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Predictable patterns of trait mismatches between
interacting plants and insects
Bruce Anderson1*, John S Terblanche2, Allan G Ellis1

Abstract

Background: There are few predictions about the directionality or extent of morphological trait (mis)matches
between interacting organisms. We review and analyse studies on morphological trait complementarity (e.g. floral
tube length versus insect mouthpart length) at the population and species level.

Results: Plants have consistently more exaggerated morphological traits than insects at high trait magnitudes and
in some cases less exaggerated traits than insects at smaller trait magnitudes. This result held at the population
level, as well as for phylogenetically adjusted analyses at the species-level and for both pollination and host-
parasite interactions, perhaps suggesting a general pattern. Across communities, the degree of trait mismatch
between one specialist plant and its more generalized pollinator was related to the level of pollinator specialization
at each site; the observed pattern supports the “life-dinner principle” of selection acting more strongly on species
with more at stake in the interaction. Similarly, plant mating system also affected the degree of trait
correspondence because selfing reduces the reliance on pollinators and is analogous to pollination generalization.

Conclusions: Our analyses suggest that there are predictable “winners” and “losers” of evolutionary arms races and
the results of this study highlight the fact that breeding system and the degree of specialization can influence the
outcome.

Background
“...a flower and a bee might slowly become, either
simultaneously or one after the other modified and
adapted in the most perfect manner to each other...”
Darwin [1]
Using similar logic to the quote above, Darwin [2] was

able to make his bold prediction that the Madagascan
star orchid, Angraecum sesquipedale, with a spur length
of 30 cm [see [3]] must be pollinated by a moth with a
tongue of equally outrageous proportions. Only after his
death, some 40 years later, was Darwin vindicated when
a suitable candidate was found...a moth, Xanthopan
morganii praedicta, with a tongue of 22 cm in length
[4]. Not only did Darwin predict that there is strong
selection on floral tubes to exceed pollinator tongues,
but that there is also strong natural selection for pollina-
tor tongues to exceed floral tubes in order to access all
the nectar within the flowers of a plant population. In
consequence, this theory specifically implies that a

coevolutionary race [sensu [5]] should occur and that
the length of tongues and tubes should match closely
when one (or more) partner is dependent on the
other [3].
One possible outcome of this prediction is that if

adaptive traits of interacting organisms are geographi-
cally variable at the species or population level, then
these complementary traits may be closely correlated
across the distribution range of the interaction [e.g. [6]].
Indeed, in plant-pollinator as well as host-parasite
systems where there seems to be strong geographic
variation in adaptive traits, highly significant positive
correlations have usually been found [e.g. [7-10,6,11,12];
also see [13] for predator-prey adaptations). For exam-
ple, the camellia weevil (Curculio camelliae) studied by
Toju and Sota [10,14] uses its elongated rostrum, which
may reach several times the length of its body, to
excavate a hole through the thickened pericarp of its
host-plant, the Japanese camellia (Camellia japonica).
The weevil’s reproductive success depends upon it being
able to excavate a hole deep enough that it can lay its
eggs close to the seeds of its host-plant which lie deep
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within the defensive pericarp. The length of the weevil’s
rostrum is geographically variable but in each popula-
tion it is closely matched with the pericarp thickness of
the fruit so that the morphological traits of the plant
and insect are highly correlated across geographic loca-
tions. This kind of trait covariation should not only be
confined to coevolutionary scenarios but should
also include unilaterally evolved systems as well
[e.g. [15-17]]. Unilateral evolution refers to an evolution-
ary scenario whereby one organism adapts to the mor-
phology of a second organism but not vice versa [sensu
[17], c.f. coevolution, [18]]. For example, plants may
adapt to novel pollinators after range expansion, but the
pollinators need not necessarily adapt to the new flow-
ers if they already have other abundant nectar sources
to feed on [15] Similarly, although there is strong selec-
tion for rewardless Batesian mimic orchids to closely
track pollinator traits, pollinator morphology is not dri-
ven in any way by the orchids themselves [e.g. [16]].
Therefore, one possible, though perhaps simplistic

expectation from these interactions is perfect matching
between the morphological traits of interacting species
pairs, but in reality mismatches are commonplace. For
example, even Darwin’s famous hawkmoth, which is fre-
quently cited as textbook example of close trait-match-
ing [e.g. [19]], has a proboscis which is considerably
shorter than the nectar spur of Angraecum sesquipedale.
In addition, Nilsson [3] observed that several studies
report corolla tubes which were longer than the tongues
of their pollinators. Although trait mismatches may
seem counter-intuitive, the geographic mosaic theory of
coevolution predicts that they should be common
[20-22]. One potential reason for trait mismatches is
that geographic differences in community structure can
alter the strength of selection imposed by one species
upon another, and vice versa, resulting in putatively
balanced armaments in some populations but imbalanced
armaments in others. Although geographic variation in
the strength of directional selection may result in trait
mismatches, which might weaken the correlation
between co-varying traits across populations, this
mechanism need not result in predictable mismatches
in a particular direction across coevolving species pairs
(Figure 1A). Trait mismatches in a geographic mosaic
need not influence the form of the relationship between
interacting phenotypes, an important component of trait
matching which is less frequently reported and less well-
understood than the significance of the relationship itself.
In this paper we primarily explore the influence of

trait magnitude on the scale and direction of trait mis-
matches (or armament imbalances) between interacting
plants and insects (i.e. the slope of the regression), and
in particular ask whether the patterns of mismatch are
predictable. Ecological and evolutionary theory make no

