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Purpose: To develop and assess an automatic procedure for classifying and staging
glaucomatous vascular damage based on optical coherence tomography angiography
(OCTA) imaging.

Methods: OCTA scans (Zeiss Cirrus 5000 HD-OCT) from a random eye of 39 healthy
subjects and 82 glaucoma patients were used to develop a new classification algorithm
based on multilayer and multisector information. The averaged circumpapillary retinal
nerve fiber layer (RNFL) thickness was also collected. Three models, support vector
machine (SVM), random forest (RF), and gradient boosting (xGB), were developed and
optimized for classifying between healthy and glaucoma patients, primary open-angle
glaucoma (POAG) and normal-tension glaucoma (NTG), and glaucoma severity groups.

Results: All the models, the SVM (area under the receiver operating characteristic
[AUROC] 0.89±0.06), the RF (AUROC0.86±0.06), and the xGB (AUROC0.85±0.07),with
26, 22, and 29 vascular features obtained after feature selection, respectively, presented
a similar performance to the RNFL thickness (AUROC 0.85± 0.06) in classifying healthy
and glaucoma patients. The superficial vascular plexus was the most informative layer
with the infero temporal sector as the most discriminative region of interest. No signifi-
cant differentiation was obtained in discriminating the POAG from the NTG group. The
xGB model, after feature selection, presented the best performance in classifying the
severity groups (AUROC 0.76± 0.06), outperforming the RNFL (AUROC 0.67± 0.06).

Conclusions: OCTA multilayer and multisector information has similar performance to
RNFL for glaucoma diagnosis, but it has an added value for glaucoma severity classifica-
tion, showing promising results for staging glaucoma progression.

Translational Relevance:OCTA, in its current stage, has the potential to be used in clini-
cal practice as a complementary imaging technique in glaucoma management.

Introduction

Glaucoma is the leading cause of irreversible blind-
ness, affecting over 80 million people worldwide.1 It is
a chronic progressive optic neuropathy characterized
by the thinning of the peripapillary retinal nerve fiber

layer (RNFL) and optic disc cupping as a result of
axonal and retinal ganglion cell loss.2,3 Glaucoma is
an irreversible but preventable disease, which requires
a management strategy involving risk stratification.
Risk assessment is meant to properly allocate inten-
sive treatment and monitoring to those who are more
vulnerable while avoiding overburdening both patient

Copyright 2020 The Authors
tvst.arvojournals.org | ISSN: 2164-2591 1

This work is licensed under a Creative Commons Attribution 4.0 International License.

mailto:d.andradedejesus@erasmusmc.nl
https://doi.org/10.1167/tvst.9.2.58
http://creativecommons.org/licenses/by/4.0/


OCTA Modeling for Diagnosing and Staging Glaucoma TVST | Special Issue | Vol. 9 | No. 2 | Article 58 | 2

and health care system in cases when the disease is
less likely to cause loss of visual function. However,
the limited understanding of the disease’s pathophys-
iology hampers effective risk stratification. Glaucoma
assessment is currently based on a set of risk factors,
previously identified in epidemiologic studies (e.g.,
RNFL thickness and intraocular pressure [IOP]), but
with limited predictability for the individual patient.4-6
Therefore, there is a need to identify additional risk
factors/features that may contribute to improve this
clinical decision process.

Differences in vascular parameters have been
reported between glaucoma patients and healthy
individuals, at ocular and systemic levels.7,8 A number
of techniques, such as fluorescein angiography,9 laser
speckle flowgraphy,10 laser Doppler flowmetry,11 and
color Doppler imaging,12,13 have been used for the
evaluation of ocular and retinal blood perfusion. With
the recent introduction of optical coherence tomog-
raphy angiography (OCTA), standard OCT imaging
devices are now capable of analyzing retinal vascular
flow and to link it to a number of ocular diseases.10,14
The application of OCTA to glaucoma has contributed
to a more comprehensive assessment of the vascu-
lar supply role in the disease modulation. Signifi-
cantly lower vessel density and blood flow index in
the peripapillary area,15-19 optic disc,15-24 and macular
area,15,17,18,23-25 have been observed in glaucoma
eyes in comparison with normal eyes. For all these
areas, the diagnostic abilities of the imaged features
increased with the glaucoma severity.23-26 Moreover, it
has been previously reported,27 that vascular parame-
ters increase the ability to discriminate between types
of glaucoma (primary open-angle glaucoma [POAG]
and normal-tension glaucoma [NTG]), as parameters
linked to vascular dysfunction are more prominent in
NTG patients.

Although three-dimensional OCTA information is
generated from OCT imaging, most studies have only
investigated the vascular density in the superficial layers
(above the inner plexiform layer). Only a few studies
considered the choroidal layers, including the chori-
ocapillaris. Kiyota et al.,28 found significantly lower
OCTA parameters in the superficial choroid (0–70 μm
below Bruch’s membrane, including the choriocap-
illaris) of glaucoma eyes in comparison to healthy
controls but not in the deep choroid (70–140 μm
below Bruch’s membrane). Two other studies reported
no significant differences in choroidal results.29,30 In
addition to the analysis of all information available
in a given layer, studies have been conducted discrim-
inating different sectors. Andrade De Jesus et al.,19
showed that the inferior and superior sectors of the
peripapillary superficial layer present the most severe

vascular damage in glaucoma individuals compared
to healthy controls. A similar study was performed
by Lommatzsch et al.,31 who observed that macular
vessel density in both superficial and deep retinal
vascular plexus in glaucomatous eyes was signifi-
cantly lower than in healthy eyes, with the largest
reduction found in the inferior macular sector. Rao
et al.,23 showed that the area under the receiver operat-
ing characteristic (AUROC) of the averaged peripap-
illary vessel density was significantly larger than the
AUROC of the average inside the optic disc or at
the macula, with the inferotemporal sector as its best
discriminator.

Despite the increasing number of studies on
OCTA features for glaucoma diagnosis, the data are
frequently conflicting and/or arising from small-scale
studies. Therefore, the current results have not allowed
researchers to reach conclusions on the added value
of a vascular analysis in clinical practice. The vascu-
lar glaucomatous damage in the retinal layers, chorio-
capillaris, and choroid, and the advantage of the vascu-
lar parameters compared to structural parameters such
as the RNFL thickness or the intraocular pressure,
need additional research to determine their contribu-
tion to the risk assessment and staging of glaucoma
disease. Hence, the aim of this study is to further
contribute to the understanding of the vascular role
of glaucoma in the retinal layers, choriocapillaris, and
choroid, looking at the information available at each
layer and also at specific sectors within a layer. To that
end, this article describes the design and optimization
of classification models based on different layers and
sectors. The models are compared with the aim to infer
whether the information frommultiple regions of inter-
est (ROIs) has an added value for both the diagnos-
tic accuracy and the discrimination between types of
glaucoma (NTG and POAG). In summary, this article
was designed to further contribute to the understand-
ing of the following points:

• How good is a model based on multilayer and
multisector (MLS) OCTA data at classifying
between glaucoma patients and healthy subjects?

• Is there an added value of using OCTA imaging
features in comparison to RNFL thickness?

• Can OCTA imaging features be used to discrimi-
nate between POAG and NTG?

