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Abstract

In the adult rodent brain, neural progenitor cells migrate from the subventricular zone of the lateral ventricle towards the
olfactory bulb in a track known as the rostral migratory stream (RMS). To facilitate the study of neural progenitor cells and
stem cell therapy in large animal models of CNS disease, we now report the location and characteristics of the normal
canine and feline RMS. The RMS was found in Nissl-stained sagittal sections of adult canine and feline brains as a prominent,
dense, continuous cellular track beginning at the base of the anterior horn of the lateral ventricle, curving around the head
of the caudate nucleus and continuing laterally and ventrally to the olfactory peduncle before entering the olfactory tract
and bulb. To determine if cells in the RMS were proliferating, the thymidine analog 5-bromo-2-deoxyuridine (BrdU) was
administered and detected by immunostaining. BrdU-immunoreactive cells were present throughout this track. The RMS
was also immunoreactive for markers of proliferating cells, progenitor cells and immature neurons (Ki-67 and doublecortin),
but not for NeuN, a marker of mature neurons. Luxol fast blue and CNPase staining indicated that myelin is closely apposed
to the RMS along much of its length and may provide guidance cues for the migrating cells. Identification and
characterization of the RMS in canine and feline brain will facilitate studies of neural progenitor cell biology and migration in
large animal models of neurologic disease.
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Introduction

Accumulating evidence in experimental models has shown that

CNS damage alters the migration patterns of endogenous neural

progenitor cells (eNPCs). Reports from numerous laboratories

have shown that, in rodents, eNPCs divert towards a wide range of

brain pathologies, a process termed pathotropic migration, ectopic

migration or homing (reviewed in [1]). These rodent disease

models include cerebral infarction, seizures, tumors, demyelin-

ation, and neurodegeneration which are induced genetically,

surgically or chemically.

In dogs and cats, however, these diseases occur spontaneously

just as they do in humans. Naturally-occuring diseases in cats and

dogs have a significant advantage for translational research in that

they frequently demonstrate the same clinical signs and patho-

physiology as the diseases in humans (see [2]). As an example,

naturally-occuring canine brain tumors closely replicate many

critical features of human brain tumors, including incidence,

clinical findings, histopathology, imaging, gene expression profiles,

and cancer stem cells [3–11]. Importantly, the development of

these tumors (and potential therapies) can be tracked over months

compared to just a few weeks in rodent models.

In addition, the study of large animals offers a number of other

advantages for translational research to bridge the gap between

rodents and humans. The physical organization of the large

animal brain is more similar to the human brain than is the

murine brain. The nervous systems of both the dog and cat have

been well characterized anatomically, physiologically, and clini-

cally [12–15]. In contrast to rodent models, the greater similarities

of these large animal disease models to the human conditions may

improve the possibilities for success in translating potential

therapies into humans. Further, studies of animal models other

than mice could provide very useful information about evolution

of this important migratory stream in the adult brain and the

possible function of postnatal neuronal replacement.

The rostral migratory stream of eNPCs has not yet been

identified in canines or felines. Characterization, mapping and

measuring the RMS in normal dogs and cats is an important step

to lay the foundation for future studies of eNPC migration and

function in translational models of CNS disease. Both laboratory

animals and companion animals offer greater flexibility and more

opportunities for research studies including: (1) Scale-up testing of

promising therapeutic agents identified in rodent experiments; (2)

Compared to rodents, longer longitudinal monitoring of thera-

peutic effects with biomarkers, biopsies and imaging, including

after radiation, chemotherapy and/or surgery; and (3) Compared

to humans, canine and feline brains are more readily available
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post-mortem for histopathological assessment. Indeed, these

advantages have spurred calls for more clinical trials to be

performed in companion animals [16–18].

In this report, we describe the anatomical route and dimensions

of the normal canine and feline RMS and an initial character-

ization of the cellular phenotypes.

Results

In the dog brain, Nissl staining of sagittal sections revealed

a prominent, dense, continuous track of cells, beginning at the

base of the anterior horn of the lateral ventricle (LV) dorsal to the

caudate nucleus, curving around the rostral portion of the head of

the caudate nucleus and continuing ventrally to the olfactory

peduncle and olfactory bulb (Fig. 1A–B). When posssible, Nissl-

stained sections were used to measure the length of the RMS and

its width at the widest point of the descending limb. Sections

covering the entire RMS were of course not available in those

subjects in which the olfactory bulb had not been captured.

