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Abstract

a systematic evaluation has not been reported yet.

biological pathways.

Background: Clustering-based methods on gene-expression analysis have been shown to be useful in biomedical
applications such as cancer subtype discovery. Among them, Matrix factorization (MF) is advantageous for
clustering gene expression patterns from DNA microarray experiments, as it efficiently reduces the dimension of
gene expression data. Although several MF methods have been proposed for clustering gene expression patterns,

Results: Here we evaluated the clustering performance of orthogonal and non-orthogonal MFs by a total of nine
measurements for performance in four gene expression datasets and one well-known dataset for clustering.
Specifically, we employed a non-orthogonal MF algorithm, BSNMF (Bi-directional Sparse Non-negative Matrix
Factorization), that applies bi-directional sparseness constraints superimposed on non-negative constraints,
comprising a few dominantly co-expressed genes and samples together. Non-orthogonal MFs tended to show
better clustering-quality and prediction-accuracy indices than orthogonal MFs as well as a traditional method, K-
means. Moreover, BSNMF showed improved performance in these measurements. Non-orthogonal MFs including
BSNMF showed also good performance in the functional enrichment test using Gene Ontology terms and

Conclusions: In conclusion, the clustering performance of orthogonal and non-orthogonal MFs was appropriately
evaluated for clustering microarray data by comprehensive measurements. This study showed that non-orthogonal
MFs have better performance than orthogonal MFs and K-means for clustering microarray data.

Background

DNA microarray can simultaneously measure the
expression levels of thousands of genes. Increasingly, the
challenge is to interpret such data to reveal molecular
biological processes and the mechanism of human dis-
eases. One of the main goals of expression data analysis
is to identify the changing and unchanging genes and to
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correlate these changes with similar expression profiles.
One of the major challenges for gene expression analysis
is the reduction of dimension. Gene expression data
typically have high dimensionality, with tens of thou-
sands of genes whereas the number of observations or
experiments is usually under a hundred. Because the
number of variables easily exceeds that of experiments,
dimension reduction is obviously required for gene
expression analysis. This task can be considered as a
matrix factorization problem.

Matrix factorization (MF) methods on microarray data
can extract distinct patterns from the data [1-5]. Princi-
pal Component Analysis (PCA) and Singular Value
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Decomposition (SVD) are popular analysis methods, and
they have been applied to classification problems with
satisfactory results [1,5]. However, because of the holis-
tic nature of PCA or SVD, it is difficult to provide the
biologically instinctive interpretation of data from the
obtained components. In order to overcome this limita-
tion, Paatero and Tapper [6] and Lee and Seung [7] pro-
posed that non-negative matrix factorization (NMF) can
learn part-based representations that can provide the
obvious interpretation. The non-negativity constraints
make the representation purely additive (allowing no
subtractions), in comparison with many other linear
representations such as PCA and Independent Compo-
nent Analysis (ICA) [8]. Their work was applied to sig-
nal processing and text mining. Brunet et al. [9] applied
NMF to describe the gene expression profiles of all
genes in terms of a few number of metagenes in order
to derive meaningful biological information from cancer
expression datasets. They clustered the samples into dis-
tinct subtypes by metagene expression patterns.

The gene expression patterns can be sparsely encoded
by metagenes, implying a few significantly co-expressed
genes. Several groups have proposed NMF formulation
that enforces the sparseness of the decomposition. Li et
al. [10] proposed local NMF (LNMF) that has additional
constraints to enforce the sparseness in the NMF. Hoyer
[11,12] also proposed NMF formulation that can find
parts-based representations by explicitly incorporating
the concept of sparseness. Wang et al. [13] demon-
strated Fisher non-negative matrix factorization (FNMF)
that learns localized features by imposing Fisher con-
straints. Gao and Church [14] attempted to control
sparseness by penalizing the number of non-zero entries
unlike other methods.

Sample-based clustering, however, is not the only con-
cern in microarray data analysis. Gene-based clustering
provides informative sets of tightly co-regulated genes.
While sample-based clustering relies on metagenes,
gene-based clustering relies on meta-samples. The two
processes can be viewed as bi-directionally constrained
with each other. Good metagene may support good
sample-based clusters and vice versa. Optimizing sam-
ple- dimension only, sparseness of gene-dimension is
relatively decreased when sparseness of sample-dimen-
sion is increased. In result, the minimization problem is
convex that was subsequently described by others
[11,12,14,15] and resulting matrix cannot support gene-
based clusters well. Therefore, optimizing both sample
and gene dimension together may be appropriated for
clustering of microarray data. Here, we employed a
novel non-orthogonal MF algorithm, Bi-directional
Non-negative Matrix Factorization (BSNMF), with bi-
directional sparseness constraints superimposed on non-
negative constraints, comprising a few dominantly co-
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expressed genes and samples together. The bi-direc-
tional optimization process may provide quality cluster-
ing with improved biological relevance that may not be
achieved by applying MFs for each dimension separately.