• Can OCTA imaging be used to discriminate
between different glaucoma severity levels?

• Which OCTA imaging features have the highest
discriminant power in diagnosing and staging
glaucoma disease?
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Figure 1. Study pipeline structured into four parts (blue: acquisition; yellow: storage; green: image processing; red: classification). ONH-OH,
optic nerve head optically hollow area; ML, machine learning; SVM, support vector machine; POAG, primary open-angle glaucoma; NTG,
normal-tension glaucoma.

Methods andMaterials

The study pipeline was structured into four parts
(acquisition, storage, image processing, and classifica-
tion) as shown in Figure 1. In the first part, OCTA
data were acquired by glaucoma specialists (J.B.B. and
I.S.). Next, the data were exported to the Extensi-
ble Neuroimaging Archive Toolkit (XNAT) platform.
Then, the imaged data were processed for masking
out the spurious information and defining the different
ROIs, in order to compute the respective microvascular
density features. Lastly, two machine learning classifi-
cation models were trained with the features obtained
in the previous step. Feature selection was performed in
order to gain insight into which features are the most
important for risk stratification and disease staging.

Image Acquisition

An OCTA data set selected from the Leuven Eye
Study cohort,12 was used in this study. Thirty-nine
healthy subjects (aged 63 ± 13 years) and 82 glaucoma
patients (aged 69 ± 10 years with an average visual
field mean deviation [VF MD] of –8.1 ± 6.7 dB)
were included, as shown in Table 1. The OCTA data
in the Leuven Eye Study cohort consist of, for each
subject, a 3×3-mm optic disc centered angiography
scan acquired (via undilated pupil) using the Cirrus
5000 HD OCT (Carl Zeiss, Dublin, CA, USA; 10.0
software version). In this cohort, healthy individuals
were recruited from those accompanying glaucoma
patients. The exclusion criteria included blood relatives,
those with a family history of glaucoma, rim notch-
ing or thinning, optic disc structural changes such as
asymmetrical cup/disc ratio, disc hemorrhage, or an
IOP above 21 mm Hg. Patients with glaucoma were

defined as having characteristic optic disc damage and
visual field loss as defined elsewhere.32 Glaucoma
patients were excluded if they had a history of
ocular trauma or any other eye disease (including
high ametropias, defined as hyperopia higher than 4
diopters andmyopia higher than 6 diopters). Addition-
ally, patients with diabetesmellitus were excluded, since
it is a known confounder in vascular-related research.
Patients with open-angle glaucoma were stratified
based on their maximal recorded untreated IOP as
having POAG (> 21 mm Hg) or NTG if equal or
below that threshold. The eye with greater glauco-
matous damage was chosen to be included in the
study whenever both eyes were considered eligible. Six
layers (superficial and deep vascular plexus, avascular,
whole retina, choriocapillaris, and choroid) segmented
by the manufacturer’s software were exported (see
Fig. 2). Although the avascular layer should not
contain flow information, the glaucoma progression
or the performance of the device’s layer segmentation
software may lead to microvasculature imaged in this
layer, as seen in Figure 2. Therefore, the avascular
layer was also included in order to maximize the
information retrieved from the OCTA scan. Images
with signal strength index below the suggested inclu-
sion value provided by the manufacturer, 6 out of
10,33 were excluded from the study. Images with
severe movement artifacts or visible floaters were also
excluded. In addition to the angiography scans, the
averaged circumpapillary RNFL thicknesses were
exported from the device. The glaucoma group was
further divided by severity. Patients with a VF MD
higher than –6 dB were considered mild (37 subjects),
between –6 and –12 dB were considered moderate (26
subjects), and those with a VFMD worse than –12 dB
were considered severe (19 subjects). Visual fields were
obtained using the Humphrey Field Analyzer (HFA)
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Figure 2. Optic disc centered peripapillary OCTA coronal projections of a healthy individual. From left to right: superficial, deep, avascular,
whole retina, choriocapillaris, and choroid layers.

(Zeiss, Oberkochen, Germany) or the Octopus
(Interzeag, Schlieren, Switzerland) perimeters on
the same day as the OCT and OCTA examinations.
The visual field programs were the 24-2 SITA standard
program (HFA) or the G1 dynamic strategy (Octopus).
The VF MD was extracted through a software that
can extract data from both devices (Peridata; PeriData
Software GmbH, Germany, version 3.5.4). Unreliable
VFs (false positive >20%, false negative >40%, or
fixation loss >30%) were excluded from analysis. These
cutoffs are set by default by the manufacturer and
widely used in previously published studies. The study
adhered to the tenets of the Declaration of Helsinki,
and it was approved by the Institutional Review Board
of the University Hospitals Leuven. An informed
consent was signed by all the participants prior to the
study evaluation.

Storage and Database

All the acquisitions were exported via Hyper-
Text Transfer Protocol Secure (HTTPS) from a
picture archiving and communication system (PACS)
at University Hospitals Leuven to the Extensible
Neuroimaging Archive Toolkit (XNAT,34) hosted
within the Dutch national research infrastructure
(Trait/Health-RI, https://trait.health-ri.nl/trait-tools/
xnat). XNAT is an open-source platform for imaging-
based research and clinical investigations, which
manages access to different data sets compartmental-
ized into separate projects. All data were anonymized
before being transferred to the XNAT.

Image Processing

Python version 3.7, in combination with OpenCV,35
and Scikit-image,36 was used for the implementation of
all the developed algorithms. The image processing was
structured into three parts: fovea-disc axis correction,
segmentation, and feature computation.

Fovea-Disc Axis Correction
First, the OCTA images were rotationally corrected

to a common reference. This was applied to ensure
that the same area was being compared during the
sectorial analysis, as there are differences in the head
position during OCTA acquisition. In this work, the
Panomap images provided by the device (see Fig. 3A)
were used to correct the angle of the fovea-disc axis to
zero degrees. The Panomap provides colored circular
delineations of the fovea and optic disc, which were
used to estimate the angle between the centroids of
both circles (Fig. 3B). The mask used to extract the
ROIs in the OCTA image (explained in the following
subsections) was rotated according to the estimated
fovea-disc axis angle (α) and taking into account if the
eye was a left (OS) or right (OD) eye (Fig. 3C).

Segmentation
Two main structures of interest were segmented in

order to be masked out during the feature computa-
tion: the macrovasculature and the optic nerve head
optically hollow area (ONH-OH). The superficial layer
(Fig. 4A) was chosen as an anchor reference for obtain-
ing a macrovascular mask for all the layers, due its
higher contrast in comparison to the other ones. For
achieving an approximate estimate of the macrovascu-
lature, a binary image (Fig. 4B) was obtained from the
superficial OCTA layer, based on a threshold set by the
upper 88th percentile of the image intensity histogram.
The selection of the percentile was done empirically,
and it may depend on the data set. The definition of a
relative threshold (in terms of a percentile), rather than
an absolute value, makes the method more robust to
the variations of intensity expected among individuals.
A morphologic opening followed by a closing was then
applied to denoise the binary image (Fig. 4C). Next,
all connected components with an area less than 250
pixels were removed, ensuring that the remaining area
was macrovasculature/background (Fig. 4D).

