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Abstract

Background: Breeding for new macadamia cultivars with high nut yield is expensive in terms of time, labour and
cost. Most trees set nuts after four to five years, and candidate varieties for breeding are evaluated for at least eight
years for various traits. Genome-wide association studies (GWAS) are promising methods to reduce evaluation and

and number of nuts per raceme.

regression suggested detection of 16 separate QTLs.

yield.

selection cycles by identifying genetic markers linked with key traits, potentially enabling early selection through
marker-assisted selection. This study used 295 progeny from 32 full-sib families and 29 parents (18 phenotyped)
which were planted across four sites, with each tree genotyped for 4113 SNPs. ASReml-R was used to perform
association analyses with linear mixed models including a genomic relationship matrix to account for population
structure. Traits investigated were: nut weight (NW), kernel weight (KW), kernel recovery (KR), percentage of whole
kernels (WK), tree trunk circumference (TC), percentage of racemes that survived from flowering through to nut set,

Results: Seven SNPs were significantly associated with NW (at a genome-wide false discovery rate of < 0.05), and
four with WK. Multiple regression, as well as mapping of markers to genome assembly scaffolds suggested that
some SNPs were detecting the same QTL. There were 44 significant SNPs identified for TC although multiple

Conclusions: These findings have important implications for macadamia breeding, and highlight the difficulties of
heterozygous populations with rapid LD decay. By coupling validated marker-trait associations detected through
GWAS with MAS, genetic gain could be increased by reducing the selection time for economically important nut
characteristics. Genomic selection may be a more appropriate method to predict complex traits like tree size and
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Background

Macadamia is a large nut tree native to the coastal rainfor-
ests of southern Queensland and northern New South
Weales, Australia. Macadamia integrifolia Maiden & Betche,
M. tetraphylla L.A.S. Johnson and their hybrids have high-
quality edible kernels, and are the first indigenous Austra-
lian food species to be commercialised internationally. The
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industry is largely based on cultivars developed in Hawaii in
the late nineteenth century [1]. Current production is dom-
inated by Australia, South Africa and Hawaii, and is
expanding in China, Kenya and other countries around the
world [2]. A major focus in breeding new macadamia var-
ieties is increasing nut-in-shell yield per tree. However, the
heritability of yield is low (H? ~0.12), largely influenced by
environment, and, as such, difficult to select [3]. To date,
conventional phenotype- and pedigree-based selection has
been employed to improve yield of commercial varieties.
Long juvenile periods, large tree sizes and labour involved
in phenotyping over continuous years to identify elite
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candidate cultivars mean that fruit and nut trees may bene-
fit from genomic approaches to reduce selection cycles and
increase genetic gain [4].

The use of genomics in plant breeding is expand-
ing [4-6], including employing genome-wide associ-
ation studies to identify molecular markers
associated with important traits, and genomic selec-
tion for complex traits. A common approach is using
genome-wide association studies (GWAS): each
marker (typically single nucleotide polymorphism,
SNP) is tested individually to detect evidence of
marker-trait associations [4]. This method relies on
linkage disequilibrium (LD) between markers and
causal polymorphisms [4]. To avoid spurious
genotype-phenotype association due to population
structure and family structures, linear mixed models,
fitting individuals as random effects to account for
relatedness, are widely used. As the realised kinship
estimated from genetic markers is more accurate
than recorded pedigree, fitting genomic relationships
in the model can reduce false positives of putative
large-effect QTLs [7, 8]. QTLs identified through
GWAS can be followed by marker-assisted selection
(MAS) if a reasonable proportion of trait genetic
variation is explained by the significant markers. In
MAS, candidates are screened for target markers,
their phenotypes are predicted based on allelic states,
and selections can be made based on these predic-
tions [9, 10].

Several fruit and nut crops have employed GWAS to
identify markers associated with key traits [11-18]. Fur-
thermore, by mapping significant markers to reference
genomes, the location of markers can be determined in
order to investigate candidate genes, although this is not
necessary for MAS. GWAS coupled with MAS at these
specific loci is a feasible option for improving yield com-
ponent traits in macadamia [19]; hence, we aim to inves-
tigate this option in the Australian macadamia breeding
program.