singular prediction about the regression slope, but one
possibility, under perfect phenotypic matching of coa-
dapted traits, is that the match should be invariant irre-
spective of trait magnitude i.e. the slope should equal
one. Counter to this prediction, the data in some studies
appear to have slopes that differ significantly from one
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Figure 1 Hypothetical outcomes of trait-matching studies.
Figure 1A. Geographic variability in the strengths of directional
selection may weaken a regression (i.e. increase variability) by
increasing the frequency and magnitude of trait mismatches (where
a trait mismatch is indicated by a double headed arrow). However,
this may not affect the slope of the relationship which indicates the
predictability of the direction of the trait mismatches in relation to
trait magnitude. Figure 1B. The slope of the trait regression
relationship may reveal one of three possible scenarios: Slope 1,
where insect and plant traits are not matched, slope 2, where trait
matching scales with trait magnitude to produce a slope of 1 and
slopes 3a and b where there is a consistent and predictable
mismatch of traits where the mismatch is contingent on trait
magnitude. For example, in slope 3a the plants have predictably
longer traits than the insects and the mismatch between the taxa
should become greater with trait magnitude.
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[e.g. [13,10]], suggesting that the direction and extent of
trait mismatches is dependent on other factors, such as
trait magnitudes. For example, in the camellia-weevil
system described above, the weevil rostrum is consis-
tently longer than the thickness of the fruit pericarp in
most populations, but the phenotypic mismatch is small
at high trait magnitudes and large when traits are small
[10]. Importantly, deviation from 1:1 phenotypic match-
ing does not necessarily imply functional mismatches, as
has been neatly demonstrated by Toju and Sota [10].
They showed experimentally that a functionally perfect
phenotypic match (i.e. the fitness of the two interacting
species is balanced) occurs when weevil rostrums are
1.74 times longer than fruit pericarps. Thus, from a
functional perspective, the imbalance in trait mismatch
with respect to trait magnitude is greater than suggested
by the phenotypic relationship alone, with plants gaining
the functional upper-hand at large trait magnitudes
despite close trait matching. Other than the camellia-
weevil system, we know of no other studies which have
determined the expected phenotypic relationships under
perfect functional morphological trait matching [but see
[23] for toxin production and resistance]. However,
numerous studies have investigated the observed pat-
terns of phenotypic matching between interacting plants
and insects and here we focus on the predictability of
the influence of trait magnitudes on the scale and direc-
tion of trait mismatch across species pairs.
Asymmetric trait matching between interacting species

within a community may be expected if the strength of
directional selection operating on the traits of the inter-
acting species are different. This idea is exemplified in
the controversial [24] “life-dinner” principle proposed by
Dawkins and Krebs [25] where prey are thought to have
stronger selective pressures acting on them than preda-
tors, because the consequence of being captured is
greater than the consequence of a predator not catching
the occasional prey item. As a result, it is thought that
arms races are led by victims if they have more to lose
than the exploiters. Brodie [26] extended this principle,
hypothesizing that when a specialist interacts with a
generalist, then the selection pressure on complemen-
tary traits will be greater on the specialist and so the
specialist should ‘lead the race.’ Recent advances in
understanding of the structure of networks of interact-
ing plants and animals provide some support for the
prevalence of asymmetrical specialization: Interaction
networks have consistently been shown to exhibit a
strongly nested structure whereby specialists interact
with a subset of the species with which generalists inter-
act [27-29]. In addition, pairs of interacting species
within networks tend to exhibit asymmetry in their
degree of dependence on the interaction [30,31]. Thus,
asymmetry in the degree of specialization between

interacting species is the norm and interactions between
specialized species are rare [29]. However, in order for
asymmetries in specialization to lead to consistent
patterns of trait mismatches across multiple interacting
species pairs, either the plants or the animals would need
to be consistently more specialized. Most traditional
studies on pollination guilds, syndromes and/or speciali-
zation-generalization stress that plants are typically more
specialized [e.g. [32]]. However, recent network studies
suggest that this is not the case - plants and animals in
pollination and seed dispersal networks exhibit a similar
range of specialization with plants on average more gen-
eralized than insects [29]. Thus, although asymmetry in
specialization could determine trait mismatches because
functionally specialized species should experience stron-
ger selection to match (or exceed) the morphology of
their interaction partner than functionally generalist
species, the predictability of mismatches will depend on
the consistency of specialization asymmetry across
species pairs. In a similar way to generalization, plants
capable of autonomous autogamy may also experience
relaxed selection on their traits to match (or exceed) the
traits of their pollinators because they can achieve sub-
stantial female fitness in the absence of successful pollen
transfer. Consequently, plants capable of autonomous
selfing may be less influenced by the evolutionary arms
race with their pollinators than plants whose fitness is
completely dependent on them.
In this manuscript we compile a database from the

published literature, and some previously unpublished
data, and review the results of specialized plant-insect
relationships from the pollination and host-parasite
literature. Specifically, we ask if the morphologies of
interacting plants and insects are frequently mismatched,
and if there is predictable directionality to mismatches
when they occur. We consider that at least three possible
scenarios might exist (see Figure 1): Firstly, plant and
insect traits may not be matched, suggesting that the
selection for trait matching is not strong enough to over-
come factors that constrain the evolution of these traits.
Secondly, relationships between plant and insect traits
may exhibit slopes of one, suggesting that the scale and
direction of mismatch is independent of trait magnitude.
Note that traits are only morphologically matched if the
intercept of the line passes through zero and if the slope
is one (although functional matching might entail an
intercept different to zero, as discussed above). Finally,
although insect and plant traits may covary geographi-
cally, regression slopes may deviate significantly from
one, suggesting imbalance in the extent of morphological
trait matching with respect to trait magnitude. Impor-
tantly, theories such as the geographic mosaic theory of
coevolution do not make any specific prediction about
directionality of mismatches, and the present study
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therefore addresses this important knowledge gap. We
then use the available data to explore some possible func-
tional explanations for the predictable pattern of arma-
ment imbalance that we reveal.