Regarding the ONH-OH, the choroid was used as
anchor reference instead of the superficial layer. This
is because, in some cases (Fig. 2), the center of the

https://trait.health-ri.nl/trait-tools/xnat
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Figure 3. Example of a Panomap image used to estimate the fovea-disc axis angle (A). The binarization around the optic disc and the fovea,
based on the predelineated areas by the device, is followed by the detection of the circles’centroids and the estimation of the rotation angle
(α) (B). The superimposed mask on the OCTA image at the optic disc (C) is rotated according to α. The Garway-Heath sectors nasal (N),
inferonasal (IN), inferotemporal (IT), temporal (T), superotemporal (ST), and superonasal (SN) are delineated between the red lines.

Figure 4. Segmentation of themicrovasculature (upper row) and the optic nerve head optically hollow area (lower row) based on the super-
ficial vascular plexus and the choroid, respectively. The steps from the original image until the respective mask are denoted from the left to
the right and succinctly explained in Image Processing.

ONH-OH is partially covered by macrovasculature in
the superficial layer, while the choroid offers a more
robust alternative, as it provides a higher contrast
between the ONH-OH and the vascularized areas
(Fig. 4E). A binary image (Fig. 4F) was obtained from
the choroidal OCTA image based on the lower 40th
percentile of the equalized histogram. This percentile
was empirically determined based on the data set
characteristics. All connected components except the
one with the largest area (estimated with Grana’s

algorithm for eight-way connectivity,37) were removed
from the image (Fig. 4G). Its location and respec-
tive area were used to estimate the centroid and the
radius of a circle, which was used as a mask for the
optically hollow area (Fig. 4H). Even if the dimension
of this region is anatomically dependent and may
vary with the disease progression, the shape remains
similar, allowing this generalization. Figure 5 illustrates
the automatic segmentation applied to all the layers
considered in this study.
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Figure 5. Automatic segmentation of the microvasculature (green) and the optic nerve head optically hollow area (blue) applied to all the
layers included in this study (A, superficial vascular plexus; B, deep vascular plexus; C, avascular; D,whole retina; E, choriocapillaris; F, choroid).
The red lines denote the Garway-Heath sectors already rotated according to the fovea-disc axis correction.

Features
Once the vasculature and the optically hollow

regions had been determined, the Garway-Heath
map,38 was used to set the ROIs according to seven
sectors: superotemporal (ST), superonasal (SN), nasal
(N), inferonasal (IN), inferotemporal (IT), tempo-
ral (T), and the circumpapillary (CP) — all sectors
included. A circular mask centered at the ONH-OH
was created, ensuring that the dimension of the sectors
was the largest possible, while keeping the radius
constant for all of them. The last step of the image
processing was to retrieve the microvascular density
measurements (features) from the ROIs based on the
microvascular intensity median (VIM) within each
ROI. The median was chosen instead of the mean
because it is more robust to outliers in the sample set,
and it is more applicable to not normally distributed
data. Hence, 42 features were obtained based on the
information retrieved from six layers and seven sectors

at the peripapillary region. For comparison purposes,
the RNFL measure from the device was obtained for
each patient. Additionally, the VIM measure for the
IT sector of the superficial layer (S-IT) was used as
a single-feature-based reference method, since it has
been reported as the best glaucoma discriminator in the
peripapillary region.23

Classification

Python 3.7, in combination with Scikit-learn,39 and
Numpy,40 was used for the classification step. Pandas,41
was used for data manipulation, and Matplotlib42 for
obtaining the graphs and images for the results. The
classification was organized into two parts: defini-
tion and training of the machine learning models,
and statistical analysis and feature study, as described
below.
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Machine Learning Models
Three classification models were used for the

experiments: a support vector machine (SVM),43 a
random forest (RF),44 and a gradient boosting classi-
fier (xGB).45 They were trained for three classifica-
tion tasks: (1) differentiating glaucoma patients from
controls, (2) distinguishing POAG and NTG types of
glaucoma, and (3) identifying glaucoma severity levels
(healthy, mild, moderate, and severe).

SVM was chosen because it typically provides
robust classification performance even in case of small
data sets and high-dimensional feature spaces. It is
a supervised machine learning method that creates a
hyperplane that separates the data points into two
classes (negative and positive). The hyperplane is based
on the maximal margin between classification points.
The margin can be defined as the largest distance
between nearest data points (the support vectors) and
the hyperplane. Ideally, data points that are far apart
are separable for classification, and that explains why
the maximal margin is searched. The second model,
RF, is a supervised machine learning model that is
commonly used and relatively fast. It is an ensem-
ble method that aggregates the individual predictions
of decision trees into a combined prediction. RF
creates several trees from subsets of the data, which
are randomly selected. Each node in the tree repre-
sents a decision boundary that takes a certain amount
of feature values into account. The features are also
randomly divided as subsets for each tree. The obtained
(random) trees are then merged to form the final class
decision. The third model, xGB, is another super-
vised model that, like RF, consists of a set of decision
trees. There are two main differences between these
two models. First, RF builds each tree independently
while gradient boosting uses the previous trees as a
basis to build the subsequent ones. This additive model
works in a forward stage wise manner, introducing a
weak learner to improve the shortcomings of exist-
ing weak learners. Second, the RF combines results
at the end of the process, while gradient boosting
combines results along the way. For all models, one-
versus-all strategy,46 was used for differentiating the
glaucoma severity levels. One-versus-all involves train-
ing a single classifier per class, with the samples of
that class as positive samples and all other samples as
negatives.

Leave-one-out cross-validation was used to split the
data in 121 folds. This approach leaves one subject out
of the training data; that is, if there are n data points in
the original sample, then n – 1 samples are used to train
the model and 1 point is used as the test set. Figure 6
summarizes the cross-validation scheme for each of the
three classification tasks.

For each fold, hyperparameter optimization was
applied on the training set. The hyperparameters of
both classifiers were adjusted through grid search
using stratified cross-validation,47 (5-folds) to prevent
overfitting. Hyperparameters are parameters with
specified values per classification model. They influ-
ence the accuracy, complexity, and computational
time of the model. The following parameters were
considered for the SVM: kernel type (linear or radial
basis function); penalty parameter C of the error term
∈ {10−5, 10−4, 10−3, 10−2, 0.1, 1, 10, 102, 103}; gamma
coefficient for the radial basis function kernel ∈
{10−5, 10−4, 10−3, 10−2, 10−1, 100, 101, 102, 103}. The
grid search for the RF model included the following
parameters: number of trees in the forest∈ {10, 25, 50};
function to measure the quality of a split (Gini index
or entropy); whether bootstrap samples are used
when building trees (yes, no); percentage (%) of the
minimum number of samples required to be at a leaf
node ∈ {10, 30, 50}; percentage (%) of the minimum
number of samples required to split ∈ {10, 30, 50};
maximum depth of the tree ∈ {5, 10, 15, unlimited}.
The following parameters were included in the
xGB grid search: minimum sum of instance weight
(Hessian) needed in a child ∈ {1, 5, 10}; step size
shrinkage used in update to prevent overfitting (learn-
ing rate) ∈ {0.01, 0.1, 0.25}; minimum loss reduction
required to make a further partition on a leaf node of
the tree ∈ {0.1, 1, 3}; subsample ratio of the training
instances ∈ {0.6, 0.8, 1}; subsample ratio of columns
when constructing each tree ∈ {0.6, 0.8, 1}; percentage
(%) of the minimum number of samples required to be
at a leaf node ∈ {10, 30, 50}; maximum depth of the
tree ∈ {5, 10, 15, unlimited}.