Many clustering-based methods are developed to
transform a large matrix of gene expression levels into a
more informative set of which genes are highly possible
to share biological properties. Although clustering-based
algorithms for microarray data analysis have been exten-
sively studies, most works have not focused on the sys-
tematic comparison and validation of clustering results.

Different algorithms tend to lead to different cluster-
ing solutions on the same data, while the same algo-
rithm often leads to different results for different
parameter settings. Since there is no consensus on
choosing among them, the applicable measures should
be applied for assessing the quality of a clustering solu-
tion in different situations. For example, when the true
solution is known and we can compare it to another
solution, Minkowski measure [16] or the Jaccard coeffi-
cient [17] is applicable. Whereas, when the true solution
is not known, there is no agreed-upon method for vali-
dating the quality of a suggested solution. Several meth-
ods evaluate clustering solutions based on intra-cluster
homogeneity or inter-cluster separation [18,19]. Mean-
while, the prediction of the correct number of clusters is
a basic problem in unsupervised classification problems.
To solve this problem, a number of cluster validity
indices, assessing the quality of a clustering partition
have been proposed.

In the present paper, we would like to systematically
evaluate various MFs applied to gene-expression data
analysis. We compare six MFs, including two orthogonal
MFs (i.e. PCA and SVD) and four non-orthogonal MFs
(i.e. ICA, NMF and NMF with sparseness constraints
(SNMF) and BSNMF) and a well-known unsupervised
clustering method, K-means algorithm. All were evalu-
ated by seven cluster-evaluation indices. We evaluated
them in view of basic three categories: (1) traditional
clustering, (2) orthogonal MFs and (3) non-orthogonal
MFs. Predictive power and consistency of the methods
are evaluated by using adjusted Rand Index and accu-
racy index when the class labels of data were available.
To evaluate the biological relevance of the resulting
clusters from different algorithms, we evaluated the sig-
nificance of the biological enrichment for the clusters by
using Gene Ontology (GO) and biological pathway
annotations.

Results

Evaluation of each clustering-based method

In our study, we applied K-means algorithm and six
MFs, which are two orthogonal (i.e. SVD and PCA) and
four non-orthogonal (i.e. ICA, NMF, SNMF and
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BSNMF) algorithms to the five benchmarking datasets. Among measures, the GAP statistic is optimized when
We evaluated the seven methods using nine measures, it decreases (Fig. 1(g)), while others are optimized when
including seven cluster evaluation indices and two pre-  they increase (Fig. 1(a) — (f)). The homogeneity, separa-
diction power measures. Fig. 1 exhibits results from the tion, Dunn Index, average silhouette width and Hubert
seven cluster-quality measures. We repeatedly applied  correlation (i.e. Hubert's gamma) tend to be higher for
the clustering (or MFs) algorithms 20 times for each  non-orthogonal MFs than results from orthogonal MFs
dataset for each number of clusters, i.e. K = 2 to 4 (for and K-means algorithm. The GAP statistic is lower for
the Iris dataset) or 2 to 5 (for the rest). The values in non-orthogonal MFs than orthogonal MFs and K-
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Figure 1 lllustration of various measures. lllustration of various measures. Here, we evaluated seven methods by six measures. Each illustration
shows results from various measures such as (a) Homogeneity, (b) separation, (c) Dunn Index, (d) average silhouette width, (e) Pearson

correlation of cophenetic distance,
measures which have higher value are optimized.

(f) Hubert gamma and (g) GAP statistic. GAP statistic is optimized when it has lower value. But other
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has the highest value for SVD (Fig. 1(e)). Overall, non-
orthogonal MFs represented best clustering quality.

We compared homogeneity with separation at the
same time (Additional File 1). Results from measures for
each dataset were clustered. Results from NMF, SNMF
and BSNMF showed higher slope, that is, their homoge-
neity and separation are more optimized than others.
When we compare one of the measures, Hubert correla-
tion of cophenetic distance between MFs, at each num-
ber of clusters (Additional File 2), NMF, SNMF and
BSNMF showed better performance than others in four
datasets except for the Leukemia dataset. ICA has the
highest value for the Leukemia dataset. Overall, non-
negative MFs have best clustering quality.

The three datasets, Leukemia, Medulloblastoma and
Iris datasets have known class labels as ‘gold standards’.
For the three datasets, we measured accuracy or predic-
tive power using the adjusted Rand Index and prediction
accuracy. Fig. 2 shows the adjusted Rand Index for the
correct classification for the three datasets with the
seven methods (i.e. six MFs and K-means method). The
Leukemia dataset was evaluated at both two-class (i.e.
AML vs. ALL, Fig. 2(a)) and three-class (i.e. AML vs. T
cell type vs. B cell type, Fig. 2(b)) levels. Fig. 2 demon-
strates that BSNMF, SNMF and NMF have the highest
Adjusted Rand Index for most of the evaluations.

Fig. 3 shows the results from prediction accuracy.
SNMF and BSNMF tend to show the best accuracy
measures. We also included a voting scheme that simply
combines all the results from the various algorithms and
returns the best consensus. Voting showed comparable
results to SNMF and BSNMF.