Results
Population level analyses
Using OLS, eleven out of twelve relationships had signifi-
cant positive slopes for plant versus insect traits suggesting
close trait matching. Both of the parasitic relationships had
slopes which were statistically shallower than one (Table 1).
Using RMA, of the ten pollination relationships, eight of
them were for plants which were pollinator-dependent and
all of these had slopes which were <1 (3/8 significantly so,
Table 1). Both antagonistic and mutualistic pollination rela-
tionships of non-selfing species consistently had slopes of
less than one. In contrast, both of the autonomous selfing
pollination relationships had slopes which were >1, but not
statistically so (b = 1.278 ± 0.325, t6 = -0.856, p = 0.788 and
b = 1.417 ± 0.518, t3 = -0.806, p > 0.2396). Furthermore if
all slopes are analyzed together (mean b = 0.7729 ± 0.31916
(SD)) against an expected slope of one using a one sample
t-test, then this analysis also suggests that slopes are signifi-
cantly shallower than one (t11 = 8.3910, p < 0.00001).
Excluding autonomous selfers (which probably have puta-
tively relaxed selective pressures on floral traits, see discus-
sion) from this analysis only serves to reinforce the pattern
of the slope being less than one (mean b = 0.6581 ± 0.1880
(SD), t9 = 11.0670, p < 0.00001). Similar results were
obtained if the axes were reversed (results not shown) or if
the slopes were analysed using ordinary least-squares (OLS)
regression (Additional file 1). If the data from all population
studies are combined as a single RMA regression (excluding
autonomous selfers), the slope (b = 0.8514 ± 0.0280) of the
relationship is significantly shallower than one (t90 = 5.724,
P < 0.0001, Tabe 1, Figure 2). If only antagonistic/parasitic
species are grouped together, the RMA slope of the rela-
tionship is significantly less than one (b = 0.8104 ± 0.053,
t29 = 3.5720, p < 0.001), and when all mutualistic (non-
selfing) species are grouped together, (b = 0.8625 ± 0.028,
t59 = 4.9585, p < 0.00001). Thus, in general, whether analyz-
ing populations within species (Table 1) or pooling popula-
tions across species (Figure 2), imbalances in trait matching
with respect to trait magnitude appear to be common and
consistent, favouring the plants most when trait magnitudes
are large.
The effect of community and functional generalization/
specialization
We found that trait mismatches between the focal plant
and pollinator were related to the heterogeneity of trait
magnitudes within the plant community (R2 = 0.37, P <
0.02, Figure 3). When other nectariferous plants within
the community had nectar tube lengths which differed
greatly from the focal plant, it was likely to find a large

mismatch between the pollinator and the focal
plant as well.

Inter-specific analyses
Our analysis used 31 different insect species visiting a
total of 115 different plant species in our dataset (a total
of 137 interactions). The average number of insects per
plant across the data set is 1.181 (SD: 0.387) while the
average number of plants per insect is 4.419 (SD: 4.931)
probably indicating a strong asymmetry in the degree of
specialization. Overall, there is a significant difference
between insects and plants in terms of the number of
interactions (c2 = 103.45, df = 1, p < 0.0001).
Before adjusting for phylogeny, the slope of the spe-

cies-level regression was 0.789 ± 0.0217 (t134 = 36.335,
R2 = 0.908, p < 0.00001) which was significantly shal-
lower than a slope of one (t134 = 9.719, p < 0.00001).
Results from the inter-specific PGLS analyses indicated
that the phylogenetically-adjusted model which incorpo-
rated the insect phylogeny was the best model, while the
probability that either the conventional or PGLS model
using the plant phylogeny was correct was extremely
small (Table 2). The trait matching relationship from
the PGLS adjusting for the insect phylogeny yields a
slope shallower (b = 0.645 ± 0.0277) than the conven-
tional analysis and substantially less than one (t134 =
12.779, p < 0.00001), again suggesting trait mismatches
which predictably favour the plants more at high trait
magnitudes. RMA regression of species-level results pro-
duced a similar result (Table 2). Furthermore, these spe-
cies level results (Figure 4) mirror the trend seen for
population-level analyses (Figure 2), whether adopting a
conventional, or a phylogenetically-adjusted statistical
approach, and irrespective of the choice of phylogeny
(plant vs. insect, Table 2).
The effect of plant breeding system on trait matching
Using RMA, we found that the mean slope for pollina-
tor-dependent plants was 1.255 ± 0.036 (±SD), (Figure
5). In contrast, the regression slope for autonomous self-
ers was 1.000 ± 0.121 (±SD), (Figure 5). Slopes were
very similar using OLS (results not shown). However,
there was a significant interaction effect of autogamous
versus pollinator-dependent plants on the steepness of
the pollinator-plant trait length slope (Wald c2 = 5.187,
df = 1, p = 0.02), with the slope for pollinator-depen-
dent plants being steeper than for autonomous selfers,
meaning that pollinator-dependent plants had more
exaggerated morphological traits at high values than
plants which were able to self pollinate.