However, in sections from a 5 year old Springer/Schipperke that

did contain the entire RMS and the olfactory bulb, the distance

from the rostral tip of the LV to the rostral end of the olfactory

ventricle was 31.5 mm and the widest point of the descending limb

was 308 microns. Other dogs had shorter but wider RMS tracts.

The five subjects in this group prevent firm conclusions regarding

the effect of age or species, but our data do provide a preliminary

indication of the scale and location of the RMS (Table 1, Fig. 1). A

3D view of the RMS in the Springer-Schipperke is presented in

Movie S1. This movie demonstrates that the RMS is not

contained in one sagittal plane; rather, it bends laterally as it

progresses down along the descending limb, then back to the

original medial plane as it approaches the olfactory bulb.

To label CNS cells in S phase, we administered the

nucleotide analog BrdU intravenously (for timetable and doses

see Table 1) and examined the brains by immunostaining for

BrdU at 24 hr after the last BrdU injection. In brains from dogs

that received multiple doses of BrdU, we found BrdU-

immunoreactive cells in the same track identified by Nissl

staining. BrdU-positive cells were present in the ventral wall of

the anterior horn of the lateral ventricle and dispersed

throughout the descending limb and rostral limb into the

olfactory peduncle (Fig. 1C). Many of the BrdU-positive cells in

the descending limb were located at the boundary between the

caudate nucleus and the rostral white matter (see Fig. 1C1) and

were generally present as single cells or in closely apposed small

groups. These cells were not stained in control sections on

which the primary (anti-BrdU) antibody was omitted, nor were

they stained in brain sections from dogs that did not receive

BrdU (data not shown). BrdU-positive cells in the descending

limb adjacent to the caudate mucleus were not double-labeled

with the mature neuronal marker NeuN (Fig. 1E).

Cells throughout the entire track expressed doublecortin (Dcx;

Fig. 1D), a marker of immature neurons [19]. However, the

morphology of the cells differed according to region. Dcx-positive

cells in the funnel were tightly clustered and had short processes

that were not uniformly oriented (Fig. 1D1). Dcx-positive cells in

the descending limb were bipolar, with long leading and trailing

processes uniformly oriented along the RMS, indicative of

migrating cells (Fig. 1D2).

To determine whether cell division occurred along the entire

RMS, or whether dividing cells were present only in the SVZ,

a single dose of BrdU was administered and dog 5 was perfused six

hours later. BrdU-immunoreactive cells were present along the

entire track from the lateral ventricle to the olfactory peduncle
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Figure 1. Rostral migratory stream in the dog brain. (A) Schematic of a sagittal view of a canine brain. The red line indicates the location of the
RMS in relationship to the anterior horm of the lateral ventricle (LV), caudate nucleus (CN), olfactory bulb (OB), cortex (Ctx) and cerebellum (Cb). (B)
Nissl staining showing the orientation and nomenclature of the canine RMS. (C) anti-BrdU immunostaining in brown with hematoxylin counterstain in
purple. C1 shows BrdU staining at the boundary of the white matter and caudate nucleus in the descending limb; C2 shows BrdU staining in the
olfactory peduncle/rostral limb. (D) anti-Dcx immunostaining. D1 shows morphology of cells in the funnel; D2 shows leading and trailing processes of
migrating cells in the descending limb. (E) Immunoreactivity for BrdU (green, in the RMS) and NeuN (red, in the CN) does not overlap in the
descending limb. Section is counterstained with DAPI (blue). (F) BrdU immunostaining (brown) in the olfactory peduncle in tissue from dog 5,
analyzed at 6 hr after a single 75 mg/kg i.v., indicating that BrdU is taken up by dividing cells all along the RMS. Scale bar in B, C, D: 1 mm. Scale bars
in C1, C2, E: 100 microns. Scale bars in D1, D2, F: 50 microns. Please view the figures on a computer monitor for accurate RGB color representation.
doi:10.1371/journal.pone.0036016.g001
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(Fig. 1F), indicating that cell division occurs throughout the RMS

and not just in the SVZ.

