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ABSTRACT
For thousands of years, caries, periodontitis and mucosal diseases, which are closely related to 
oral microorganisms, have always affected human health and quality of life. These complex 
microbiota present in different parts of the mouth can cause chronic infections in the oral 
cavity under certain conditions, some of which can also lead to acute and systemic diseases. 
With the mutation of related microorganisms and the continuous emergence of drug- 
resistant strains, in order to prevent and treat related diseases, in addition to the innovation 
of diagnosis and treatment technology, the development of new antimicrobial drugs is also 
important. Catechins are polyphenolic compounds in green tea, some of which are reported 
to provide health benefits for a variety of diseases. Studies have shown that epigallocatechin- 
3-gallate (EGCG) is the most abundant and effective active ingredient in green tea catechins, 
which acts against a variety of gram-positive and negative bacteria, as well as some fungi and 
viruses. This review aims to summarize the research progress on the activity of EGCG against 
common oral disease-associated organisms and discuss the mechanisms of these actions, 
hoping to provide new medication strategies for the prevention and treatment of oral 
infectious diseases, the future research of EGCG and its translation into clinical practice are 
also discussed.
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Introduction

Tea is one of the most commonly consumed bev-
erages in the world, second only to water. 
According to the manufacturing process, especially 
the drying and fermentation methods, tea can be 
divided into four major varieties: white tea made 
from young leaves or buds, green tea made from 
mature unfermented leaves, oolong tea made from 
partially fermented leaves, and black tea made from 
fully fermented leaves [1,2]. In recent years, green tea 
has become more and more popular due to its health 
benefits, including anti-inflammatory, antioxidant, 
anti-cancer, antibacterial and promotion of cardio-
vascular and oral health. It has been used for daily 
health care in many countries, and its output 
accounts for about 20% of the total amount of tea 
in the world [3]. Because the initial cooking process 
in green tea production destroyed polyphenol oxi-
dase, the polyphenol content was protected [4]. 
Catechins in polyphenols are considered to be the 
source of many biological properties of green tea, 
which include free catechins such as catechin (C), 
gallocatechin (GC), epicatechin (EC) and epigalloca-
techin (EGC), and gallocatechins such as epicatechin 
gallate (ECG), epigallocatechin gallate (EGCG), cate-
chin gallate (CG) and gallocatechin gallate (GCG) 
[5,6]. In green tea, EGCG and EGC are the most 

abundant, accounting for about 59% and 19% of the 
total catechins, respectively. The former constitutes 
the most effective antibacterial component in cate-
chins and has now become the subject of most stu-
dies [7].

The anti-infective properties of tea have been 
recorded since ancient times. In China, our ancestors 
found that tea has anti-miasma, heat-clearing and 
detoxifying effects. According to the Compendium 
of Materia Medica, ‘the value of tea is to quench 
thirst and eliminate plague’ [8]. More than 
100 years ago, Mc Naught, a British army surgeon, 
reported that tea can kill the organisms that cause 
typhoid and brucellosis (Salmonella typhi and 
Brucella) [9]. EGCG is one of the earliest tea poly-
phenols tested for its effect on bacteria. Its effects on 
Staphylococcus aureus, especially methicillin-resistant 
Staphylococcus aureus, Streptococcus and Escherichia 
coli, have always been the research hotspots for its 
anti-bacterial properties [10]. In fact, numerous stu-
dies have shown that EGCG is active against a variety 
of pathogenic microorganisms, including many 
Gram-positive and Gram-negative bacteria, some 
viruses, fungi, and prions. It is a broad-spectrum 
anti-infective agent [11,12]. In recent years, with the 
exploration of the potential application of EGCG in 
the oral field, this compound has been proved to 
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promote and maintain oral health by preventing the 
deterioration of periodontitis, reducing enamel and 
dentin erosion, protecting oral mucosa and it also 
shows activity against oral cancer cells in vitro and 
potential to improve halitosis [13–17]. More impor-
tantly, EGCG has been shown to be active against 
most oral disease-associated microbes. In vitro stu-
dies have shown that EGCG, a component of green 
tea, has strong anti-bacterial effects on clinically 
extracted Streptococcus mutans, Aggregatibacter acti-
nomycetemcomitans, Porphyromonas gingivalis and 
Prevotella intermedia [18], suggesting that it can be 
used as an additive of mouthwash or tooth powder to 
prevent caries and periodontal disease.