Discussion
These results, from both the population- and species-
level analyses, suggest that local adaptation of one spe-
cies to another frequently produces strong correlations
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between putatively adaptive traits. However like many
other studies [e.g. [10,33-39,11]], our results also show
that mismatches often occur in biological systems. In
particular, we provide evidence for the ubiquity of
imbalances in the “armaments” of complementary traits.
But, most importantly, we suggest that there may be a
predictable pattern to these mismatches which is
repeated at several taxonomic levels [also see [39]].
Here, matching/mismatching refers to the degree at
which trait matching scales with trait size. At low trait
magnitudes, traits are reasonably matched or mis-
matches favour the insects, whereas at high trait magni-
tudes, plant traits are usually larger than those of
insects. To use a classic example, Darwin’s hawkmoth
has a proboscis which is substantially shorter than the
spur length of the Madagascan star orchid (Figure 4).
Our results also support Nilsson’s [3] casual observation
that when moths and flowers evolve long tubes and ton-
gues, the flowers most frequently seemed to have longer
floral tubes than the moth proboscides. This trend holds
for the population- and species-levels irrespective of
method or statistical approach used. This pattern of
mismatching not only holds for multispecies, co-evolved
pollination mutualisms [e.g. [8]], but also for potentially
pairwise co-evolved host parasite relationships [e.g.
[10,14]] and, although the unilaterally evolved studies
were lacking in sample size, the trend remained the
same for all of these studies too. The notable exceptions
to this rule were the two population studies where
plants are autonomous selfers. In addition, when the 12
autonomous selfers were analysed separately in the spe-
cies-level data set, they were found to have a slope value
which statistically approximated one, suggesting that
plants were not gaining a morphological advantage over
their pollinators at high trait magnitudes, perhaps
because selfing in the absence of pollinators relaxes the
selective pressure imposed by the pollinators. In con-
trast, plants reliant on pollinators for seed set had more
exaggerated morphological traits than their insect polli-
nators indicating that the adaptive advantage lies with
the plants. Furthermore, the difference in the steepness
of these slopes was found to be significant after testing
for an interaction between tube length and pollinator
reliance.

Asymmetrical specialization and predictable imbalances
in trait matching
Figure 3 suggests that if an insect species forages from
variable food sources, then it may be less likely to
match a particular focal plant species than if it was fora-
ging on that species alone. Thus, the strength of selec-
tion on mouthpart or floral traits may be dependent on
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Figure 3 The effect of community composition on trait-
matching. The negative OLS regression between trait mismatching
and community heterogeneity. Community heterogeneity was
measured as the mean difference in corolla length between a single
focal plant (Zaluzianskya microsiphon) and other food sources found
at the site. Trait mismatching was calculated from the residuals of
the regression between pollinator (Prosoeca ganglbaueri, Y-axis)
proboscis length and the corolla tube length of its most important
and widespread host plant (Zaluzianskya microsiphon, X-axis).
Negative residuals (Y-axis), indicate that fly proboscis length is
shorter than predicted by the plant-proboscis regression. Negative
values on the X-axis indicate Zaluzianskya has smaller tube lengths
than the guild average.
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Figure 2 Plant-insect trait-matching at the population level.
Scatter plot showing population means for insect and plant
morphological traits from all the studies in Table 1 (excluding
autonomous selfing plants). Solid line: slope of unity (intercept
assumed to be the same as the value derived from the RMA
regression intercept: 3.61); Stippled line: RMA derived slope through all
data (slope: 0.851 ± 0.026; t90 = 5.7242, p < 0.0001).

Anderson et al. BMC Evolutionary Biology 2010, 10:204
http://www.biomedcentral.com/1471-2148/10/204

Page 6 of 14



community context [see [20,40]]. For example, insects
with excessively long tongues may be selected against by
having longer handling times on plant species in the
community with shorter tubes than the focal species
[41-43]. For this mechanism to generate the pattern we
describe above (i.e. larger trait mismatches in favour of
the plants at higher trait magnitudes) plants would need
to be more specialized than their animal partners and
the degree of asymmetry should be highest at high trait
magnitudes. Several studies have found evidence for this
in that long tongued insects are able to access nectar
from a wider range of plant species than insects with
short tongues [e.g. [44,45]]. Haber and Frankie [46]
found that the proboscis length of hawkmoths was posi-
tively correlated with the number of plant species uti-
lized so that longer tongued moths tended to be more
generalized than shorter tongued moths. In contrast
they found that long-tubed flowers were more specia-
lized than short-tubed flowers as fewer pollinators were

able to access the nectar. Thus, at lower trait magni-
tudes, insects are expected to be relatively more specia-
lized than plants but at higher trait magnitudes, plants
are expected to be relatively more specialized than
insects. This type of asymmetry in specialization across
trait values is likely to give rise to asymmetry in trait
values if selection pressure is linked to the level of spe-
cialization in a community. In the data set used for this
paper, plants were usually highly specialized and so it is
more likely that levels of insect generalization are
driving the asymmetry.
Contrary to current understanding of the interaction

webs within which coevolution takes place, we find that
published studies of trait matching generally involve
interactions between specialist plants and more general-
ist animals (31 insect species versus 137 plant species).
Why coevolutionary studies should represent a non-ran-
dom subsample of interactions from many plant-animal
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Figure 4 Plant-insect trait-matching at the species level.
Scatterplot showing the interspecific relationship for morphological
matching between insect and plant traits. The solid line indicates
the slope of unity or symmetry, the stippled line is the conventional
OLS regression analysis and the grey dotted line gives the most
likely statistical model, namely the phylogenetically-adjusted model
incorporating the insect phylogeny.

Table 2 Summary of the models examined to explain variation in morphological patterns of trait matching between
insect and plant species.