In order to study the contribution of different
features to the model and to improve the diagnostic
accuracy, feature selection and hyperparameter tuning
were applied on the training set. Ideally, including
more features in a model should imply that a better
outcome is achieved, as more information is avail-
able. However, this is not always the case, as some
features may be redundant or irrelevant to discriminate
glaucoma. These features may decrease the accuracy
and increase training time. Hence, a feature selection
algorithm based on univariate analysis of the features
was applied. Themethod consisted of applying a statis-
tical test to compare the discriminating power of each
feature and hence retain the subset of the k features
that presented the lowest P values. For the binary
classification, the Mann-Whitney test’s P value was
computed between each feature and the class labels.
The Mann-Whitney test was replaced by the Kruskal-
Wallis test for the multiclass classification (healthy,
mild, moderate, and severe). For each possible value
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Figure6. Leave-one-out cross-validation for differentiatingglaucomapatients fromcontrols (first row), distinguishingPOAGandNTG types
of glaucoma (second row), and identifying glaucoma severity levels (third row).

of k, the cross-validation accuracy estimate within the
training set was used as a criterion to be maximized
during the hyperparameter optimization. The optimal
value of k was determined on the test set by selecting
the value that maximized the average accuracy over the
121 outer cross-validation folds.

Statistical Analysis and Feature Study
The normal distribution of the data on each studied

groupwas assessed with theKolmogorov-Smirnov test.
The Mann-Whitney test was used to compare the
statistical differences for all features between control
and glaucoma and between POAG and NTG subjects.
The severity levels of glaucoma were compared with
the one-way analysis permutation test for all features
followed by a post hoc analysis using the pairwise
permutation test with false discovery rate adjustment.
The AUROC, accuracy, sensitivity, and specificity
of the classification between control and glaucoma
subjects, as well as types of glaucoma, were computed

for each model. The 95% confidence interval of each
metric was obtained with stratified bootstrap resam-
pling.48 The comparison between the ROC curves
from the binary classification models was performed
with the DeLong test,49,50 whereas the comparison
between contingency tables for the multiclass models
was performed with the McNemar-Bowker test.51,52
For all tests, P < 0.05 was used to declare significance.
The multiclass microaveraged AUROC and accuracy
were used to assess the performance of the multiclass
models (i.e., to classify between the four glaucoma
severity levels: healthy,mild,moderate, and severe).39,53

Results

The demographics and characteristics of all subjects
included in the data set are listed in Table 1. No statisti-
cally significant age differences were observed between
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Figure 7. Mann-Whitney test, p value, for each vascular feature
between control and glaucoma subjects. The X symbol denotes the
groups that did not present a statistically significant difference (P
>0.05).

the healthy control and the glaucoma groups (P = 0.1),
type of glaucoma (P = 0.2), or severity groups (P =
0.74). A statistically significant difference was observed
for the VF MD between the control and glaucoma
groups (P < 0.001) and between the severity groups
(P < 0.001) but not between the POAG and NTG
groups (P = 0.49). The RNFL thickness was signif-
icantly different between the control and glaucoma
groups but not between POAG and NTG groups
(P = 0.2). A significant difference was also observed
between the three severity groups (P < 0.001) for the
RNFL. However, the post hoc analysis revealed that
no significant differences existed between the moder-
ate and severe groups (P = 0.23). The inferotempo-
ral microvascular density of the superficial layer was
not significant to differentiate between POAG and
NTG (P = 0.77) but presented a statistically signifi-
cant difference between control and glaucoma groups
(P < 0.001) and among severity groups (P < 0.001),
including betweenmoderate and severe glaucoma (P =
0.034).

Glaucoma Classification

The Garway-Heath sectorial analysis of the six
layers of the peripapillary region resulted in 42
microvascular features. Figure 7 shows the logarithm
of the Mann-Whitney test, P value, between control
and glaucoma subjects for each feature, color-coded by
significance level. All features except the avascular layer
for all sectors presented a statistically significant differ-
ence (P < 0.05) between glaucoma and controls. The
IT sector had the lowest P values, in agreement with

what has been reported in the literature. The results of
the classification (AUROC, accuracy, sensitivity, and
specificity) between glaucoma and healthy individu-
als before and after feature selection (according to
the method described in Classification) are summa-
rized in Table 2. For both models, a reduction of the
number of features was observed (42 to 26, 22, and 29
for SVM, RF, and xGB, respectively). Figure 8 shows
the accuracy as a function of the selected number
of features (k). The selected features based on the
highest accuracy observed in Figure 8 are listed in
Table 3. Although the optimal number of features
differed between models, an increase of the accuracy
can be observed in the three models when increasing
the number of features. Since the MLS SVM after
feature selection presented the highest score inAUROC
and accuracy, it was considered the best model for
glaucoma detection.

Further analysis of the ROC curves showed a statis-
tically significant difference (P = 0.02) between one
single feature (S-IT SVM) and the model after feature
selection (MLS SVM). However, no statistically signif-
icant difference was observed (P = 0.24) between the
best structural model (RNFL SVM) and the best
vascular model (MLS SVM).

Type of Glaucoma

The results of the classification between the two
types of glaucoma, POAG and NTG, are shown in
Table 4. The accuracy was maximized at selecting 4,
6, and 38 features for the MLS SVM, MLS RF, and
MLS xGB model, respectively. However, in none of
the cases, neither before nor after feature selection, a
high discrimination ability was observed. The struc-
tural model (RNFLRF) presented the highest sensitiv-
ity, although, as shown in Table 1, no statistically signif-
icant difference existed between both groups (POAG
versus NTG, P = 0.20).

Glaucoma Severity

Figure 9 shows the logarithm of the permutation
test for one-way analysis, log10(P value), between
glaucoma severity groups, including the healthy
controls for each feature, color-coded by significance
level. All features except the avascular layer (for all
sectors) and the choriocapillaris (SN sector) presented
a statistically significant difference (P < 0.05) between
groups. The inferotemporal (at the superficial, retina,
and deep layers) and circumpapillary sectors (at the
superficial layer) were the most discriminant for sever-
ity classification.
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Table 2. AUROC, Accuracy, Sensitivity, and Specificity (± Confidence Interval at 95%) for the Vascular and Struc-
tural Parameters before and after Feature Selection for the Classification between Glaucoma and Healthy Individ-
uals

Before Feature Selection

Parameter Model No. of Features AUROC Accuracy Sensitivity Specificity

Vascular S-IT SVM 1 0.81 ± 0.07 0.82 ± 0.07 0.83 ± 0.08 0.79 ± 0.13
S-IT RF 1 0.76 ± 0.08 0.75 ± 0.08 0.73 ± 0.10 0.79 ± 0.13
S-IT xGB 1 0.81 ± 0.08 0.83 ± 0.07 0.87 ± 0.07 0.74 ± 0.14
MLS SVM 42 0.87 ± 0.06 0.86 ± 0.06 0.84 ± 0.08 0.90 ± 0.09
MLS RF 42 0.80 ± 0.08 0.81 ± 0.07 0.83 ± 0.08 0.77 ± 0.13
MLS xGB 42 0.84 ± 0.07 0.86 ± 0.06 0.90 ± 0.06 0.77 ± 0.13