Detailed class prediction results for the Leukemia
dataset are shown in Table 1. Class assignment is opti-
mized for each dataset when accuracy has the highest
value. All methods were tested both at K=2 and K=3.
At K=2 level, one AML sample (AML_12) was incor-
rectly assigned to ALL by SNMF and BSNMF. The
result is the same as that of Gao et al. [14]. The error
count for NMF was two (ALL_7092_B cell and
ALL_14749_B cell). Overall, non-orthogonal MFs like
BSNMF, SNMF, NMF and ICA showed higher predic-
tion accuracy than orthogonal MFs and K-means algo-
rithm. At K=3 level, BSNMF showed the best results
with only one mistake that AML_13 was incorrectly
assigned to ALL, while SNMF made two mistakes
(AML_13 and ALL_21302_B cell). Table 2 shows the
results for the Medulloblastoma dataset K=2. BSNMF
showed the best result with 11 mistakes, while SNMF
and NMF have 13 and ICA has 14.

Evaluation of biological relevance
To evaluate the biological relevance of the clustering
results, we created clusters of genes and assigned them
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to the corresponding sample-wise clusters. For MFs, we
clustered genes by using coefficient matrix of genes. For
instance, in the Leukemia dataset factorized by NMF at
K=2, we clustered genes into two groups by using the
coefficient matrix of genes, W, from NMF. Given such a
factorization, the matrix W is able to be used to deter-
mine the gene cluster membership, that is, a gene i is
placed in a cluster j if the w;; is the largest entry in row
i. Applying K-means algorithm, we clustered genes
using original gene expression data matrix. Then, we
labelled gene-cluster corresponding to the labels of sam-
ple-cluster.

Gene-wise clusters are annotated by GO terms and
biological pathways. We measured the significance of
GO term (or pathway) assignment by using hyper-geo-
metric distribution. Here we briefly regard each GO
term and biological pathway as a term. Table 3 shows
the numbers of significantly enriched terms for the cor-
responding clusters at p < 0.05. For the Leukemia data-
set, BSNMF (N=535) and NMF (N=532) have the
highest numbers of significantly enriched terms in ALL.
BSNMF has the highest numbers in AML (N=280) and
in total (N=815) (Table 3(a)). Table 3(b) shows the
results from Medulloblastoma dataset. In cluster 1,
BSNMF (N=599) and K-means (N=517) have the most
significantly enriched terms. In cluster 2, SVD (N=361)
and NMF (N=335) have the most terms. The total num-
ber of significant terms is the biggest with BSNMF
(N=805). Table 3(c) demonstrates that the fibroblast
dataset has the biggest total number of significant terms
for BSNMF (N=504). Table 3(d) exhibits the result from
the mouse dataset. In cluster 1, BSNMF (N=690) and
SNMF (N=686) have the most significantly enriched
terms. In cluster 2, ICA (N=114) has the most terms.
The total number of significant terms is the biggest with
BSNMF (N=746). Overall, the numbers of significantly
enriched terms resulting from non-orthogonal MFs,
BSNMF, SNMF, NMF and ICA, are bigger than those of
orthogonal MFs and K-means algorithm.

Dueck et al. [20] summarized GO terms with signifi-
cance to the resulting clusters from various clustering
algorithms using two representations: the proportion of
factors that are significantly enriched for at least one
functional category at @=0.05 and the mean log;, (p-
value). We combined two representations. We calcu-
lated the weighted p-values, the proportion of significant
GO terms multiplies the negative log;o (p-value). Fig. 4
shows the weighted p-values of the GO terms signifi-
cantly annotated to the corresponding clusters for the
Leukemia and Medulloblastoma datasets. The weighted
p-values are more significant when they have higher
value. For simplicity, we plotted the top 50 terms. Plots
for other dataset can be found in the supplement web
site (http://www.snubi.org/software/BSNMEF/). For the
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Figure 2 lllustration of the Adjusted Rand index. lllustration of the Adjusted Rand index. (a) Result from leukemia dataset which has known
class labels with two groups, ALL and AML, We tested various methods at rank k=2. (b) From leukemia dataset with three groups, ALL-B, ALL-T
and AML. We applied the adjusted Rand index at rank k=3. (c) From medulloblastoma dataset which has known class labels with two groups,
classic and desmoplastic. (d) From iris dataset that has known class labels with three groups of flower species.

Leukemia dataset, BSNMF and K-means were shown to
have annotated terms with the highest significance in
AML and BSNMF and SNMF in ALL (Fig. 4(a), (b)).
Overall, BSNMF and SNMF showed the highest signifi-
cance for the whole Leukemia dataset (Fig. 4(c)). In the
medullobalstoma dataset, BSNMF and K-means for the
first cluster and BSNMF and SVD for the second cluster
had the higher weighted p-value than other methods.

Overall, BSNMF showed the best results (Fig. 4(d) - (f)).
Therefore, genes in the clusters created by BSNMF
seemed to be more biologically associated in terms of
GO term annotations than those created by other
methods.