Target traits for GWAS and potential MAS in macada-
mia include commercially important traits, such as nut
and flowering characteristics, as well as tree size. Nuts
consist of an inner edible kernel, with two cotyledons,
which is enclosed by a hard shell (testa) and outer husk
(pericarp) [1, 20]. Nut weight (NW), kernel weight
(KW), and kernel recovery (KR) are commercially im-
portant yield component traits. For NW and KW, the in-
dustry favours intermediate optimums (6.5-7.5 g and 2—
3 g, respectively) due to issues involved in handling,
cracking, processing, and roasting smaller and larger
nuts [1]. The selection goal for KR, which is the propor-
tion of kernel to nut-in-shell (KW/NW), may not be
completely clear. Whilst high (>37%) KR attracts a pre-
mium price per kilogram [21], very thin shells can be
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prone to pest and disease damage [1]. Whole kernels
(WK) are those that have not split along the interface
separating the two cotyledons during cracking [22]; this
trait can influence kernel price as some products and
markets prefer whole kernels [1, 23].

Macadamia trees can produce about 2500 pendant ra-
cemes 6—30 cm long, each with an inflorescence of 100—
300 florets [24, 25]. It has been estimated that less than
1% of florets produce viable nuts [26]. This estimate,
therefore, indicates that many racemes and florets fail,
likely due to a variety of reasons, and resource allocation
may be a factor. As such, the percentage of racemes that
survive from flowering through to nut set (RSN) could
indicate a genotype’s reproduction success and energy
investments, in terms of resource allocation for flower-
ing versus nut retention [27, 28]. Reduced tree size is
also an important selection trait to increase planting
density and subsequent yield per hectare [29, 30]. Trunk
circumference (TC) or trunk cross-sectional area can be
used as an estimate of tree size in macadamia [30].

O’Connor [31] investigated heritability and correla-
tions of yield and yield component traits measured on
mature progeny. Several commercially important
traits, as well as flowering and nut set characteristics
that were moderately or highly correlated with yield
are the focus of this study. It is hypothesised that
marker-trait associations will be detected for these
key traits using GWAS, and upon validation could be
combined with MAS to improve breeding efforts and
increase genetic gain in macadamia. The current
study builds on work previously published in a pre-
liminary study [32] on the same population of trees.
In that preliminary study, O’Connor et al. [32] found
SNP markers associated with three nut characteristics
(NW, KW and KR) measured on trees at the ages of
7-9years (in 2010). In comparison, the current study
uses a different set of SNP markers imputed with
high accuracy, and performs GWAS on yield compo-
nent traits measured on the same trees at a mature
age (aged 14-17years, in 2016-2018). The aims of
this study were to: (i) perform GWAS to identify
markers significantly associated with yield component
traits, and (ii) determine the location of significant
markers on genome scaffolds.

Results

Component traits

Raw (untransformed) phenotypes for KR, WK and TC
were normally distributed (Fig. 1). Log-transformed
(log1o(x)) observations for NW, KW and NPR, as well
as square root transformed observations for RSN ap-
peared more normally distributed than raw observa-
tions (Fig. 1). Yield (2017 and 2018) was not normally
distributed, and neither log (log;o(x), In) nor square
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Fig. 1 Distribution of phenotypes across all individuals for yield component traits. Freq, frequency; NW, nut weight; KW, kernel weight; KR, kernel
recovery; WK, percentage of whole kernels; RSN, percentage of racemes that set nuts; NPR, number of nuts per raceme; TC, trunk circumference.
Log-transformed (Iogo(x)) NW, KW and NPR, and square root transformed (sq) RSN distributions are also shown, as well as both forms of
transformation for yield in 2017 and 2018

root transformations led to more normally distributed
data, even for individual sites. This indicates that
GWAS is not appropriate for yield, and association
analysis was not performed for this trait.

Phenotypes ranged from 4.34 to 12.31 g for NW, 1.46
to 5.01 g for KW. As a derivative of these two traits, KR
ranged from 20.2 to 55.6% (Table 1). Moderate to high
correlations (p < 0.01) were observed between young and
mature phenotypes for NW, KW and KR (0.56, 0.66 and
0.73; Table 1). For three genotypes, including cultivar
“Yonik’, there were no broken kernels (100% WK) in the
sample, whilst one tree possessed a very low WK (15%).

Most small trees (small TC) were observed at site EG,
with the lowest TC at 14 cm. Conversely, trees with large
TC were observed at the AL and HP sites, with a max-
imum TC of 78 cm at site HP. An entire range of pheno-
types was observed for RSN, from 0 to 100%, with a
mean of 25%. Mean NPR was 2.6 and ranged from 1 to
10.4 (Table 1).