Structural RNFL SVM 1 0.85 ± 0.06 0.82 ± 0.07 0.76 ± 0.09 0.95± 0.07
RNFL RF 1 0.82 ± 0.07 0.80 ± 0.07 0.77 ± 0.09 0.87 ± 0.11
RNFL xGB 1 0.82 ± 0.07 0.82 ± 0.07 0.82 ± 0.08 0.82 ± 0.12

After Feature Selection

Vascular MLS SVM 26 0.89± 0.06 0.90± 0.05 0.91 ± 0.06 0.87 ± 0.10
MLS RF 22 0.86 ± 0.06 0.87 ± 0.06 0.88 ± 0.07 0.85 ± 0.11
MLS xGB 29 0.85 ± 0.07 0.88 ± 0.06 0.93± 0.05 0.77 ± 0.13

The highest mean value per metric is highlighted in bold.

Figure 8. Accuracy for the selected features for each subset size
k. The same procedure was applied to all models, SVM (blue), RF
(orange), and xGB (green), for classifyingbetween the healthy control
and glaucoma groups.

Table 5 summarizes the AUROC, accuracy, sensi-
tivity, and specificity for all multiclass models before
and after feature selection. The accuracy as a function
of the number of features retrieved from the feature
selection step, as well as the respective ranked features,
is shown in Figure 10 and Table 6, respectively. In
interpreting these results, please note that the multi-

class accuracy measure for this four-class classification
scenario would be 0.25 in case of complete random
guessing; a value of 0.5 to 0.6 therefore indicates
good classification accuracy. Among the compared
models, the MLS xGB after feature selection was
the most discriminant for the multiclass comparison.
The accuracy slightly improved after feature selec-
tion, although no statistically significant difference was
observed according to theMcNemar-Bowker test (P =
0.57).

Figure 11 shows the confusion matrices for the
best structural (RNFL xGB) and vascular (MSL
xGB after feature selection) models. In both cases,
the advanced stages of glaucoma were challenging to
classify, with the RNFL xGB misclassifying all the
severe cases. It can be observed from the confusion
matrices that the RNFL xGB performed better for the
healthy controls. However, the results of Glaucoma
Classification showed that there was no statistical
difference between the RNFL and the best vascular
density model on classifying healthy and glaucoma
subjects. The vascular model had a better performance
discriminating between different glaucoma severity
levels: the confusion matrices show that it was more
likely to classify the right class but also that mistakes
were more likely to happen in consecutive classes
(i.e., mistake severe for moderate rather than mistake
severe for mild). Moreover, a statistically significant
difference was observed between models based on the
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Table 3. List of Features for the SVM, RF, and xGBModels Used to Train the FinalMultilayer andMultisectorModels
for Classifying Control and Glaucoma Subjects

SVM RF xGB

Layer Sector log10(p) Folds Layer Sector log10(p) Folds Layer Sector log10(p) Folds

Superficial IT −12.6 121 Superficial IT −12.6 121 Superficial IT −12.6 121
Deep IT −12.0 121 Deep IT −12.0 121 Deep IT −12.0 121
Retina IT −11.9 121 Retina IT −11.9 121 Retina IT −11.9 121
Superficial CP −11.8 121 Superficial CP −11.8 121 Superficial CP −11.8 121
Superficial ST −10.3 121 Superficial ST −10.3 121 Superficial ST −10.3 121
Retina CP −10.3 121 Retina CP −10.3 121 Retina CP −10.3 121
Superficial IN −9.5 121 Superficial IN −9.5 121 Superficial IN −9.5 121
Retina ST −9.4 121 Retina ST −9.4 121 Retina ST −9.4 121
Deep CP −9.2 121 Deep CP −9.2 121 Deep CP −9.2 121
Deep SN −8.7 121 Deep SN −8.7 121 Deep SN −8.7 121
Superficial SN −8.4 121 Superficial SN −8.4 121 Superficial SN −8.4 121
Deep ST −8.2 121 Deep ST −8.2 121 Deep ST −8.2 121
Retina IN −8.1 121 Retina IN −8.1 121 Retina IN −8.1 121
Superficial T −7.7 121 Superficial T −7.7 121 Superficial T −7.7 121
Superficial N −7.6 121 Superficial N −7.6 121 Superficial N −7.6 121
Retina SN −7.5 121 Retina SN −7.5 121 Retina SN −7.5 121
Deep IN −7.2 121 Deep IN −7.2 121 Deep IN −7.2 121
Choroid CP −7.2 121 Choroid CP −7.2 121 Choroid CP −7.2 121
Retina T −7.1 121 Retina T −7.1 121 Retina T −7.1 121
Choroid IT −7.0 121 Choroid IT −7.0 121 Choroid IT −7.0 121
Retina N −6.3 121 Retina N −6.3 120 Retina N −6.3 121
Choroid ST −6.2 121 Choroid ST −6.3 93 Choroid ST −6.2 121
Deep N −6.1 121 Deep N −6.3 29 Deep N −6.1 121
Choroid T −5.0 121 Choroid T −5.0 121
Deep T −4.7 116 Deep T −4.7 121
Choriocapillaris IT −4.6 110 Choriocapillaris IT −4.6 121
Choroid IN −4.6 15 Choroid IN −4.4 121
Choroid SN −4.3 1 Choroid N −4.1 121

Choroid SN −3.9 121

The selected features are ranked from the top to the bottom with the log10(p) as the averaged logarithm value over the
folds in which the feature was selected.

McNemar-Bowker test (P = 0.01), confirming that,
overall, the vascular information outperformed the
structural information at discriminating different
glaucoma severity groups.

Discussion

A number of approaches and techniques have been
published over the past two decades to infer and
study vascular glaucomatous damage.26 OCTA is a
new submodality that has emerged from OCT, which
measures changes in backscattered signal intensity or
amplitude in order to differentiate areas of blood flow

from areas of static tissue. OCTA requires a very
high sampling density in order to achieve the resolu-
tion needed to detect the tiny capillaries found in the
retina. Its current limitations include inability to show
leakage, proclivity for image artifacts due to patient
movement/blinking,54 and a relatively small field of
view (e.g., 3 x 3 mm, 4.5 x 4.5 mm, and 6 x 6 mm).
Hence, studies incident on glaucoma diagnosis and
progression have been focused on specific regions of
interest, namely the macula and the optic disc, includ-
ing the peripapillary region. Richter et al.,55 reported
that, although the superficial vascular plexus micro-
circulation in both macular and peripapillary regions
is significantly reduced in glaucoma patients, global
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Table 4. AUROC, Accuracy, Sensitivity, and Specificity (± Confidence Interval at 95%) for the Vascular and Struc-
tural Parameters before and after Feature Selection for Classifying POAG and NTG Patients