The p-values are calculated for each GO category and
for each pathway resource (Fig. 5). The GO term (or
pathway) annotation having lower p-values represents
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Figure 3 lllustrations of accuracy. lllustrations of accuracy. It measures prediction power of clustering. Bar plot of accuracy from three dataset,
Leukemia dataset, Medulloblastoma dataset and Iris dataset which have known labels of sample-class.

that corresponding cluster in terms of sharing GO terms
(or pathways) is more relevant biologically. The result
for K-means and BSNMF in the AML cluster is only
shown. Other results are found in the supplement web
site. Overall, non-orthogonal MFs tend to create more
enriched clusters.

The top- ranked genes with the largest coefficient in
W matrix of BSNMF may be most explanatory for each
cluster (Additional File 3). The top ranked 20 genes for
the ALL cluster are enriched in significant GO terms
like response to external stimulus, immune response
and cell growth. Genes for the AML cluster had are
enriched in response to external stimulus, immune
response and membrane genes. The gene functions in
PubMed indicated that the two sets of 20 genes are
enriched in chemokines and tumor suppressor genes.
Genes for the first cluster of meduloblastoma were
related to cytoplasm, cell motility and cell growth and/
or maintenance and those for the second cluster to
cytoplasm, biosynthesis and protein metabolism genes.
Gene sets for other datasets can be found in the supple-
ment web site.

The mean expression profiles of the gene-wise clusters
from the fibroblast dataset were extracted (Additional
File 4). We clustered genes by using coefficient matrix
of genes when we applied MFs. Coefficient matrix of

genes (W matrix) can be used to determine cluster
membership of genes, that is, gene i belongs to cluster j
if the wj; is the largest entry in row i Applying K-means
algorithm, we clustered genes using original gene
expression data matrix. Then, we labelled gene-cluster
corresponding to the labels of sample-cluster. According
to method mentioned above, gene-wise clusters were
created by the seven methods. Number of gene-wise
clusters is five because Xu et al. [21] and Sharan et al.
[18] suggested that optimal number of clusters is five
from the fibroblast dataset. While K-means, SVD and
PCA tend to result a few clusters with dominant profiles
with the remaining clusters with relatively flat profiles,
non-orthogonal MFs tend to create clusters with even
dominance. For example, SVD result shows one major
peak and BSNMF result shows much more peaks. Non-
orthogonal MFs seem to be more effective in discover-
ing significant patterns.

Discussion

There are various clustering-based methods which are
proposed by many researchers. These methods have
become a major tool for gene expression data analysis.
Different clustering-based methods usually produce dif-
ferent solutions and one or a few preferred solutions
among them should be selected. However, a systematic
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Table 1 Class Assignment of Acute Myelogenous Leukemia (AML) and Acute Lymphoblastic Leukemia (ALL)
Kmeans “svD "PCA ICA “NMF "SNMF "BSNMF “Voting
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ALL_21302_B.cell
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ALL_11103_B.cell
ALL_18239 B.cell
ALL_5982_B.cell
ALL_7092_B.cell
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ALL_R23_B.cell
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Class Assignment of Acute Myelogenous Leukemia (AML) and Acute Lymphoblastic Leukemia (ALL) at K=2 and K=3.
* SVD: singular value decomposition, PCA: principal component analysis, ICA: independent component analysis, NMF: non-negative matrix factorization, SNMF:

sparse non-negative matrix factorization,

BSNMF: bi-directional non-negative matrix factorization, Voting: Voting class
** |: ALL, M: AML, B: ALL_B cell, T: ALL_T cell

Bold-faced: misclassified samples

evaluation study for the methods has not been reported.
Therefore, we evaluated orthogonal (i.e. PCA, SVD),
non-orthogonal (i.e. ICA, NMF and SNMF) MFs and a
traditional clustering algorithm (i.e. K-means) using
seven clustering-quality (i.e. homogeneity, separation,
Dunn index, average silhouette width, Pearson correla-
tion of cophenetic distance, Hubert correlation of
cophenetic distance and the GAP statistic) and two pre-
diction-accuracy measures (i.e. the adjusted Rand index
and prediction accuracy) applying to five published data-
sets. We also included an improving non-orthogonal
MFs, BSNMF in the evaluation study.

As a result, we observed that clustering quality and
prediction-accuracy indices applying non-orthogonal