Trait-specific models and heritability

For all traits except RSN, the most parsimonious model
included site as a significant fixed effect, whilst block
within site was also significant for NW and TC (Table 2).
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Table 1 Summary of raw (untransformed) phenotypes for each
trait analysed in GWAS

Trait Min Max Mean SD o
NW (g) 4.34 12.31 7.09 134 056
KW (g) 1.46 501 273 055 0.66
KR (%) 202 556 387 54 0.73
WK (%) 15 100 64 17 -
TC (cm) 14 78 51 12 -
RSN (%) 0 100 25 18 -
NPR 1 104 26 14 -

SD standard deviation, r,, Pearson’s correlation of current data with raw
phenotypes for young trees from O’Connor et al. [32]

Tree type was included in the WK model, with a signifi-
cance level of p = 0.063. The G x E term was included as
a random effect for NW and NPR (Table 2). Narrow-
sense genomic heritability varied across traits, from 0.08
for RSN to 0.74 for KR (Table 2). TC and NW were
moderately heritable (0.45 and 0.53, respectively).

Genome-wide associations

The GRM appeared to have effectively accounted for
population structure in all traits except for TC, as no
more associations than expected by chance were ob-
served at low levels of significance in the QQ plots
(Fig. 2) [33]. GWAS identified seven SNP markers sig-
nificantly (FDR <0.05) associated with NW, four with
WK, and 44 with TC (Fig. 2; Table 3). For both KW and
KR, no markers exceeded the FDR threshold; however,
there was one marker of interest in both traits that were
further investigated. There were no markers significantly
associated with RSN or NPR.

After multiple regression, where significant SNPs were
treated as fixed effects, some markers were no longer
significantly associated with some traits. Only SNP
$2204 remained significantly associated with N'W, whilst

Table 2 Significance values of fixed and random terms
included in association analysis model for each trait

Trait Site Block Tree Type GxE h?

NwP 00014 0.0025 e 053
Kwe 1682e-13 037
KR 1916e-09 0.74
WK 8.852¢-05 0063 024
TC < 22e-16 00043 045
RSNP 008
NPR® 3017e-08 @ 0.09

Type, seedling progeny or grafted parents; G x E, genotype by environment
(site) interaction; h?, narrow-sense heritability. Non-significant p-values (p >
0.05) are not shown and were not included in models, except for Type for WK.
? indicates G x E model was significantly better fitting than model without G x
E term, as determined using log-likelihood ratio test. h? estimated from the
best-fitting model with the GRM fitted. ® indicates data were transformed
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for WK, the two mapped markers (mapped to different
scaffolds) and another marker remained significant, but
the unmapped SNP 52607 was redundant. The number
of SNPs significantly associated with TC decreased to 16
after multiple regression analysis.

Fifty-two of the 57 (91%) significant SNPs across the
traits were mapped to scaffolds of the v2 macadamia
genome assembly (Table 3). Some markers mapped to
multiple scaffolds, for example, s3710 was located on 51
different scaffolds. Most scaffolds only had one SNP
mapped, though six scaffolds had two SNPs mapped
each. Almost 50% allele frequency was observed for two
markers (s3540 for KW, and s3616 for TC; Table 3).
The BLUEs estimated for the significant markers from
the multiple regression model ranged from - 10.359 to
4.608 for WK, and - 11.946 to 4.088 for TC (Table 3).

The phenotypic (raw, untransformed) distributions
across the three genotypic states were examined with
boxplots for the most significant marker for NW and
WK (Fig. 3). The average phenotypes of NW at SNP
§2204 for AA, AG and GG genotypes were 7.03 g (n =
309, SD =1.29), 8.20g (n =5, SD =0.58), and 9.54 g (n =
6, SD = 1.73), respectively (Fig. 3). Similarly, the average
values of WK for AA, GA and GG genotypes at marker
s0201 were 78.0% (n =5, SD =11.0), 72.9% (n =50, SD =
15.3), and 62.3% (n = 265, SD = 16.8) respectively (Fig. 3).
A two-way unbalanced analysis of variance (ANOVA)
found that for NW at s2204 there was a signficiant dif-
ference between genotypes AA/AG (p<0.05) and AA/
GG (p<0.001) but not for AG/GG, and for WK at
s0201 a significant difference existed between genotypes
AA/GG and AG/GG (p < 0.001), but not AA/AG.