Phylogeny Analysis l lambda AIC wi ΔAIC Slope ± SE UCL:LCL P Df

Conventional 1031.1 <0.0001 36.82 0.783 ± 0.023 <0.0001 135

Insect Phylogenetic 0.797 988.6 >0.999 0.645 ± 0.028 0.700: 0.590 <0.0001

Plant Phylogenetic 0.499 1025.4 <0.00001 42.52 0.765 ± 0.025 0.815: 0.715 <0.0001

RMA 0.827 ± 0.022 0.784: 0.870 <0.0001

Each model was tested using either (1) an actual phylogenetic hypothesis for one taxon (plants or insects), assuming equal branch lengths (see Methods), or (2)
a “star-shaped” phylogeny with all species equally related, equivalent to a conventional non-phylogenetic analysis or (3) using reduced major axis (RMA)
regression without any phylogenetic adjustment. LCL: lower 95% confidence limit; UCL: upper 95% confidence limit. l lambda is a measure of phylogenetic
correlation (for details of how this is calculated see Halsey et al. 2006); AIC is Akaike’s information criterion; wi is the Akaike weight, the probability that the
model is the correct one of those tested [67]. RMA confidence limits calculated by bootstrapping (1000 bootstraps) in RMA for JAVA v. 1.21 [63].
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Figure 5 The effect of plant breeding system on the
magnitude of trait-matching slopes. RMA regression slopes of
pollinator tongue or leg morphology against the tube length of
obligate insect pollinated plants (clear squares and dotted line) and
plants capable of autonomous selfing (solid circles and solid line).
Note that the axes have been changed in this analysis because we
are testing whether tube length is dependent on plant mating
system. P-values refer to tests against a slope of 0.
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mutualistic networks remains an intriguing and open
question. However, it is possible that generalized plant -
specialized insect systems seldom produce exaggerated
morphological traits or produce a different set of traits
and thus trait measurements are not reported in the lit-
erature. For example, traits associated with specialized
pollen collecting bees may be hard to measure [e.g.
[47]], particularly if specialized species are more rare.
Interestingly, simulations have shown that coevolution-
ary complementarity (trait matching) and subsequent
phenotypic convergence can generate strongly nested
interaction networks i.e. asymmetric specialization
[21,48-50]. Thus, coevolutionary trait matching of a
focal species pair and subsequent evolutionary conver-
gence of other taxa may generate asymmetry in the
degree of specialization, which, coupled with geographic
variation in the selective environment (e.g. number of
converged taxa) or in the identity of the focal species
pair, may generate the consistent trait mismatch in
favour of the more specialized partner that we demon-
strate here.
The effect of asymmetric specialization was explored

further by examining mismatches between the long-ton-
gued fly (P. ganglbaueri) which forages from a variable
guild of plants and its widespread and primary host
plant (Z. microsiphon) which is pollinated almost exclu-
sively by P. ganglbaueri. These mismatches in comple-
mentary morphological traits were related to the
variability of the nectar producing community used by
the fly at each site. The focal plant (Z. microsiphon) had
more exaggerated morphological traits than the pollina-
tor when pollinators foraged from other plants with very
short traits. The morphological traits of insects were
more exaggerated than the focal plant if the background
plant community consisted of species with even longer
tubes. Although the relationship between mismatches
and variability in the floral traits of the nectar commu-
nity is very strong, some of the variation in this relation-
ship may still be explained by the fact that the analysis
did not take abundance or nectar quality of each species
into account. Verification of these results using other
systems and more advanced methods would add greatly
to this field of biology. Nevertheless, the results from
this study lend support to the idea that community con-
text [20] and the symmetry of reciprocal specialization
[life - dinner principle, [25]] can play decisive roles in
patterns of trait matching and local adaptation. Further-
more these results suggest that evolutionary races can
be won or lost by being a functional specialist (foraging
from a consistent, single food source) or a functional
generalist (foraging from a variable or diverse range of
food sources).
The degree of symmetry in specialization, or more

particularly dependence, seems also to be affected by

plant mating system which can in turn affect trait evolu-
tion. Comparisons of pollinator-plant traits in plants
with different mating systems revealed that autonomous
selfers had steeper slopes than plants dependent on
insects for pollination. Thus, if pollinated by the same
pollinator, an autonomous selfer would have a shorter
tube length than a plant species reliant on pollinators
for seed set or seed siring. Autonomous selfing effec-
tively reduces a plant’s reliance on pollinators, neutraliz-
ing the asymmetries normally observed in interactions
where plants are reliant on insects for seed set. Plant
mating system can be viewed in the same way as specia-
lization, with autonomous selfers being the equivalent of
generalists, and so this data also lends support to the
life-dinner principle [25] which suggests that specialists
may outpace generalists in arms races because selection
for extreme traits is greater for specialists than
generalists.

Alternative mechanisms resulting in predictable trait
mismatches
Although asymmetric specialization may contribute to
mismatches between pollinators and plants, it is unlikely
to account for trait mismatches in the host-parasite
interactions examined in this study as they appear to be
reciprocally specialized. Similarly plant breeding system
is unlikely to influence the pattern of mismatches in the
host-parasite systems investigated because the host-
plants in this study do not depend on their parasites for
seed production. Thus, despite the simplistic appeal of
asymmetric specialization or plant breeding systems as
an explanation for the pattern we report, it is likely that
other factors may also be important.
A likely alternative explanation is differences in the