MFs are better than those of orthogonal MFs and K-
means. In respect to results from Homogeneity, separa-
tion, Dunn index, average silhouette width and Hubert
correlation of cophenetic distance, non-orthogonal MFs
had higher value than those of orthogonal MFs and K-
means. The GAP statistic was lower for non-orthogonal
MFs than for orthogonal MFs and K-means. When we
tested predictive accuracy for the three datasets with
known class labels, we also observed better performance
for non-orthogonal MFs than for the rest. We also
investigated the biological significance of clustering
genes because it is important to discover biological rele-
vant patterns and interpret biologically for analysis of
DNA microarray gene expression data. When we used
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Table 2 Class assignment for Medulloblastoma dataset
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O Sample Subgroup Kmeans "sVD "PCA *ICA "NMF "SNMF “BSNMF “Voting
Brain_MD_7 classic "2 2 2 2 2 2 2 2
Brain_MD_59 classic ™ 1 1 1 1 1 1 1
Brain_MD_20 classic 1 1 1 1 1 1 1 1
Brain_MD_21 classic 1 2 2 1 1 1 1 1
Brain_MD_50 classic 1 1 2 2 1 1 1 1
Brain_MD_49 classic 2 2 2 2 2 2 2 2
Brain_MD_45 classic 1 2 2 1 1 1 1 1
Brain_MD_43 classic 1 2 2 1 1 1 1 1
Brain_MD_8 classic 1 1 2 1 1 1 1 1
Brain_MD_42 classic 2 1 2 2 2 2 2 2
Brain_MD_1 classic 2 1 2 2 2 2 2 2
Brain_MD_4 classic 2 1 2 2 2 2 2 2
Brain_MD_55 classic 2 1 2 2 2 2 2 2
Brain_MD_41 classic 1 1 1 1 1 1 1 1
Brain_MD_37 classic 1 2 1 1 1 1 1 1
Brain_MD_3 classic 2 2 2 2 2 2 2 2
Brain_MD_34 classic 2 2 2 2 2 2 2 2
Brain_MD_29 classic 1 2 1 1 1 1 1 1
Brain_MD_13 classic 2 1 2 2 2 2 2 2
Brain_MD_24 classic 2 2 2 2 2 2 2 2
Brain_MD_65 classic 1 1 1 1 1 1 1 1
Brain_MD_5 classic 1 1 1 1 1 1 1 1
Brain_MD_66 classic 1 2 1 1 1 1 1 1
Brain_MD_67 classic 1 1 1 1 1 1 1 1
Brain_MD_58 classic 2 2 2 2 2 2 2 2
Brain_MD_53 desmoplastic 2 1 2 2 2 2 2 2
Brain_MD_56 desmoplastic 2 2 2 2 2 2 2 2
Brain_MD_16 desmoplastic 2 1 2 2 2 2 2 2
Brain_MD_40 desmoplastic 1 1 2 1 1 2 2 1
Brain_MD_35 desmoplastic 2 2 2 2 2 2 2 2
Brain_MD_30 desmoplastic 2 2 2 2 2 2 2 2
Brain_MD_23 desmoplastic 2 2 2 2 2 2 2 2
Brain_MD_28 desmoplastic 1 1 2 2 2 1 2 2
Brain_MD_60 desmoplastic 1 2 2 1 1 1 2 2
Error Count 14 16 16 14 13 13 11 12

Class assignment for Medulloblastoma dataset at K=2

* SVD: singular value decomposition, PCA: principal component analysis,

ICA: independent component analysis, NMF: non-negative matrix factorization,
SNMF: sparse non-negative matrix factorization,

BSNMF: bi-directional non-negative matrix factorization, Voting: Voting class
** 1: classic type, 2: desmoplastic type

Bold-faced: misclassified samples

enrichment analysis with GO terms and biological path-
ways, we obtained more significant enriched GO terms
or pathways for non-orthogonal MFs than for orthogo-
nal MFs and K-means. We also identified genes that
may be dominantly involved in each subtype. It was
demonstrated that BSNMF showed improved perfor-
mance in prediction-accuracy and biological-enrichment
measures, outperforming other non-orthogonal MFs as
well as orthogonal MFs and K-means algorithm.

There are various clustering evaluation indices we
mentioned. Because they have various results upon data-
sets, they have limitations to suggest which clustering-
based method is the best. Therefore, improving cluster
validation indices is needed to overcome it. We simply
suggested a voting scheme that simply combines all the
results from the various algorithms and returns the best
consensus. Improving evaluation indices can be achieved

through the integration of results from various evalua-
tion indices using unifying rules.

Conclusions

In conclusion, the clustering performance of orthogonal
and non-orthogonal MFs was appropriately compared
for clustering microarray data using various measure-
ments. We clearly showed that non-orthogonal MFs
have better performance than orthogonal MFs and K-
means for clustering microarray data. The characteristic
difference among non-orthogonal MFs, orthogonal MFs
and K-means algorithm implies that non-orthogonal
MFs divided whole data into distinct patterns more
evenly than orthogonal MFs and K-means. This study
would help for suitably evaluating diverse clustering
methods in other genome-wide data as well as microar-
ray data.
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Table 3 Number of significantly enriched GO terms (or
pathways)

(a) Leukemia dataset

O Kmeans SVD PCA ICA NMF SNMF BSNMF
ALL 480 389 441 453 532 425 535
AML 85 262 223 222 167 266 280
Total 565 651 664 675 699 691 815

(b) Medulloblastoma dataset

O Kmeans SVD PCA ICA NMF SNMF BSNMF
classic 517 373 467 479 388 456 599
desmoplastic 58 361 226 213 335 208 206
Total 575 734 693 692 723 664 805