Discussion

Phenotypic data in the breeding program

Large phenotypic diversity was observed for many of the
traits in this study. Average phenotypic values observed
here for NW, KW and KR were all slightly higher com-
pared with the same traits in the preliminary study when
the trees were young [32]. The moderate heritabilities
suggest that selection for a number of traits will result in
good genetic progress. For example, the high narrow-
sense heritability observed for KR (h? = 0.74) means that
the aim to select for higher KR is achievable with trun-
cation selection. This form of selection is where trees
with phenotypes or estimated breeding values below a
certain threshold are excluded from parent populations,
and the mean values of progeny should increase for this
trait over generations [34]. Results of this study differed
to that in the preliminary study [32] which analysed the
same population when the trees were younger (around
8 years of age). Heritability for KR was higher in mature
trees than young trees (0.62), whilst KW was lower in
mature trees (0.37) than young trees (0.53). In
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Fig. 2 QQ plots showing expected significance levels against observed significance for yield component traits. Each circle represents one of 4113
SNP markers. Red diagonal lines indicate the null hypothesis, where observed and expected p-values would sit if there were no associations.
Dashed horizontal lines indicate FDR = 0.05, SNP markers above which were deemed significantly associated with the trait; if no dashed horizontal
line is present then no SNPs exceeded the FDR threshold. Shaded area indicates 95% confidence interval

comparison, the difference in heritability for NW be-
tween the two studies was low (0.03), but the correlation
between these phenotypes was only moderate (0.56).
This study demonstrates that linear mixed models are
useful for analysing phenotypic and genetic data in
macadamia to identify QTLs for target traits, which is
beneficial, as developing new macadamia varieties is
time-consuming, laborious and expensive. Additionally,
the large tree size and numbers involved in macadamia
breeding means that multiple environments are typically
needed during evaluation trials. The mixed models
employed in this study account for the average effect of

the environment, as well as G x E interactions for some
traits. Thus, the best model was fitted to the data on a
trait-by-trait basis.

Genetic data

The current study used 4113 SNP markers imputed with
high accuracy, though analysis of LD using the same
markers and population found that LD declined rapidly
over short distances [34]. The number of markers in the
current study is comparable with other studies in fruit
trees [13, 15—17]; however, the fragmented nature of the
macadamia genome scaffolds means the distribution of
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Table 3 Summary of significant SNPs associated with yield component traits identified in GWAS

Trait SNP Scaffold® Position (bp) Alleles MAF p pMR BLUE

NW< 52204 scaffold926|size239084 212,122 A/G 0.027 3.68E-06 4.46e-06 0.084
54163 scaffold285|size451335 314,657 2) 0.027 8.03E-06 NS
s1434 scaffold_177|size983250 804,678 T/C 0.019 2.65E-05 NS
51643 scaffold44]size832018 129,241 A/C 0.021 346E-05 NS
s1121 scaffold653|size305054 6573 A/G 0.021 3.82E-05 NS
s5182 - - AT 0.035 6.29E-05 NS
52256 scaffold710]size289053 142,496 G/T 0.026 6.45E-05 NS

Kwe $3540° | J G/A 0482 1.34E-05

KR $1707° scaffold_72]size1196525 587,142 /T 0.061 2.37E-05

WK 50201 scaffold213|size509421 186,179 G/A 0.093 8.81E-06 1.11E-06 4.608
$3239 scaffold361|size1112638 1,087,419 G/C 0.037 3.39E-05 2A5E-04 -10359
s1917 - - A/G 0.163 1.23E-05 NS
52607 - - T/C 0.177 291E-05 NS

TC s3169 scaffold146|size572432 176,797 T/C 0.230 1.29E-07 1.13E-07 -1.343
51885 i | T 0319 8.57E-05 4.85E-05 —-1.706
52320 scaffold81|size707423 173,614 C/A 0.083 1.02E-04 3.90E-05 4.088
$3332 scaffold1221|size537814 497,497 T/C 0.285 1.97E-06 3.98E-04 2.167
$1208 i | /T 0.179 3.14E-04 6.96E-04 —2.383
53291 i | G/T 0.267 4.09E-05 7.52E-04 0.540
54709 i i G/A 0.106 4.74E-04 262E-03 -11.946
s3311 - - A/C 0.043 3.90E-04 3.81E-03 —4.442
53828 I i G/A 0.093 4.03E-04 447E-03 —-2.009
$2230 scaffold_88 424,720 G/T 0.884 2.03E-04 6.15E-03 —2.360