Before Feature Selection

Parameter Model No. of Features AUROC Accuracy Sensitivity Specificity

Vascular S-IT SVM 1 0.11 ± 0.07 0.11 ± 0.07 0.14 ± 0.10 0.08 ± 0.09
S-IT RF 1 0.13 ± 0.07 0.12 ± 0.07 0.00 ± 0.00 0.26 ± 0.14
S-IT xGB 1 0.32 ± 0.08 0.34 ± 0.11 0.59 ± 0.15 0.05 ± 0.07
MLS SVM 42 0.49 ± 0.11 0.49 ± 0.11 0.43 ± 0.14 0.55 ± 0.16
MLS RF 42 0.45 ± 0.10 0.45 ± 0.10 0.45 ± 0.14 0.45 ± 0.16
MLS xGB 42 0.44 ± 0.11 0.45 ± 0.11 0.55 ± 0.15 0.34 ± 0.16

Structural RNFL SVM 1 0.61± 0.11 0.61 ± 0.11 0.59 ± 0.14 0.63 ± 0.15
RNFL RF 1 0.61± 0.10 0.62± 0.11 0.77± 0.13 0.45 ± 0.16
RNFL xGB 1 0.49 ± 0.11 0.49 ± 0.11 0.52 ± 0.15 0.45 ± 0.16

After Feature Selection

Vascular MLS SVM 4 0.57 ± 0.10 0.56 ± 0.11 0.45 ± 0.15 0.68± 0.15
MLS RF 6 0.51 ± 0.11 0.51 ± 0.11 0.55 ± 0.15 0.47 ± 0.16
MLS xGB 38 0.46 ± 0.11 0.46 ± 0.11 0.50 ± 0.15 0.42 ± 0.16

The highest mean value per metric is highlighted in bold.

peripapillary perfusion parameters outperform global
macular perfusion parameters. The same observations
were reported by Triolo et al.,56 and Rao et al.,23 which
led to the conclusion that the peripapillary region
should provide the highest discriminant power to
classify glaucoma. Although the OCTA data, in their
raw form, are provided in three dimensions, the two-
dimensional data created from projections between
specific depths are often used. Coronal projections of
different layers (superficial vascular plexus,31,57,58 deep
vascular plexus,31,59,60 whole retina,21,61 choriocapil-
laris,61 and choroid61,62) have been studied individu-
ally. However, to the best of our knowledge, no one has
reported whether including information from multiple
layers at the peripapillary region has an added value for
the glaucoma classification.

Three classification models (SVM, RF, and xGB)
were used in this work. All models are relatively
fast and appropriate for small data sets and high-
dimensional feature spaces. However, there are a
number of other suitable options that could have been
used in this work, such as KNN, or decision trees.63
Besides conventional machine learning models, deep
learning approaches can be used in classification tasks
and have become the state of the art in several medical
imaging applications. The main drawback when train-
ing a deep learning model is that it requires large
amounts of data, which were not available in this
study. Nevertheless, a convolutional neural network
(CNN) model (VGG16,64) was explored to compare
with the proposed methods in all three classification

Figure 9. Permutation test, p value, for each vascular feature
between severity groups (healthy controls, mild, moderate, and
severe glaucoma). The X symbol denotes the groups that did not
present a statistically significant difference (P >0.05).

tasks. Pretrained weights and data augmentation were
used to minimize the issues derived from the small
data set size. Unfortunately, the CNN was not able
to outperform the traditional classifiers in any of the
cases. The implementation details and results of this
approach are detailed in the Appendix.

In Glaucoma Classification, we show that combin-
ing the information from multiple layers and multi-
ple sectors at the peripapillary region has an added
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Table 5. AUROC and Accuracy (± Confidence Interval at 95%) for the Vascular and Structural Parameters before
andafter Feature Selection for ClassifyingHealthyControls andDifferentGlaucomaSeverity Levels (Mild,Moderate,
and Severe)

Before Feature Selection

Parameter Model No. of Features AUROC Accuracy Sensitivity Specificity

Vascular S-IT SVM 1 0.72 ± 0.06 0.58 ± 0.09 0.58 ± 0.09 0.86 ± 0.04
S-IT RF 1 0.70 ± 0.06 0.55 ± 0.09 0.55 ± 0.09 0.84 ± 0.04
S-IT xGB 1 0.72 ± 0.06 0.58 ± 0.09 0.58 ± 0.09 0.85 ± 0.04
MLS SVM 42 0.67 ± 0.06 0.51 ± 0.09 0.51 ± 0.09 0.83 ± 0.04
MLS RF 42 0.72 ± 0.06 0.60 ± 0.09 0.60 ± 0.09 0.85 ± 0.04
MLS xGB 42 0.72 ± 0.06 0.59 ± 0.09 0.59 ± 0.09 0.85 ± 0.04

Structural RNFL SVM 1 0.60 ± 0.06 0.40 ± 0.09 0.40 ± 0.09 0.79 ± 0.04
RNFL RF 1 0.59 ± 0.06 0.39 ± 0.09 0.39 ± 0.09 0.80 ± 0.03
RNFL xGB 1 0.67 ± 0.06 0.53 ± 0.09 0.53 ± 0.09 0.82 ± 0.04

After Feature Selection

Vascular MLS SVM 21 0.74 ± 0.06 0.60 ± 0.09 0.60 ± 0.09 0.87± 0.04
MLS RF 24 0.69 ± 0.06 0.55 ± 0.09 0.55 ± 0.09 0.84 ± 0.04
MLS xGB 39 0.76± 0.06 0.64± 0.08 0.64± 0.08 0.87± 0.04

The highest mean value per metric is highlighted in bold.

value for glaucoma classification, in comparison to
using only the most discriminant region (superfi-
cial layer, inferotemporal sector). The comparison of
healthy individuals with glaucoma patients showed
that it is possible to achieve a classification accuracy
using vascular information similar to that obtained
with structural information (statistically nonsignifi-
cant differences). The MLS SVM obtained the best
results among the compared models to differentiate
healthy from glaucoma individuals, although the differ-
ences with the RNFL were not significant. The differ-
ences between using the most discriminant feature for
microvascular analysis, the inferotemporal sector in the
superficial layer, and using the feature selection subset
were significant, showing that there is an added value of
using different layers and sectors for glaucoma classifi-
cation.However, it is difficult to concludewhether these
differences are from the pathology itself or a conse-
quence of the imaging artifacts. In general, deeper
layers have not been considered in glaucoma analysis
due to the difficulty in explaining the physical meaning
of the imaged content. Deeper layers are influenced by
light propagation through the overlying vessels, which
cause the projection of intensity and phase fluctua-
tions into deeper layers. These are known as shadowing
artifacts. Although latest algorithms provided by the
manufacture tend tominimize these influences, residual
artifacts remain. From the univariate analysis, it is also
possible to observe that the superficial is themost infor-

mative layer for discriminating glaucoma, in agreement
withwhat has been reported in the literature.Moreover,
looking at the sectors, it can be confirmed that the infer-
otemporal sector is the most affected by the disease,
following also what has already been published about
typical locations for optic nerve damage.65 Overall,
the obtained results regarding the most informative
feature and accuracy of the models are in agree-
ment with the latest analysis of the peripapillary
region.23,31,66

Only a few studies have analyzed the differences
between POAG and NTG. Bojikian et al.,67 observed
that the perfusion detected on the optic disc was signif-
icantly reduced in POAG and NTG groups compared
to normal controls, but no difference was seen between
POAG and NTG groups with similar levels of VF
MD damage. In this study, an attempt to differenti-
ate both groups was also made. However, the results
show that, regardless of the type of parameters used
(structural or vascular), the model (SVM, RF, or
xGB), and the application or not of feature selec-
tion, no differentiation could be made in this data
set. This can be due to the data set not being suffi-
ciently large or representative to obtain conclusions,
but it can also point to the impossibility of making
a distinction between POAG and NTG based on a
single, static OCTA analysis. Since many studies have
shown that NTG patients are more prone to vascular
dysregulation, it is possible that these differences are
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clearer in a dynamic (rather than static) examination
of ONH-OH/retinal vasculature, comparing OCTA
data obtained through several acquisitions in the same
patient.