(c) Fibroblast dataset

O kmeans SVD PCA ICA NMF SNMF BSNMF
cluster! 52 45 71 47 57 41 128
cluster2 32 35 68 27 54 48 69
cluster3 48 24 63 61 37 75 50
cluster4 126 38 37 96 108 60 155
cluster5 54 63 60 33 65 68 102
Total 312 205 299 264 321 292 504

(d) Mouse dataset

O kmeans SVD PCA ICA NMF SNMF BSNMF
cluster1 593 520 294 258 637 686 690
cluster2 27 61 107 114 38 28 56
Total 620 581 401 372 675 714 746

Number of significantly enriched terms at &=0.05

Methods

Dataset

For the evaluation study, we used five published data-
sets. The Leukemia data set [22] has 38 bone marrow
samples and 5000 genes after filtering process applied
by Brunet et al.[9]. Acute myelogenous Leukemia
(AML) and acute lymphoblastic leukemia (ALL) are dis-
tinguished as well as ALL can be divided into T and B
cell subtypes. The second is Medulloblastoma dataset
that is a gene expression profiles from the childhood
brain tumors. Although the pathogenesis of the tumor is
not well understood, it can be categorized into two
known histological subclasses: classic and desmoplastic.
Pomeroy et al.[23] demonstrated the correlation of gene
expression profiles and the two histological classes. The
dataset has 34 samples and over 5800 genes. The third
is the gene expression dataset from Zhang et al. (2004,
http://hugheslab.med.utoronto.ca/Zhang). This dataset
contains gene expression profiles of over 40000 known
as well as predicted genes in 55 mouse tissues, organs
and cell types. We used over 8200 genes after filtering
with low variance. The forth is the human fibroblast
gene-expression dataset from Iyer et al.[24] with 18 sam-
ples and 517 genes. The last is the well-known Iris data-
set [25]. This famous dataset gives the measurements in
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centimetres of the length and width of sepal and petal,
respectively, for 50 flowers from each of the three spe-
cies of Iris (i.e. Iris setosa, versicolor and virginica).
Among datasets, Leukemia, Medulloblastoma and Iris
dataset have known class labels for samples, while the
rest have not.

Non-orthogonal matrix factorization for gene expression
analysis

The gene-expression data is typically represented as an
N-by-M matrix A. In the matrix, each row represents
the expression values of a gene across all samples. Each
column represents the expression values of all genes in
a sample. NMF can decompose gene expression data
and derive parts-based representation of the whole data.
It factorizes a matrix A into the product of two
matrices, including non-negative entries, formulated as
A = WH. W and H are N-by-K and K-by-M matrices,
respectively, and K is much smaller than M. The col-
umn of W can be regarded as a metagene, consisting of
elements w;. Each element represents the coefficient of
gene i in metagene j. The columns of matrix H repre-
sent the metagene expression pattern of the correspond-
ing sample. Each element /;; indicates the expression
value of metagene i in sample j. The cluster membership
can be determined based on such a factorization of the
matrix H. Sample j belongs to cluster i if the /;; is the
largest entry in column j.

Brunet et al. [9] represented parts corresponding to
metagenes which represent genes tend to be co-
expressed in samples. Here parts mean sets of elements,
indicating the building blocks for the whole. These
metagenes can overlap, indicating that a single gene
may be involved in a number of pathways or biological
processes. Therefore, sparseness constraints are needed.
NMEF with sparseness constraints has been proposed by
a few groups. Gao and Church [14] proposed a method
to enforce sparseness of H matrix by penalizing the
number of non-zero entries. This method enforces spar-
seness by combining the goal of minimizing reconstruc-
tion error with that of sparseness [14]. Specifically, they
adopt the point-count regularization approach that
enforces sparseness of H by penalizing the number of
non-zero entries rather than the sum of entries ¥/;; in
H [11,12,15]. The sparseness is controlled by the para-
meter and larger parameter makes the H matrix become
more and more sparse. Here, the optimization leads the
resulting H matrix to contain as many zero entries as
possible. Gao’s method enforces sparseness to H matrix
only. We applied the sparseness constraints bi-direction-
ally to both W and H. Because microarray gene expres-
sion data analysis involves clustering by genes as well as
by samples. In microarray data analysis, sample-based
clustering can be used to classify samples with similar
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Figure 4 Weighted p-value of significantly enriched GO terms. Weighted p-value of significantly enriched GO terms. (a) and (b) represent
result of ALL and AML cluster in leukemia dataset. (d) and (e) show result of cluster 1 (assigned to classic type) and cluster 2 (assigned to
desmoplastic type) in medulloblastoma dataset. Among the entire significantly enriched factors, top 50 factors are represented. (c) and (f)
represent result of top 50 factors in each entire dataset. Results from other dataset are shown in supplementary site.
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appearance while gene-based clustering can provide
informative sets of tightly co-regulated genes and infor-
mation about activity of genes. While sample-based
clustering relies on metagenes, gene-based clustering
relies on meta-samples. The two processes can be
viewed as bi-directionally constrained with each other.
Good metagene may support good sample-based clus-
ters and vice versa. Optimizing sample-dimension only,
sparseness of gene-dimension is relatively decreased
when sparseness of sample-dimension is increased. In
result, the minimization problem is convex that was
subsequently described by others [11,12,14,15] and the
resulting matrix cannot support gene-based clusters
well. Therefore, optimizing both sample and gene
dimension together may be appropriated for clustering
of microarray data. This method can optimize both sam-
ple and gene clustering. In this paper, we especially
focus on BSNMF (Bi-directional Sparseness Non-nega-
tive matrix factorization). The definition and algorithm
is described below.