physiological and developmental constraints on evolu-
tion of traits in animals and plants. It may be relatively
more costly for insects to move around with extremely
long mouthparts or legs because it hampers foraging
efficiency and contact time on plants, as well as being
more costly in terms of flight energetics and simple
insect body plan construction costs [e.g. [51-54]]. Alter-
natively, physical constraints, of e.g. nectar uptake rates
relative to nectar concentration or proboscis dimensions
[41,43], may become more critical at high trait values.
In contrast, the production of extreme traits in plants is
only associated with construction costs (although these
may be expensive in some cases such as the Japanese
Camellia, [10]). Asymmetries in physiological con-
straints could generate the observed pattern of consis-
tent trait mismatches within species, and in addition, it
is a mechanism which potentially scales up to generate
the same pattern across species (e.g. scaling of insect
resting or flying metabolic rate [54,55]). Support for this
possibility is provided by the fact that we find that it is
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important to correct for insect phylogeny, but not plant
phylogeny, in our species-level analysis, suggesting that
insect mouthparts may be more constrained by phylo-
geny than plant flower parts. This result is similar to
that of Rezende et al. [56] who found that phylogeny is
significantly correlated with ecological similarity in 60%
of interaction webs for animals, but only in 25% of webs
for plants. In another study Rezende et al. [49] also
show that phylogeny significantly influences trait distri-
butions for animals but not for plants, lending further
support to the idea that the evolution of complementary
traits is more constrained in animals than in plants.
Differences in the relationship between phylogeny and

ecological similarity (or phenotype) for plants and ani-
mals might also result from differences in the mobility
and evolvability of each group [56]. For example, differ-
ences in the spatial scale of adaptive responses between
plants and insects could result from the homogenizing
effects of gene flow if insects move further than pollen
or seeds. Mismatches on either end of the trait conti-
nuum could result from the constraint on evolutionary
matching imposed by insect dispersal from populations
with intermediate trait values. Although insects intui-
tively seem more mobile than plants, Morjan and Riese-
berg [57] show that historical gene flow levels (as
estimated from neutral molecular markers) are roughly
equivalent across plants and insects, especially when
only considering gene flow through seed dispersal.
Importantly, substantial overlapping variation in gene
flow estimates exists in both groups, contingent on spe-
cies-specific life-history, dispersal and behavioral attri-
butes. Thus, it is unlikely that the direction of gene flow
mismatches between interacting plant and insect species
is predictable, but should instead vary depending on the
specific traits involved. Moreover, asymmetrical gene
flow cannot easily explain trait mismatches across
species.
Morphological mismatches may also favour plants if

they consistently evolve faster than insects and stable
evolutionary equilibria have not yet been reached. This
could occur if plants are usually found in larger, more
genetically-diverse populations than insects or if plants
have faster generation times. Although the former could
be true for many pollination systems, it is unlikely to be
the case for most host-parasite systems [e.g. [10,57]]. In
addition, insects tend to have much faster generation
times than plants, with many specialized plants being
long lived or perennial [59], so we consider it unlikely
that differing rates of evolution is the primary explana-
tion for these mismatches.
Hanifin et al. [39] found that garter snakes (Thamno-

phis sirtalis) evolve resistance to the neurotoxin of their
newt prey (Taricha), and that occasionally the snakes
were able to escape the coevolutionary arms race by

evolving extreme resistance phenotypes. Interestingly,
the salamanders never gained the evolutionary “upper
hand” in this relationship and so imbalances in arma-
ments always favoured the snakes. They proposed that
the imbalances in armaments in this system were related
to the genetic architecture of the complementary traits
under selection. For example, it may be easier to evolve
extreme resistance than it is to evolve extreme toxicity.
Similarly, differences in the evolvabilty of the traits in
our study may have played a role in determining win-
ners and losers in plant-insect systems, with extreme
floral traits being more easily evolved than extreme
insect traits. This however was not tested in any way in
our study, but remains a possible avenue for future
research.

Conclusions
In conclusion, this study demonstrates that there is a
consistent and predictable asymmetry in the develop-
ment of “armaments” in interacting plants and insects.
These data suggest that plant morphological traits are
more exaggerated than insect traits at the long end of
the spectrum of traits measured, and this could have
far-reaching implications for community ecology and
the evolution of species interactions. Mismatches may
be more pronounced at the long end of the spectrum
because pollinators with exaggerated morphological
traits are able to utilize a greater subset of plants than
insects with less exaggerated morphological traits.
Insects with exaggerated morphological traits may there-
fore be less dependent on a single food source than
insects with less exaggerated traits, which might have
implications for climate change related risks on pollina-
tor (and other interaction) networks [see [60]]. In polli-
nation systems, the pattern of trait mismatches was also
affected by the level of dependence of plants on their
pollinators. Species capable of autonomous selfing did
not show the pattern of exaggerated morphological trait
imbalance at higher trait magnitudes prevalent in spe-
cies reliant on pollinators for fruit set, perhaps because
autogamy eliminates their reliance on pollinators and
thus the asymmetry in the dependence of one partner
on the other. In order to better understand the func-
tional significance of the regression slopes, it is neces-
sary to start investigating pollination relationships in
terms of their phenotypic interfaces as demonstrated in
the studies of Brodie and Ridenhour [23] and Toju and
Sota [10]. The phenotypic interface is an important but
as yet neglected avenue for studying functional trait
matching and we hope that this paper stimulates such
studies in the future. Asymmetries in specialization are
also not the only explanation for these patterns and are
unlikely to explain the slope patterns evident in some
host-parasite systems [e.g. [10]]. Consistent differences in
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constraints on trait evolution in insects and plants may
also play roles in determining the imbalance of arma-
ments. For example, foraging and flying may be ham-
pered in insects with extremely long mouthparts but
plants with extreme traits may not suffer similar con-
straints. We also hope that this paper stimulates future
research on the costs and mechanisms which constrain
the evolution and matching of morphological traits in
plants and insects. It is evident that there is a real paucity
of non-pollination studies in this data set and we believe
that population level trait-matching in host-parasite sys-
tems [e.g. [10]] is extremely understudied. This is an
exceptionally important area of study as it has applica-
tions for the control of pests, disease, drug resistance and
biological invasions [see [39]]. As a result, understanding
what determines the outcomes of interactions in model
systems may have practical implications for combating
disease, pests and invasions. Because there are only a
small number of published studies available on morpho-
logical trait matching, we see a need for more studies
which determine where and when armament imbalances
occur as well as whether the directionality of armament
imbalances is as consistent as suggested here. In particu-
lar, there is a need for future studies to report trait mea-
surements in other taxa such as hymenoptera (proboscis
lengths), which are absent from our data set.