In the cat brain, an analogous track of cells was identified by

Nissl stain (Fig. 2A). These cells were labeled with BrdU (Fig. 2B),

and expressed Ki67 (Fig. 2C). Ki67 immunoreactivity was present

all along the track, indicating that cell division occurs throughout

the track. This is consistent with our finding in the dog that

received one dose of BrdU (Fig. 1F). Ki67 staining was present in

more cells than BrdU staining, indicating that the BrdU labeled

a subset of dividing cells, as expected. In this series of cat brains,

the maximum RMS length from the lateral ventricle to the rostral

end of the olfactory ventricle was 15.1 mm in the youngest cat

(1yo). The RMS length and the brain length were somewhat more

uniform in cats then in dogs, likely owing to less variability in size

and shape of the brain among adult domestic shorthair cats

(Table 1).

We noted that the ventricular extension between the lateral

ventricle and the olfactory ventricle was patent in some locations

along the tract (Fig. 2B–C), consistent with T2-weighted MRI

images of open olfactory ventricles in the cat (Fig. 2D–E).

In the dog brain, sections in which the white matter was stained

with Luxol Fast Blue suggested that myelin is closely apposed to

the RMS along its entire length (Fig. 3A and schematic inset). To

examine the relationship between oligodendrocytes and neural

progenitors, we co-stained sections with Dcx and CNPase (Fig. 3B–

D). There was no overlap in the staining pattern of the two

markers, indicating that they identify two distinct populations of

cells. In the subventricular zone, the two layers are clearly

separated with the Dcx-positive layer closer to the lateral ventricle

(Fig. 3B). In the funnel area, the two cell populations are

intermixed (Fig. 3C) before the Dcx-positive cells proceed ventrally

into the descending limb which runs parallel and ventral to the

myelin layer. The myelin layer above the funnel, which is part of

Figure 2. Rostral migratory stream in the cat brain. (A) Nissl staining demonstrating the RMS orientation and location from the anterior horn of
the lateral ventricle (LV) to the olfactory bulb (OB). (B) anti-BrdU immunostaining. (C) anti-Ki67 immunostaining, demonstrating the presence of
dividing cells along the entire RMS. (D, E) T2-weighted MRI images of a cat head in the dorsal (D) and transverse (E) planes, showing cerebrospinal
fluid in the open olfactory ventricles of an adult (5 year old) cat (arrows). Scale bars in main panels A–D: 500 microns. Scale bars in insets B1–2, C1–
3:100 microns.
doi:10.1371/journal.pone.0036016.g002
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the corpus callosum, appears to form the dorsal limiting border of

the RMS. At the base of the descending limb, the white matter

partially provides a caudal boundary for the turn. The RMS then

turns rostrally towards the OB where LFB-staining surrounds the

track in the OB, again with a clear separation between the

CNPase and the Dcx staining (Fig. 3D).

Figure 3. Relationship of white matter and the RMS. (A) Luxol fast blue staining of a saggital section from dog 4. Inset shows the approximate
location of the RMS in red and part of the white matter in blue. (B–D) Confocal maximum projection images of CNPase staining (red) and
doublecortin staining (green) in the SVZ (B), funnel (C), and olfactory peduncle (D) in dog 1.
doi:10.1371/journal.pone.0036016.g003
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Discussion

We have located and made an initial characterization of the

RMS in the canine and feline brain. This track corresponds closely

to the reported location and route of the RMS in the human brain

but is much longer in proportion to the rest of the brain than in the

human. Neural progenitor cells in the adult brain undergo

stereotypical patterns of migration from restricted neurogenic

niches to specific targets. In the mouse, cells originating in the

subventricular zone migrate through the RMS into the olfactory

bulb, where they differentiate into mature olfactory inhibitory

interneurons [20].

An pathway analogous to the mouse RMS but somewhat more

complex has been described in macaque, rhesus and squirrel

monkeys and in humans [21–25]. We have found that the canine

and feline RMS tracts bear some similarities and some differences

to the primate and human tracts. In the dog and cat, the RMS

comprises a dense track of proliferating cells beginning at the base

of the anterior horn of the lateral ventricle dorsal to the caudate

nucleus, which curves around the head of the caudate nucleus and

turns rostrally, ventrally and somewhat laterally before bending

back towards the midline as it reaches the olfactory peduncle (see

3D reconstruction in Movie S1). In the human RMS, the

descending limb moves caudally around the base of the caudate

nucleus before taking a sharp rostral turn, whereas the DL of the

canine/feline track moves rostrally and ventrally without a sharp

turn at the base of the caudate nucleus. Another difference is the

very large size of the dog funnel, originating in the anterior horn of

the lateral ventricle. Also, there is a notable thickening of the RMS

at the elbow in the canine brains. The maximum RMS track

length in our canine series (31.5 mm in dog D4) is much longer

than the estimated length of the RMS in humans in one study

(,17 mm) [25], most likely due to the elongated brain shape and

ventricle position in dogs, as well as to the much larger olfactory

peduncle and OB in dogs.

