolite classes such as phosphati-
dylcholines (PCs), lysophosphatidylcholines (LysoPCs), and 
bile acids (primary, secondary, conjugated) will add more 
confidence to the model and stimulate its use in a routine 
clinical setting.

Conclusions

The analysis and relationships between liver endo- and exo-
metabolome can provide inherent high-level information on 
the type and severity of the liver toxicity and damage after 
a chemical insult, and is, therefore, conceivable that by the 
use of such information and proper bioinformatics modeling 
of the recorded changes, be possible a more accurate inter-
pretation of drug liver toxicity and a precise DILI diagnosis, 
monitoring the progression of the disease and anticipating 
its evolution. We have exhaustively analyzed the liver exo-
metbolome present in the sera of patients undergoing a DILI 
event, and extracted the ground toxicity information that dis-
tinguish the different DILI phenotypes and the “recovered”, 
clinically asymptomatic, status. Serum bile acid profiles 
including primary, secondary, conjugated, and non‐conju-
gated bile acids, combined with glycerophospholipids (glyc-
erophosphocholines, glycerophosphoethanolamines) were 

the metabolites that best discriminated among the cholestatic 
and hepatocellular DILI phenotypes from the onset of the 
disease until recovery. We found the information generated 
by the bioinformatics model, useful and complementary to 
that provided by the R-score for a more precise and accurate 
monitoring of the DILI event. The strategy used in our work, 
with an appropriate treatment and integration of the data 
recorded, and the presentation of such degree of data infor-
mation in ternary plots enabled a visual and straightforward 
classification of DILI phenotypes of patients. Moreover, the 
ternary diagrams facilitated the monitoring of the disease 
progress towards recovery. The results of this research and 
the building up of a quantitative model reinforced the view 
that metabolomics can provide a detailed insight into the 
study of liver drug toxicity and the different DILI phenotypic 
patterns and a unique dynamic readout of DILI progression 
during recovery complementary to that provided by stand-
ard clinical biochemistry biomarkers. Additional efforts are 
required to reinforce the clinical value of the metabolic pat-
terns observed, using other complementary approaches (e.g., 
lipidomics) as well its clinical validation using quantitative 
approaches, to be undertaken in future clinical studies.
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