Methods
We searched the Anglophone literature for plant-animal
interaction studies which reported morphometrics of
matching plant and insect traits (e.g. corolla length and
proboscis length; see Additional file 2). Studies which did
not measure morphological variables on similar dimen-
sions (i.e. in units of length) were excluded from the
database. We only used systems where available literature
suggested that one or both partners were completely spe-
cialized at either the species or population level. We
divided these studies into two groups: studies on multiple
populations within a species and studies where only a
single data point was provided for each species.

Population level analyses
Because not all studies investigating morphological
matching between insects and plants present slopes of
relationships and tests for homogeneity of slopes, we
re-analyzed data compiled from previous studies with
plants on the X-axis of the regression as well as with
plants on the Y-axis of the regression. Reversing the
axes of the regressions did not significantly affect the
general analyses (i.e. which taxon wins the evolutionary
race), thus for simplicity we generally present all data
with insects on the Y-axis. Analyses were undertaken
using reduced major axis (RMA) regression and
repeated using ordinary least-squares (OLS) regression

on the raw (i.e. untransformed) population level data for
each study separately. Where possible, RMA was
reported when we were specifically interested in com-
paring slope values but OLS was also reported when we
were interested in whether or not there was a significant
relationship between insect and plant traits [see [61]]. In
all cases for a particular species complex we tested
firstly, for a significant match between plant and insect
traits (i.e. a significant regression) and, secondly, for
imbalance in trait matching with respect to trait magni-
tude (i.e. deviations of the regression slope from one).
To do this we tested for slope homogeneity against an
expected value of one using a two-tailed t-test [[62]; p.
360] at the population level for each study separately
and then also across all studies. RMA analyses were
undertaken in RMA for JAVA v. 1.21 [63]. Results of
OLS regression also support all our major RMA results
and conclusions and suggest the effects we discuss are
not simply issues of different forms of measurement
error among insects and plant traits. The two autono-
mous selfing relationships were excluded from this ana-
lysis across studies since we were interested in
controlling for this factor. These RMA and OLS ana-
lyses were repeated with only parasitic/antagonistic spe-
cies and for mutualistic species alone. Table-wide false
discovery rate correction was used to correct for
repeated hypothesis testing [64].
The origins of the regressions were not forced through

zero as the measurement of plant and insect traits may
differ based on the investigators’ perception of the
appropriate functional trait magnitude. Consistent dif-
ferences in measurement across taxa will not influence
the slope of the regressions, but will influence the inter-
cepts. One possible problem with this approach is that
consistent biologically relevant variation in the intercept
itself, due for example to plants and insects having dif-
ferent lower size constraints, might influence estimates
of the slope. For example, if the intercept of an interac-
tion always involves longer insect traits than plant traits,
we might expect an initial phase (with slope ≠ 1) invol-
ving the plant “catching up” with the insect, followed by
a secondary phase involving coadaptation or sequential
evolution (with slope = 1). Therefore, we also tested for
this possibility using breakpoint (piece-wise) regression
and found no evidence for the two phase model provid-
ing a better fit or lower mean-squared error than ordin-
ary regression (results not shown).
The effect of community and functional generalization/
specialization
To explore the idea of asymmetrical specialization lead-
ing to trait mismatch in more depth, we used data from
the studies of Anderson and Johnson [6,17]. Anderson
and Johnson [6] studied geographic covariation between
the corolla length of an important rewarding plant
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(Zaluzianskya microsiphon) and the tongue lengths of
its sole fly pollinator (Prosoeca ganglbaueri). The two
are thought to have coevolved at several sites and are
closely matched morphometrically at most sites. How-
ever, in a subsequent study Anderson and Johnson [17]
reveal a whole community of other plants which are
also visited by this pollinator, although most of the
other community members are not particularly wide-
spread. At 16 different sites, Z. microsiphon and all
other community members visited by this long probos-
cid fly were documented and measured. In relationships
where one species is more specialized than the other (i.
e. plant more specialized than pollinator), the pollinator
may frequently be exposed to more variable selective
pressures than the plant (i.e. a more morphologically
variable food source). If the plant community plays a
role in determining trait matching between a focal plant
and its pollinator, then we expect poor trait matching in
variable plant communities but good trait matching in
less variable plant communities. Next, by pooling corolla
length data from all other plants utilized by the fly (N =
20 per species), we calculated the mean corolla length of
the other plants utilized by P. ganglbaueri. We then cal-
culated the mean difference between Z. microsiphon
corolla lengths and the rest of the nectariferous plants
utilized by the pollinator at each site. This difference
was related to the degree of mismatch at each site, mea-
sured as the residuals from the trait regression of P.
ganglbaueri (Y axis) and Z. microsiphon (X-axis) across
sites. Ideally, the importance of each species’ corolla
length as a selective agent should be weighted according
to its relative abundance and nectar quality, but unfor-
tunately we do not have these data for all of the sites
and species found there.