Definition: Bi-directional Sparseness Non-negative
matrix factorization (BSNMF)

Given a non-negative gene expression data V of size
N-by-M, find the non-negative matrices W and H of
size N-by-C and C-by-M (respectively) such that

E(W, H) = ||[V-WH]|?

is minimized, under optional constraints:

Sparseness (w;) = Ay

Sparseness (/;) = A,

where w; is the i™ column of W and 4; is the i row
of H. Here, C denotes the number of components
(metagenes), A; and A, are the desired sparseness of W
and H, respectively. These three parameters are set by
the experimenters.

Algorithm: Bi-directional Sparseness Non-negative
matrix factorization (BSNMF)

1. Initialize W and H to random positive matrices of
dimension N-by-C and C-by-M, respectively.

2. Rescale the column of W and the row of H to unit
norm.
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Figure 5 Log scaled p-values for significantly enriched factors. Log scaled p-values for significantly enriched factors. Each plot represents
significantly enriched terms (at a=0.05) at AML cluster in leukemia dataset using (a) K-means and (b) BSNMF. x-axis represents log10 (p-value).
Entire factors were divided into five categories, GO term of biological process (BP), GO term of cellular component (CC), GO term of molecular
function (MF), BIOCARTA, and pathway of KEGG.

3. Iterate until convergence or reach maximum num- d. if (H,;<0) then H;; =0

ber of allowed iteration. (2) If sparseness constraints on W apply,
(1) If sparseness constraints on H apply a. solve Hz41) = H;,(WTV),./(WTWH),,
a. solve W1y = W, (VHY),,/(WHHT),, b. Rescale the column of H to unit norm
b. Rescale the column of W to unit norm c. Solve for each j
c. Solve for each j min {1/2||V;-WH||> + 1/2k,|[W;| |}

min {1/2|[V;-WH||* + 1/2,]|H;||%} d. if (W;;<0) then W =0
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Measures of clustering evaluation

In this study, we attempt to evaluate various MFs using
cluster evaluation indices. Here, we briefly introduce
cluster evaluation indices we used.

Compactness The first measures estimate cluster com-
pactness or homogeneity with intra cluster variance. Many
variants of between-cluster homogeneity measure are able
to estimate average or maximum pair wise between-cluster
distances, average or maximum centroid-based similarities
or the use of graph-based approaches [26]. For this pur-
pose, we used the homogeneity index by Sharan and Sha-
mir. Homogeneity index is defined as:

H g = % N com(Cl), c(a)).

xeC

In this equation, C is a cluster. C(M) is the cluster
centroid and C(x) is each data item. Corr(C(x), C(M)) is
the correlation coefficient between each data item and
the centroid. N is the number of data items.

Separation The second index quantifies the degree of
separation between individual clusters. For example, the
average weighted within-cluster distances define an
overall rating for a partitioning, where the distance
between individual clusters can be calculated as the dis-
tance between cluster centroids, or as the minimum dis-
tance between data items belonging to different clusters.
Alternatively, we used cluster separation in a partition-
ing which may be estimated as the minimum separation
observed between individual clusters in the partitioning.
Separation is defined as:

Separation = min (min(dist(Cr, C1))).
p min (min(is(Ci, 1)

Where dist(Cy, C;) is the minimum distance between a
pair of data items, i and j, with i€ Crandje C,

Combinations There are a number of enhanced
approaches combining measures of the different types of
cluster evaluation indices. Several methods therefore esti-
mate both between-cluster homogeneity and within-cluster
separation. They compute a resulting score by combining
linearly or non-linearly the two measures. A well-known
linear combination is the SD-validity Index [27] and non-
linear combinations include the Dunn Index [28], Dunn-
like-Indices [26], the Davies-Bouldin Index [29] and the sil-
houette width [30]. We used Dunn Index and average sil-
houette width. The Dunn Index measures the ratio
between the smallest cluster distance and the largest
between-cluster distance in a partitioning. It is defined as:

D(C) =min| min _dist(C C1) ,
CeC| CeC max diam(Cm)
CmeC
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where diam(C,,) is the maximum intra-cluster dis-
tance within cluster C,, and dist(C,C;) is the minimum
distance between pairs of data items, i and j, with i €
Cr and j € C;. The interval of Dunn Index is [0, +oo]
and it should be maximized.