The glaucoma group was subdivided into three
groups according to the severity (mild, moderate,
and severe). The MLS xGB model achieved the best
outcomes for accuracy in the multiclass analysis. From
the multiclass confusion matrices in Figure 11, it was
possible to observe that the best vascular model classi-
fies the severity level correctly more often than the
structural model, especially in the intermediate levels.
The poorer performance of the structural parameters
compared to the vascular analysis may be explained by
the floor effect in the RNFL as the disease progresses.
Structural parameters measured by OCT reach a base
level beyond which little change was seen with increas-
ing severity of glaucoma.68 The average value gener-
ally lies between 50% and 70% of the RNFL in normal
eyes.69-71

Despite the results observed in this study, further
research needs to be done in order to reduce the
image variability due to the image acquisition and post-
processing. Since there is not a clear boundary that
can be applied to differentiate micro- from macrovas-
culature in OCTA imaging, different image- process-
ing approaches may lead to different microvascular
interpretations within the same data. It is a subjective
definition that may be interpreted differently depend-
ing on the image operator. A popular method used
to extract the microvascular density is to generate a
binarization from the OCTA image, based on thresh-
olding techniques.72 The ratio of white or black pixels
over a specific area is used to estimate the microvascu-
lar dropout. In general, the threshold is chosen based
on an empirical analysis using general-purpose image-
processing programs such as ImageJ.73 These binariza-
tion approaches lead to results that are valid for a
specific method, which ultimately hinder comparisons
between different studies, and preclude the develop-
ment of a robust classification model. In this study, it is
assumed that the OCTA images exported from a single
device are comparable between subjects and, hence,
the median serves as a robust measure to estimate the
microvascular density within a ROI, provided that the
microvasculature is properly segmented. The separa-
tion of micro- frommacrovasculature is another source
of variability between studies. In some studies, the
macrovasculature is segmented and extracted from
the region of interest. Other authors have opted for
estimating the vascular density based on all the infor-
mation presented on the OCTA image. Since the
macrovasculature is not expected to be affected by
glaucoma and is a subject-dependent anatomic feature,

Figure 10. Accuracy for the selected features for each subset size
k. The same procedure was applied to all models, SVM (blue), RF
(orange), and xGB (green), for classifying the severity groups.

an analysis including the macrovasculature based on
image pixel intensity is not desirable, as it may bias the
results.74 Similarly, the size of the ONH-OH is subject
dependent and does not provide relevant informa-
tion. Therefore, it is desirable to segment and exclude
these areas from the ROI before the microvascular
density estimation is done. Deep learning segmenta-
tion approaches could eventually reduce the current
variability given their proven efficiency in vascular
segmentation in fundus photography and scanning
laser ophthalmoscopy imaging.75 All of these adjust-
ments should be routinely done to guarantee more
accurate (and comparable) results when analyzing
the role of vascular parameters in glaucoma with
OCTA.

Although this study hints that microvascular
density outperforms the RNFL thickness in multi-
class classification of glaucoma severity, further work
on larger cohorts is needed in order to validate this
hypothesis. As seen in Figures 8 and 10, the accuracy
as a function of the number of features (based on
the entire data set) was fluctuating substantially, and
there was no clear and robust maximum in the graph.
Thus, the accuracies reported after feature selection
might be a bit optimistic. Future studies should also
evaluate the predictive value of RNFL when using
the same Garway-Heath sectors corrected for the
fovea-disc axis. In addition, the prediction ability of
vascular and structural information using longitudinal
data should be analyzed, as well as the design of new
models combining multisectorial data from both types
of parameters.
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Table 6. List of Features for the SVM and RF Models Used to Train the Final Multilayer and Multisector Models for
Classifying the Severity Groups Including the Healthy Controls

SVM RF xGB

Layer Sector log10(p) Folds Layer Sector log10(p) Folds Layer Sector log10(p) Folds

Superficial IT −14.9 121 Superficial IT −14.9 121 Superficial IT −14.9 121
Retina IT −14.0 121 Retina IT −14.0 121 Retina IT −14.0 121
Deep IT −13.9 121 Deep IT −13.9 121 Deep IT −13.9 121
Superficial CP −13.7 121 Superficial CP −13.7 121 Superficial CP −13.7 121
Superficial IN −12.5 121 Superficial IN −12.5 121 Superficial IN −12.5 121
Superficial ST −11.7 121 Superficial ST −11.7 121 Superficial ST −11.7 121
Retina CP −11.6 121 Retina CP −11.6 121 Retina CP −11.6 121
Retina IN −11.0 121 Retina IN −11.0 121 Retina IN −11.0 121
Deep CP −10.9 121 Deep CP −10.9 121 Deep CP −10.9 121
Deep IN −10.7 121 Deep IN −10.7 121 Deep IN −10.7 121
Retina ST −10.1 121 Retina ST −10.1 121 Retina ST −10.1 121
Deep ST −10.1 121 Deep ST −10.1 121 Deep ST −10.1 121
Deep SN −9.7 121 Deep SN −9.7 121 Deep SN −9.7 121
Superficial SN −9.6 121 Superficial SN −9.6 121 Superficial SN −9.6 121
Superficial N −8.8 121 Superficial N −8.8 121 Superficial N −8.8 121
Superficial T −8.5 121 Superficial T −8.5 121 Superficial T −8.5 121
Retina SN −8.3 121 Retina SN −8.3 121 Retina SN −8.3 121
Deep N −7.1 121 Deep N −7.1 121 Deep N −7.1 121
Retina N −7.1 121 Retina N −7.1 121 Retina N −7.1 121
Retina T −7.1 121 Retina T −7.1 121 Retina T −7.1 121
Choroid IT −6.3 120 Choroid IT −6.3 121 Choroid IT −6.3 121
Choroid CP −6.3 1 Choroid CP −5.9 121 Choroid CP −5.9 121

Choriocapillaris IT −5.0 121 Choriocapillaris IT −5.0 121
Choroid ST −4.9 121 Choroid ST −4.9 121

Deep T −4.3 121
Choroid T −4.2 121
Choroid IN −3.1 121
Choroid N −3.0 121
Choroid SN −3.0 121
Choriocapillaris CP −2.1 121
Choriocapillaris ST −1.9 121
Choriocapillaris T −1.7 121
Choriocapillaris IN −1.2 121
Choriocapillaris SN −1.2 121
Choriocapillaris N −0.9 121
Avascular IT −0.9 121
Avascular CP −0.5 120
Avascular IN −0.4 117
Avascular T −0.3 115
Avascular ST −0.3 10
Avascular SN −0.3 1

The selected features are ranked from the top to the bottom with the log10(p) as the averaged logarithm value over the
folds in which the feature was selected.