Only the ten most significant markers for TC are shown. MAF, minor allele frequency of the marker; p, significance of association; pMR, significance of association
as determined by multiple regression with significant SNPs as fixed effects; BLUE, best linear unbiased estimator (fixed effect) of SNP, additive effect of allele on
the trait; NS, not significant. - indicates marker was not mapped to scaffolds. [ indicates marker was mapped to multiple scaffolds.  Scaffold in v2 genome

assembly. ® Did not pass FDR =0.05 threshold. € indicates data were transformed

markers across the whole genome is still unknown. Gen-
etic linkage maps have been used to anchor scaffolds to
chromosomes (Langdon et al. in preparation), and the
location of scaffolds in the genome will be informative
for determining locations of genes detected by SNPs in
this study.

Population structure affects LD, and this needs to be
accounted for in GWAS to avoid spurious associations
and over-prediction of allelic effects. For most traits in-
vestigated here, the QQ plots showed that only the
highly significant markers deviated from the null expect-
ation (y =x line), and did not show inflation of the ob-
served versus expected p-values at lower significance
levels. QQ plots showing this pattern demonstrate that
population structure has been effectively accounted for
by the GRM [33]. One explanation for divergence from
the null hypothesis (more associations detected than ex-
pected) at high p-values is polygenicity: many loci of
small effect contributing to variation in the trait [36].
This genetic model may explain the pattern observed for
TC, where a large number of associated markers was

detected even at low p-values. The previous study [32]
did not use markers with missing data imputed with
high accuracy, and deviations from the null hypothesis
line were observed. Imputation of missing data with high
accuracy can, therefore, more accurately capture the rea-
lised kinship between individuals, and, as such, produce
more accurate association results.

Association analysis
MAS, using the findings of GWAS, is effective for traits
controlled by few genes, and, as such, has little value for
complex traits like yield [37-39]. However, Kelner et al.
[40] performed QTL mapping and found two clusters of
QTLs related to fruit yield and cumulative yield in apple
on two different linkage groups, as well as QTLs for pre-
cocity and biennial bearing. Genomic selection may be a
more appropriate and accurate method to predict yield
in macadamia [19].

This study identified SNP markers significantly associ-
ated with NW, WK and TC. Although no significantly
associated markers were detected for KW or KR, the
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marker with the lowest p-value in each case should be
investigated in further studies. Neither NPR nor RSN
had any significant associations, which may be partly
due to the very low heritability of both traits. Addition-
ally, while there was no G x E detected in RSN, there
may be a large environmental influence on the capacity
of a tree to retain racemes from flowering through to
nut set [27, 28].

For TC, 16 of the 44 significant markers were non-
redundant, suggesting that there may be 16 QTLs con-
trolling this trait. Multiple regression suggested that all
of the the markers significantly associated with NW may
have detected the same or linked QTLs, with the most
significant SNP (s2204) being the only non-redundant
marker. The location of scaffolds in linkage groups
(Nock et al. in preparation) may further aid the under-
standing of whether markers are in LD or are separate
QTLs.

A direct comparison cannot be made between SNPs
found to be significantly associated with nut traits in the
preliminary study by O’Connor et al. [32] and the
current study, as two different SNP panels were used in
the analyses. However, some of the significant markers
could be mapped to genome assembly scaffolds. A com-
parison of the locations of mapped SNPs between the
two studies showed that there were no markers occupy-
ing the same scaffold (data not shown). Results from
GWAS are not always consistent, with variation between
populations and environments altering allelic frequen-
cies and phenotypes. For example, differences were
found across years in apple [18], and between QTL

mapping and GWAS studies in chestnut [11, 41], and
this may be a consequence of limited power in these
studies.

Researchers use different thresholds for determining
which markers to include in their genomics studies, such
as 5% MAF [11, 17], 1% MAF within-populations [42],
and ten copies of the minor allele across samples [18].
In the present study, markers were initially excluded
with MAF < 2.5%, though these statistics were calculated
for each marker before imputation, and, as such, the
study included markers with MAF below this threshold
(MAF altered after imputation of missing calls). It was
interesting, then, that all of the markers associated with
NW had very low MAF. If these markers had been re-
moved by filtering, they would not have been detected
through GWAS. Associations with rare alleles should be
treated with caution due to low power of detection [43],
and this is the case here. Therefore, the significant
markers with low MAF in the current study should be
validated in independent studies, preferably with more
individuals to observe whether the MAF is similar across
populations of different sizes [44], as this will support
the findings of this study.