Inter-specific analyses
Next, using a similar approach to the population-level
analysis, and assuming that measurement error and
observer bias is similar across all taxa and species, we
investigated the patterns of trait matching across multi-
ple interacting species pairs. To adjust for the statistical
non-independence of species data or possible clade
effects, relationships between plant and insect morphol-
ogy were examined using a phylogenetic generalised
least-squares approach [following [65]]. Two PGLS ana-
lyses were undertaken in R software using the APE
package [66] using either plant or insect phylogenetic
information. Each model was implemented either with
or without phylogenetic adjustment. Because most of
the branch lengths in the phylogenies are unknown, the
PGLS analysis was conducted with the assumption that
all branches in the phylogeny were of equal length. This
is equivalent to a punctuated model of evolution in
which all change occurs at speciation events. The most

appropriate model was selected by assessment of the
Akaike Information Criterion (AIC) and Akaike weights
(wi) according to the information theoretic approach
outlined in Burnham and Anderson [67]. Accordingly,
models with the lowest AIC values were assumed to be
better than models with high AIC values. In order to
standardize the directions of slope deviations we present
all regressions (at both the population and species level)
with plant traits on the X-axis. We chose to report our
results only in this manner because lower AIC values
for PGLS suggest that this is the most suitable model.
These analyses were also repeated with RMA without
correction for phylogenetic non-independence.
The hypothetical plant phylogeny used in the PGLS

was built to the family level following [68]. Species-level
phylogenetic information was obtained for the Iridaceae
[69], Orchidaceae [70] and Geraniaceae [71] using the
strict consensus tree in each case. In a few cases, taxa
which could not be resolved from these sources were
assigned hypothetical phylogenetic relationships assum-
ing species within genera are most closely related [as in
[72]]. The final plant phylogeny used in the PGLS is
given (Additional file 3).
A hypothetical insect phylogeny for use in the PGLS

was built following Terblanche et al. [72]. Taxa were
resolved to the order level [73], to the species level for
the Sphingidae [74] (Additional file 3) and to the family
level for Hymenoptera and Hemiptera following the
Tree of Life project http://www.tolweb.org/tree. Diptera
families were resolved following the Tree of Life and
Tabanidae species resolved according to Morita [75].
Nemestrinidae formed a large polytomy which could
only be partially resolved assuming species within gen-
era are more related than those among genera. The final
insect phylogeny used in the PGLS is given in Addi-
tional file 3.
The effect of plant breeding system on trait matching
We tested this idea using the larger species-level data
set which included 98 pollinator-dependent plants and
12 autonomous selfers; only pollination relationships
were used for this analysis. Plants with unknown breed-
ing systems were excluded from the analysis. We sepa-
rately regressed tube lengths with pollinator morphology
for all species which were dependent on pollinators for
seed set, and then for autonomous selfers which were
not dependent on pollinators for seed set. We then
compared these regression slopes to one another using a
homogeneity of slopes test in a generalized linear model
(GLZ) with a normal distribution and log link function.
Here plant tube length was placed on the Y-axis as we
were using plant mating system as a categorical predic-
tor of tube-length. The data did not satisfy the assump-
tions of non-independence of data and homogeneity of
variance for analyses by GLM, which is why we used
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GLZ, without phylogenetic adjustment, which is more
conservative and robust to these errors. We expected
that plants reliant on pollinators for seed set are more
likely to be ahead in the coevolutionary arms race (i.e.
to match or exceed pollinator magnitudes) than autono-
mous selfers, which likely experience weaker selection to
match pollinator magnitudes.

Additional material

Additional file 1: Summary of ordinary least-squares (OLS)
regression results for tests of morphological symmetry in adaptive
traits within and among reported study systems. In all cases the
plant’s morphological trait is the independent variable while the insect’s
morphological trait is the dependent variable. Note that the origin of the
regression was allowed to vary freely (i.e. not constrained to zero). Plant
breeding system is indicated for pollination relationships with O =
outcrossing and AS = Autonomous selfing, and the type of interaction is
categorized as parasitic or pollination. Pollination relationships are further
divided into mutualistic (M) or antagonistic (A) relationships. Preg =
probability value for the F-value test for regression significance, Pslope =
probability value for the comparison of estimated slope against expected
unity (a value of 1.0), DF = degrees of freedom. The slope for “all
populations” was derived by pooling all data points within each of the
studies below, and not by averaging the slopes of each relationship.
Insect order is indicated by a letter in parentheses where C = Coleoptera,
H = Hemiptera, D = Diptera, Hy = Hymenoptera. † Bold values are
significant at p = 0.05 after False Discovery Rate correction.

Additional file 2: List of taxa and source references used for
interspecific comparisons. When data in the original source reference
was presented as a range the mid-point was assumed representative of
the species mean trait value. If an insect species was found to interact
with one or more plant species, each interaction was assumed to be an
independent relationship for the interspecific comparison. However, this
potential pseudo-replication of species data was fully accounted for in
the PGLS analyses since multiple reports of the same species was
represented as a polytomy in the hypothetical phylogeny, which
therefore collapses to the nearest node in the tree in the
phylogenetically-adjusted comparison and does not artificially inflate the
degrees of freedom. Insect order is indicated by a letter in parentheses
where C = Coleoptera, H = Hemiptera, D = Diptera, Hy = Hymenoptera,
L = Lepidoptera.

Additional file 3: Inter-specific plant and insect phylogenies.
Hypothesized phylogenetic relationships (in Newick format) used in
PGLS analyses. Owing to limited available information, all branch
lengths were assumed to equal 1.
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