Conclusion

In order to ensure individualized health care for
glaucoma patients, taking into account the disease

and severity, it is necessary to develop models and
software that are able to integrate the increasingly
complex web of risk factors and parameters associated
with the disease. Hence, studies in glaucoma research
must expand beyond the established risk factors and
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Figure 11. Confusionmatrices for each severity group according to the best structural (RNFL xGBmodel, left) and the best vascular model
(MSL xGB model after feature selection, right).

explore the contribution of novel technologies. In this
sense, the inclusion of image-based parameters, such as
measurements derived fromOCT andOCTA, is partic-
ularly relevant, since these have high reproducibility
and are largely operator independent. In line with
this research goal, this study assesses the effect of
combining vascular information of different retinal
and choroidal layers to improve the prediction and
staging of glaucoma disease. The results show that,
although the OCTA superficial vascular plexus is the
most informative at discriminating healthy subjects
from glaucoma patients, and also between glaucoma
severity levels, there is an added value of including
multilayer and multisector information in a classifica-
tion model, instead of restricting the information to
the most discriminative region. Moreover, a combina-
tion of multilayer and multisector microvascular infor-
mation seems to yield a higher discriminative power
than the circumpapillary RNFL thickness to discrimi-
nate between severity levels of glaucoma. Nevertheless,
further studies must be done to better understand and
validate the role of deeper layers such as choriocapil-
laris and choroid in glaucomatous vascular damage, as
well as to reduce the bias due to image acquisition and
postprocessing. In addition, multisectorial RNFL data
and larger cohorts should also be considered in future
research.
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In this section, we summarize the obtained results
for the classification of glaucoma disease (healthy,
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Figure A1. VGG16 architecture modified for each of the six OCTA images. The weights of the convolutional blocks (in green) were freezed,
while the dense layers were trained.

glaucoma), type of glaucoma (POAG, NTG), and
glaucoma severity (healthy, mild, moderate, and severe)
using deep learning (DL).76 Among the different possi-
bilities, a transfer-learning approach based on a CNN
classification model was applied. In transfer learning,
a new task is learned through the transfer of knowl-
edge from a task that has already been learned.77 The
task used to train the model does not need to be related
to the objective task. Such a technique reduces the
amount of data required and, in many cases, increases
the accuracy as compared to models built from
scratch.

Methods

A state-of-the-art architecture for classification
problems, VGG16,64 was used as basis for the model.
All OCTA images were resized to match the VGG16’s
expected input (224 × 224 × 3). Since the current
data set consists of six vascular layers per subject (see
Fig. 2), a VGG16 model was implemented per layer.
The weights of the six models were shared, as other-
wise the number of trainable parameters would be too
high, potentially leading to overfitting. Regarding each
individual VGG16, the convolutional blocks were kept
as in the original architecture, but the last block, which
consists of three fully connected layers, was altered to
reduce the model complexity and to prevent overfit-
ting (see Fig. A1). A spatial dropout78 layer of 0.25
was added to the block, and the number of neurons of
the two fully connected layers was reduced from 4096
to 2048. A concatenation layer was used to merge the
output of all six models, and the number of neurons

of the output layer was changed from 1000 to 2 and
4 for the binary and multiclass classification, respec-
tively. The network was initialized with the ImageNet79
weights, and only the fully connected layers were
retrained. Tensorflow80 andKeras81 libraries were used
for the implementation of the models.

To prevent the model from overfitting the training
set and to improve its generalization capabilities, data
augmentation was performed, increasing the number
of samples in the data set by a factor of 5. The follow-
ing ranges of transformation and normalization opera-
tions were applied to the data: rotation (up to 10
degrees), height and width shift (ranging up to 10%),
horizontal flip, zoom, and brightness (ranging from
80% to 120%).

Experiments with various hyperparameter values
were conducted to maximize the performance of the
CNN model for classifying healthy controls against
glaucoma subjects. The optimizer was the stochastic
gradient descent that adapts learning rates based on
a moving window of gradient updates (Adadelta).82
The binary cross-entropy was chosen as loss function,
and the training ran for 40 epochs with a batch size
of 16. The hyperparameters chosen for this first classi-
fication task were also used for training the models
to classify POAG versus NTG and glaucoma severity
levels. For the latter, the categorical cross-entropy loss
function was used. Given the constraints in comput-
ing power, stratified cross-validation was used to split
the data in five folds, instead of the leave-one-out
pipeline used in the classical methods. The number
of images for each class was the same for each
fold.
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(a) (b)

Figure A2. Mean and confidence interval at 95% for the accuracy (a) and loss (b) of the model trained to classify healthy controls versus
glaucoma subjects.

Table A1. AUROC, Accuracy, Sensitivity, and Specificity (± Confidence Interval at 95%) for the Glaucoma Classifi-
cation, Type of Glaucoma, and Glaucoma Severity Analysis Based on the Transfer Learning Approach

Analysis AUROC Accuracy Sensitivity Specificity

Glaucoma classification (healthy, glaucoma) 0.83 ± 0.05 0.87 ± 0.03 0.73 ± 0.10 0.94 ± 0.03
Type of glaucoma (POAG, NTG) 0.65 ± 0.09 0.65 ± 0.09 0.65 ± 0.19 0.66 ± 0.13
Glaucoma severity (healthy, mild, moderate, severe) 0.63 ± 0.03 0.47 ± 0.05 0.47 ± 0.05 0.82 ± 0.02

Results and Discussion

Figure A2 shows the mean and confidence interval
at 95% for the accuracy (a) and loss (b) of the model
trained to classify healthy controls versus glaucoma
subjects. The AUROC, accuracy, sensitivity, and speci-
ficity for the three models are summarized in Table A1.

The results show that the presented transfer learning
approach does not outperform the best conventional
models presented earlier in this work. For the healthy
control versus glaucoma subjects, the specificity was
better than the best model presented in Table 2.
However, the AUROC, the accuracy, and the sensitiv-
ity presented lower values. Themodel trained to classify
the type of glaucoma did present slightly better results
for the AUROC, accuracy, and specificity than the best
model in Table 4. However, no significant statistical
difference was observed between the ROC curves (P =
0.46). Moreover, the results are still underwhelming,
and it is not possible to claim that OCTA data can be

used to differentiate between POAGandNTG subjects.
Lastly, the model trained to differentiate between
glaucoma severity levels presented lower values for all
metrics when compared to the best model in Table 5.
This may be explained by the low number of images of
the highest severity level, as depicted in Table 1.

Conclusion

The application of the CNNmodel presented in this
Appendix did not show added benefits when compared
to the best models presented in Tables 2, 4, and 5.
Although we can not claim that other deep learning
approaches could not give better results, it is certain
that in-depth research would be needed to significantly
improve the performance of the current classification
given the size of the OCTA data set. Nevertheless,
larger data sets would likely benefir from the perfor-
mance of deep learning-based models.