There are also some differences in the RMS between cats and

dogs. Our results suggest that the funnel in the cat is much smaller

than in the dog and the overall track is much thinner, with little to

no enlargement at the elbow. The cat RMS was also more uniform

in length compared to the dogs, which were of different breeds (see

below). As a practical matter, some commercial antibodies react

with one species or the other (see Table 2).

The five dogs and five cats used in this study were relatively

young and each one was of a different age (see Experimental

Procedures and Table 1). A larger number of animals in each age

group would be required to assess the effects of age on the overall

dimensions of the track. We hypothesize that the SVZ and RMS

decrease in size with age, as has been described in the human

brain [26]. Generally speaking, such a study of age-related changes

would be simpler to do in cats than in dogs. For example, brain

size and architecture are generally more uniform in cats than in

different breeds of dogs, though both are likely susceptible to age-

related changes. In addition, the cats available for this study were

all domestic shorthairs, further minimizing variability among the

cats. When normalized to total brain length, the length of the

RMS is more consistent in cats than in dogs. In this small series of

cats, our measurements suggest a decrease in both RMS length

and overall brain size after the age of 3 years. Many more cats in

each age group would be required to make this a firm conclusion.

Immunostaining for BrdU and Ki-67 indicated that progenitor

cell division occurs in the canine and feline brain throughout the

entire RMS at least as far as the olfactory peduncle. Similar

evidence for progenitor cell division in the RMS has been obtained

in human, monkey and rodent brain, by positive staining for

dividing cell markers such as BrdU, Ki-67 and/or proliferating cell

nuclear antigen (PCNA) [21,22,24,25,27]. Because dividing cells

were present all along the RMS after a single intravenous BrdU

injection, we did not use this method to obtain migration data; if

and when BrdU-positive cells appeared in the OB, it would not

have been possible to determine whether they had migrated to get

there. In other words, this method would not distinguish between

cells that had migrated all the way from the SVZa versus from an

intermediate position in the RMS. Such a kinetic analysis would

be facilitated by making a localized injection into the SVZa of

a viral vector, BrdU, or another tracer, and analyzing animals at

multiple time points.

In the canine and feline brain, as in rodent, monkey and

human, the RMS progenitors appear to maintain an immature

phenotype as evidenced by positive staining for doublecortin and

negative staining for NeuN. As regards the relationship of the

myelin and the RMS, a full ultrastructural analysis is required to

shed light on whether the white matter provides a boundary for

the RMS along all or part of its length, as suggested by the LFB

and CNPase results presented here.

In both the dog and cat brain, the ventricular extension between

the lateral ventricle and the olfactory ventricle appeared to be

patent in some areas. Ciliated ependymal cells were present at the

edges of these openings, confirming that the openings were not

simply tears in the tissue. A study using casts of the cerebral

ventricles in the adult dog suggested that the extension is open

along its entire length [28], and this is often seen on T2 weighted

MR images of the dog and cat brain (see Fig. 2 for images of cat

brain). The olfactory ventricle also persists in the adult rabbit brain

[29]. More recently, T2-weighted spin-echo sequences have been

used to demonstrate open olfactory bulb ventricles in adult

humans [25,30], although this is a controversial point and may not

be observed in all cases [31,32].

Dogs and cats are increasingly recognized to be important

intermediate models to assess therapeutic strategies for naturally-

occurring diseases which also occur in human patients. In

addition, many induced models of disease have been developed,

including spinal cord injury, implanted tumors, brain trauma,

demyelination and other neurodenerative diseases [15,33–35].

Some unique resources for studying dog models are available, such

as microarray chips and the sequence of the dog genome [36]. In

the cat, neuroimaging is arguably more advanced and the brains

are more uniform, making sterotactic injection/transplantion

simpler and more reproducible. Neural progenitor cells have been

isolated and cultured from both the fetal and early postnatal dog

and cat brain and are available for transplantation studies in both

normal brain and disease models [37–42].

In summary, this report identifying, mapping and measuring the

RMS in the dog and cat lays the groundwork for future studies to

better understand the involvement of eNPCs in the pathogenesis of

neurologic disorders.