The silhouette width for a partitioning is computed as
the average silhouette value over all data items [30]. For
each observation i, the silhouette width s(i) is defined
as

s(i)= D=0
max(a(i), b(i))

where a(i) is the average dissimilarity between i and
all other points of the cluster to which i belongs. b(i) is
the average dissimilarity of i between all observations in
its neighbour cluster. A large s(i) means that data items
are “well clustered”.

Compliance between partitioning and distance
information An alternative way of estimating cluster
validity is to directly assess the degree to which distance
information in the original data is consistent with a par-
titioning. For that purpose, a partitioning can be repre-
sented by means of its cophenetic matrix [31], of which
each entry C(j, j) indicates whether the two elements, i
and j are assigned to the same cluster or not. In hier-
archical clustering, the cophenetic distance between two
observations is defined as the inter-group dissimilarity
at which two observations are first joined in the same
cluster. The cophenetic matrix can be compared with
the original dissimilarity matrix using Hubert’s correla-
tion, the normalized gamma statistic, or a measure of
correlation such as the Pearson [32] or Spearman’s rank
correlation [33]. We used Hubert’s and Pearson corre-
lations. The definition of the Huber’s correlation is
given by the equation:

1IN
r =MZ Y Pl ) Q).

i=1 j=i+1

where M = N(N-1)/2, P is the proximity matrix of the
data set and Q is an N-by-N matrix of which (i, ) ele-
ment represents the distance between the representative
points Evc,'uf, of the clusters where the objects x;
and x; belong.

Number of clusters Most of the internal measures
discussed above can be used to assess the number of
clusters. If both clustering algorithms employed and the
internal measures are satisfactory for the dataset under
consideration, the best number of clusters can be
obtained by a knee in the resulting performance curve.
To measure whether the ‘optimal’ number of clusters is
found, we used Gap Statistic[34]:



Kim et al. BMC Bioinformatics 2011, 12(Suppl 13):S8
http://www.biomedcentral.com/1471-2105/12/513/5S8

1 N
Gap (k) = 3 Eb Wiy, — log(Wy,).

K is the total number of clusters giving within disper-
sion measures Wy, k = 1,2,..., K. The Gap statistic
should be minimized to find the ‘optimal’ number of
clusters.

Predictive power and accuracy A number of indices
can assess agreement between a partitioning and the
gold standard by observing the contingency table of the
pair wise assignment of the data items. The well-known
index is the Rand Index [35], which determines the
similarity between two partitions by penalizing false
positive and false negative. There are a number of varia-
tions in Rand Index. In particular, the adjusted Rand
Index [36] introduces a statistically induced normaliza-
tion to yield values close to zero for random partitions.
Another related indices are the Jaccard coefficient [37]
and the Minkowski Score [38]. We used the adjusted
Rand Index to estimate the similarity between clustering
results and the known class labels. The Adjusted Rand
Index is defined as:

> e —[Z(n,CZ)E(n,:CZ)] / nC2
%[Z(n,a) + z(nhcz)] - [Z(mCZ)Z(nhCZ)] 4Cr

where ny denotes the number of data items assigned
to both cluster / and cluster k. The Adjusted Rand
Index has a value in the interval [0, 1] and is to be
maximized.

The accuracy of clustering is measured by the fol-
lowing formula [39]:

3 1)
C =izl

n

R(U,V)=

Al

where I (j;) is 1 if the cluster assignment is correct for
sample j; otherwise 0 if the cluster assignment is
incorrect.

Biological enrichment analysis

We applied biological enrichment analysis to clustering
results in order to assess whether functionally related
genes are grouped. The resulting genes from clustering
are then subdivided into functional categories for biolo-
gical interpretation. Such functional categorization was
accomplished using GO terms and biological pathways.
We used DAVID 2.1 (http://david.abcc.nciferf.gov/) for
GO term enrichment analysis and ArrayXPath [40,41]
for pathway annotation. A modified Fisher’s exact test is
performed to determine whether the proportions of
members falling into each category differ by group,
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when those in two independent groups fell into one of
the two mutually exclusive categories. Therefore, lower
p-value indicates a better association of cluster
members.

Additional material

Additional file 1: lllustration of separation vs. homogeneity
lllustration of separation vs. homogeneity. Results from each dataset are
gathered. Each color means each method. Results from NMF, SNMF and
BSNMF have higher slope. That is, homogeneity and separation are more
optimized.

Additional file 2: lllustration of Hubert gamma lllustration of Hubert
gamma. It is a measure of compliance between partitioning and distance
information. Each plot shows result from each datasets at rank K=2, 3, 4
(for Iris dataset) or K=2, 3, 4 and 5 (for the rest). (a) Leukemia dataset (b)
medulloblastoma dataset (c) Iris dataset (d) fibroblast dataset () Mouse
dataset.

Additional file 3: The twenty common genes in each leukemia
subtype The twenty common genes in each leukemia subtype
Additional file 4: Patterns of mean expression level for each cluster
for fibroblast dataset Patterns of mean expression level for each cluster
for fibroblast dataset. (a) K-means, (b) SVD, (c) PCA, (d) ICA, (e) NMF, (f)
SNMF and (g) BSNMF. Each lines represent for each cluster.
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