Demonstration of marker-assisted selection

The results of this GWAS study can be used to demon-
strate the implementation of MAS in the macadamia
breeding program. SNPs significantly associated with
commercially important traits would be ideal candidates
for use in MAS. The estimates of BLUEs in the multiple
regression analysis indicate the additive effect of the
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SNP allele at that marker on that trait. For example, the
estimated effect for SNP allele at s2204 was 0.084, mean-
ing that genotypes with one SNP allele will have an
added 0.084 g of nut weight controlled by genetic vari-
ance than those without. The influence of additive gen-
etic variance of these alleles was quite different to that
which was observed in the raw phenotype, as the pheno-
type will have been influenced by non-additive genetic
effects and environment. The three genotypic states for
NW at SNP 52204 and for WK at marker s0201 showed
clear association with phenotypic averages, though the
difference in genotypic states was much lower than the
additive allele effect calculated from BLUEs. The sample
sizes among the three different genotypic states varied
greatly in these examples, and so it is important to rec-
ognise that these findings are severely biased upwards
and are only for demonstrative purposes for how MAS
could be used. Simply, breeders could genotype seedling
progeny from their first leaf at these key markers. Deter-
mining the allelic states at these markers would allow se-
lection of AG heterozygotes at SNP 52204 for seedlings
with predicted intermediate nuts, and AA genotype at
SNP 50201 for a high percentage of whole kernels. How-
ever, with such low MAF and number of individuals in
these genotypic states, these results should be inter-
preted with caution. Again, the SNP should be validated
in an independent population, and the effect of the SNP
alleles should be estimated in that population.

Further work

This study and our previous work [32] provide a founda-
tion for how the use of genomics can improve breeding
in macadamia, and is among the first to analyse the po-
tential for genomics-assisted breeding in nut crops.
However, the results presented require validation before
being employed in breeding programs. Multi-trait ana-
lyses could be performed to increase the power of detec-
tion of QTLs, and also detect pleiotropy [45]. A separate
population should be studied to determine if QTLs de-
tected are the same as those detected here, or are new
associations. Further studies should incorporate larger
population sizes, to ensure that significant associations
are accurate and applicable to a wider breeding popula-
tion. Additionally, the low MAF observed for some
markers in this study may change with sample size,
which will influence the proportion of variance ex-
plained by those markers.

When a more complete reference genome is assem-
bled, the location of these markers can be determined,
and LD between markers more accurately estimated
with population structure and cryptic relatedness taken
into account. Due to the rapid decay of LD over short
distances in macadamia [34], using a larger number of
markers may increase the likelihood of SNPs being in
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LD with causal polymorphisms. Furthermore, the poten-
tial issues posed by allelic dropouts, such as lower than
expected levels of heterozygosity observed by O’Connor
et al. [34], could be alleviated with the use of a complete
reference genome in sequencing of SNPs in the future.
Without genome scaffold annotation, the significant
SNPs cannot be linked to known genes or proteins,
which has been achieved in other studies of GWAS in
fruit trees (e.g. [13, 15, 16, 18]). The v2 scaffolds and
chromosomes are being (Nock et al. in preparation), and
so candidate genes could be identified in future studies.

Although there was a lack of significant associations
in some traits in the current study, these should still
be investigated in future work. The polygenic nature
of TC, as well as the complexity of yield, means that
these traits may be more suited for genomic selection,
where many markers may have a small effect on the
trait, and all markers are modelled simultaneously
[46], rather than one-by-one as in GWAS. Other
traits that could be analysed include self-fertility, and
resistance to diseases that affect nut yield, including
husk spot and phytophthora.