Table 2. Primary Antibodies.

Antigen Species Supplier Catalog # Clone # Reactivity

Ki-67 (hu) mouse DAKO M7240 MIB-1 Cat

NeuN mouse Millipore MAB377 A60 Dog/Cat

BrdU rat Accurate OBT0030 BU1/75 Dog/Cat

Dcx (hu C-ter) goat Santa Cruz sc–8066 C–18 Dog/Cat

CNPase (hu) mouse Sigma C–5922 11–5B Dog

doi:10.1371/journal.pone.0036016.t002
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Materials and Methods

All procedures involving animals were approved by the

University of Pennsylvania Institutional Animal Care and Use

Committee and conform to NIH and USDA guidelines. All efforts

were made to minimize the number of animals and their suffering.

A total of 5 colony-raised cats (1–3.5 yr old) and 5 dogs (1–5.5 yr

old) were used for this study (see Table 1). We prepared sagittal

sections from canine and feline brain that encompassed the

anterior horn of the lateral ventricle, the rostral part of the

caudate/putamen, the olfactory tracts and, when available, the

olfactory bulbs (see Fig. 4).

BrdU Administration and Immunohistochemistry
Freshly prepared 5-bromo-2-deoxyuridine (BrdU) in saline (25

or 75 mg/kg i.v.) was administered to each experimental animal

(see Table 1). Cat 1 and Dog 5 received 1 dose of BrdU followed

by perfusion 6 hr later. All other animals received 1 dose of BrdU

per day for 4 or 5 days as noted and were perfused 24 hr after the

final dose. Perfusions were performed with heparinized saline

followed by formalin. The brains were carefully removed keeping

the OBs attached when possible and post-fixed in formalin. After

cryoprotection in 30% sucrose, 22X40X20 mm blocks were

embedded in Tissue-TEK OCT compound, frozen, and sectioned

at 20 microns.

Antigen retrieval was done in 1X Antigen retrieval citra buffer

(Biogenex) in a microwave at 40% power for 10 min or in

a steamer at 99uC for 15 min. After cooling, H2O2 treatment and

blocking with horse serum, slides were incubated with primary

antibody against BrdU (Accurate OBT0030, 1:1000) overnight at

4uC. The biotinylated secondary antibody was donkey anti rat

(Jackson Immunoresearch). ABC reagent (Vector Laboratories) or

the DAKOCytomation LSAB2 SystemHRP kit, were applied per

manufacturer’s guidelines. The sections treated with ABC reagent

were developed with DAB reagent (DAKO), counterstained with

hematoxylin (Thermo Scientific), dehydrated, and coverslipped.

For immunofluorescence, biotinylated secondary antibodies were

detected with streptavidin conjugated to Alexa-594 (Molecular

Probes). The mounting medium contained 49,6-diamidino-2-

phenylindole (DAPI) for nuclear visualization.

Nissl Staining
Every 10th slide was stained with 0.5% cresyl violet for 1 min.

Other Immunohistochemistry
Slides were rehydrated in PBS. Antigen retrieval was done in

1X Citra Buffer (Biogenex) in a steamer at 99uC for 15 min [43],

or in a microwave at 40% power for 10 min. Primary antibodies

are listed in Table 2.

Species-specific biotinylated secondary antibodies (Jackson

Immunoresearch) were detected with ABC reagents as above.

For immunofluorescence, secondary antibodies were biotinylated

and detected with streptavidin conjugated to Alexa-488 or were

directly conjugated to Alexa-594 (Molecular Probes).

Image Capture and Analysis
Images were captured with a Nikon E600 Eclipse microscope

and SPOT RT3 camera at 160061200 pixels and 72 pixels/inch.

Each image was proportionally resized in Adobe Photoshop to

4806360 pixels and 320 pixels/inch. Montages were assembled

manually or with the Photomerge function. High-power images of

Dcx-positive and CNPase-positive cells were captured with

a confocal microscope.

Supporting Information

Movie S1 This movie represents a medial to lateral
series of saggital sections of a dog brain. Nissl sections are

on the left; the correponding track of the RMS is represented in

red on the right. The SVZ and LV are at top right of each panel;

the olfactory bulb is at the bottom left. The series shows that the

RMS is not contained in one plane; rather, the descending limb in

particular moves laterally while the funnel and olfactory peduncle

remain more medial

(MOV)
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