Conclusions

The findings of this study have important implications
for macadamia breeding, but also highlight the difficul-
ties of employing GWAS in heterozygous populations
with rapid LD decay. Significant associations were de-
tected for NW, WK and TC, but no markers exceeded
the significance threshold for KW, KR, RSN or NPR.
The traits with significant SNPs identified are likely to
be controlled by fewer genes than the other traits. Mul-
tiple regression determined that several significant
markers were detecting the same QTL, and, as such,
were redundant. By coupling validated marker-trait asso-
ciations detected through GWAS with MAS, genetic
gain could be increased by reducing the selection time
for economically important nut characteristics and other
yield component traits. Genomic selection may be a
more appropriate method to predict complex traits like
yield. This study provides a foundation for genomics-
assisted breeding in macadamia and nut crops more
broadly, and advances our understanding of the genetic
control of yield component traits.

Methods

Methods for association analysis are similar to those in a
preliminary study by O’Connor et al. [32], and are repli-
cated here for completeness, with differences between
the two studies outlined.

Study design
This study involved 295 seedling progeny from 32 full-
sib families, as well 18 of their 29 parents (that were
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phenotyped), from the Australian macadamia breeding
population. Trees were planted between 2001 and 2003
across four sites in Queensland, with East Gympie (EG)
and Amamoor (AM) in the Gympie region, and Alloway
(AL) and Hinkler Park (HP) in the Bundaberg region.
Clones of five of the parents were measured at all four
sites. Yield and yield component traits were measured
on each tree between 2016 and 2018; hence, trees were
mature-aged (aged 14—17 years). Details of genotyping
methods for this population were reported in O’Connor
et al. [34], which used the same individuals and SNP
markers. Briefly, leaf samples from each genotype were
sequenced by Diversity Arrays Technology (DArT) Pty
Ltd. SNP markers were imputed by DArT, with 97.2%
accuracy using the probabilistic principal components
analysis method [47]. Markers were filtered for various
quality control measures (based on pre-imputation geno-
types), and those that passed thresholds were retained
for analysis. The quality control measures included >
50% call rate, >2.5% minor allele frequency, >0 poly-
morphic information content, and a test of Mendelian
consistency between progeny-parent-parent trios in half
of the studied families. This gave 4113 SNP markers for
analysis.

Phenotyping for yield and component traits

Phenotypic data used in this study were collected across
two seasons from August 2016 to July 2018, with all
traits except RSN and yield measured only in one sea-
son. A sample of nuts was taken from each tree and
dried to 1% moisture content in an oven at 35 °C for 2
days, 45 °C for 2 days and 55 °C for a final 2 days, based
on protocol by Prichavudhi and Yamamoto [48]. Twenty
good quality nuts (no kernel shrivelling or pest damage)
were chosen to measure four traits. Nuts were individu-
ally weighed to obtain nut weight (NW). Nuts were then
manually cracked, and kernel and shell separated to rec-
ord kernel weight (KW). Kernel recovery (KR) was cal-
culated as KW / NW. The percentage of whole kernels
(WK) per sample was measured as the proportion of
nuts that did not split between the two cotyledons dur-
ing cracking.

Tree trunk circumference (TC) was measured at a
height of 50 cm above the ground, or below any low
branches. Flowering racemes present in a 30 cm length
of branch, 20 cm from the branch apex were flagged and
counted on two branches per tree. Where necessary,
trees with terminal racemes were also flagged and
counted, to make a total of at least ten racemes per tree.
At nut maturity (around March, Australian autumn), the
number of flagged racemes that had set at least one nut
was counted, and the percentage of racemes that sur-
vived from flowering through to nut set (RSN) was cal-
culated. The number of nuts per raceme (NPR) was
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counted from ten racemes per tree. Component trait
means were calculated for each tree for analysis where at
least six observed units per tree were evaluated. For ex-
ample, trees with five or fewer nuts measured were con-
sidered to have missing data for this trait. Mean RSN
was calculated for each tree over the 2 years.

Yield data were collected from March through to July
over two successive seasons in multiple harvests. Yield
was measured on each tree by manually harvesting nuts
from the ground and collecting any nuts still in the tree
at the end of the season. Nuts were dehusked after each
harvest, weighed, and a 1kg sample was dried to 1%
moisture content. The dry nut-in-shell (DNIS) weight
was estimated for each harvest using calculations of
moisture content in the 1kg sample. The DNIS weight
for each harvest was summed across the whole season to
give total DNIS yield. One site (AL) was not harvested
in 2017 due to an extreme weather event, and in 2018
another site (EG) was not harvested due to management
issues.

Histograms were used to check the distribution of
phenotypes to conform with assumptions of normality
for GWAS [43]. Data transformations were performed
where necessary to normalise distributions. Pearson’s
correlations were performed between NW, KW and KR
raw phenotypes in the current study and those used in
O’Connor et al. [32] to investigate the consistency of
phenotypes between the two studies.

Association analysis

A genomic relationship matrix (GRM) was constructed
following methods of VanRaden [49]. Preliminary ana-
lysis was performed using ASReml [50] in R to deter-
mine the most parsimonious model for each trait:

Yy=1p+Xb + Z,g + Zggs + e (1)

where vy is a vector of phenotypes, 1 is a vector of ones,
p is a fixed intercept, X is a design matrix allocating
fixed effects (site, block within site, tree type = grafted
parent or seedling progeny) to observations, b is a vector
of these unknown fixed effects, Z, is a design matrix al-
locating records to the unknown average breeding value
of each individual across sites; g is a vector of averaged
breeding values of the individuals across sites, assumed
random ~ N (0,G aé), where G is the additive genomic
relationship matrix (GRM) among the individuals, mod-
elled from SNP effects (0, 1, and 2 represent homozy-
gous, heterozygous and alternate homozygous
genotypes, respectively); az is the genetic variance cap-
tured by the SNP; Z,gs describes the genotype by envir-
onment (G x E) interaction, where Zg is a design matrix
allocating a specific effect of an individual at a site not
accounted for by the mean of the individual across sites,
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and gs is a vector of the breeding values at a specific site,
assumed random ~ N (0,GRI,&® 0?5) where I is a 4 x4
identity matrix for the four sites, and e is a vector of
random errors ~ N (0, 02) where o? is the error vari-
ance. This model is additive, in that two copies of one
allele will have double the effect of one copy.

Preliminary analyses determined the significance of
fixed effects site, block within site, and tree type (grafted
parent or seedling progeny) using the Wald statistic.
After removing insignificant fixed effects (individualised
for each trait), log likelihoods of models both including
and excluding G x E as a random term were compared
via a chi-square test to determine if the models were sta-
tistically different. The most parsimonious models were
those with the least number of parameters that fit the
data as well as more complex models: the G x E term
was excluded for a trait if the models were not statisti-
cally different, as well as any insignificant fixed effects.
Narrow-sense heritability (h?) was calculated from vari-

ance components (h® = O‘é / (U§ + 02)) for each trait

using the best-fitting model. For traits where G x E was
a significant factor, the G x E variance component was
included in the denominator when calculating
heritability.

Association analysis was performed for each trait using
the most parsimonious model, as per O’Connor et al.
[32] using ASReml [50] in R, using a mixed model:

y=Xb+Wm + Z,g + Zggs +e (2)

where W is a design matrix allocating records to the
marker effect (modelled as 0, 1, or 2 for homozygous,
heterozygous and alternate homozygous genotypes, re-
spectively), and m is the effect of the marker currently
being fitted in the model, as a fixed effect. All other ef-
fects are the same as per Eq. 1.

QQ (quantile-quantile) plots were constructed for each
trait to evaluate whether population structure had been
accurately accounted for in the model, by comparing the
observed and expected —log, significance values of each
SNP and ensuring that inflation had not occurred at the
lower levels of significance [43]. To determine a thresh-
old above which markers were deemed significantly as-
sociated with a trait, a false discovery rate (FDR) was
calculated for each trait with the BH method [51] using
the p.adjust function in R. Markers with FDR < 0.05 were
deemed significantly associated with the trait. Multiple
regression was performed for traits with multiple signifi-
cant associations based on the best-fit model, where sig-
nificant markers were included as fixed effects, to
determine if any SNPs were in LD. FDR was again calcu-
lated for the markers included in the multiple regression.
Markers that were no longer significant after multiple
regression were deemed to be detecting the same QTL
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as one of the significant markers, and as such were con-
sidered redundant. An estimation of the additive allele
effect of each significant SNP was estimated from fixed
effects (best linear unbiased estimators; BLUEs) from the
multiple regression model.

Marker locations

Locations of significant SNPs (FDR < 0.05) on the most
recent macadamia genome scaffolds (v2; 4098 scaffolds;
European Nucleotide Archive (EMBL-ENA) repository,
Analysis: ERZ792049, Assembly accession: ERS2953073
(SAMEA5145324)), were estimated as per O’Connor
et al. [34]. Locations of previously identified markers as-
sociated with nut traits were also estimated on the scaf-
folds, using marker sequences from the preliminary
study [32].
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