Essentially, oral bacterial diseases are opportunistic 
infections that are not caused by a single species but 
by groups of species that live harmlessly in the mouth 
in very low numbers [19]. When the host has 
a healthy diet and good oral hygiene, microorgan-
isms, mainly bacteria, tend to be in balance to main-
tain a healthy oral ecosystem. However, under the 
influence of specific environmental factors, such as 
high-sugar diet, poor oral hygiene, alcohol and 
tobacco consumption, stress, hormone imbalance, 
diabetes, etc., the balance of local microbiota is dis-
rupted. At the same time, a series of interactions 
between the microbiota and the host occur, which 
eventually lead to the occurrence of diseases [20]. 
Since most oral diseases are polybacterial, it is neces-
sary to develop therapeutic regimens that target the 
microbiome. As the resistance of bacteria to tradi-
tional antibiotics expands, there is a growing interest 
in some substances with antibacterial properties. In 
the past, researchers have paid more attention to the 
beneficial effects of EGCG in anti-inflammatory. 
However, as a natural and easily obtained plant- 
derived extract, its potential of application in oral 
infectious diseases is also worth exploring. Based on 
the different roles of EGCG depending on microbes, 
this paper reviews the research progress in recent 
years on the activity and mechanism of EGCG against 
oral disease-associated microorganisms, including 
cariogenic and periodontal related microorganisms, 
as well as some fungi and viruses that cause oral 
diseases, hoping to provide a theoretical basis for 
the development of natural oral drugs.

Activity of EGCG against common oral 
disease-associated microbes

Caries-related microbes

Excessive intake of carbohydrates leads to a matrix- 
rich environment and the consequent accumulation 
of acid-producing microorganisms, which trigger 
ecological changes in the cariogenic microbiota and 
lead to caries [21]. Although caries involves complex 

microbiota rather than a single ‘pathogen’, S. mutans, 
Lactobacillus and Actinomyces viscosus(now members 
of the species Actinomyces naeslundii and 
Actinomyces oris) have been considered to be highly 
implicated in the development of dental caries and 
have been intensively studied [22]. They use fermen-
table sugars in the environment to generate organic 
acids, which dissolve inorganic enamel and dentin, 
resulting in subsequent hydrolysis of collagen and 
exposure of soft infected dentin [23]. The restorative 
treatments that are widely used in clinical practice 
lead to inevitable microleakage and subsequent sec-
ondary caries [24]. Therefore, various carrier- 
mediated drugs with antibacterial properties are gra-
dually being developed and put into use [25]. 
However, the fluoride induces opportunistic growth 
of fluoride resistant strains and biosafety problems, 
the silver compounds cause the black stain of dental 
caries, and the retention of chlorhexidine on the 
tooth surface leads to tooth staining and the forma-
tion of dental calculi [25–27], all of these also pose 
challenges for the development of related drugs.

Streptococcus mutans
In 1924, Clarke discovered S. mutans [28], which is 
now still considered as one of the main cariogenic 
bacteria in the oral cavity. As a facultative anaerobe, 
S.mutans can survive anywhere in the mouth [29]. 
They cause demineralization of tooth hard tissue 
through high acidity, while they themselvse can 
grow and reproduce at low pH. They ferment sucrose 
to produce insoluble extracellular polysaccharides, 
which enhance their adhesion to tooth surfaces and 
promote biofilm formation [30].

By sorting out the research results so far, we 
believe that the activity of EGCG against S.mutans 
is mainly reflected in killing it and inhibiting its 
virulent factors. As early as 1993, ikigai et al. [31] 
had found that high concentrations of EGCG would 
irreversibly damage the bacterial plasma membrane. 
It was observed by field emission scanning electron 
microscope that the plasma membrane of S.mutans 
was broken and the cytoplasm leaked after treatment 
with 0.2 mg/ml EGCG [32]. In 2004, Arakawa et al. 
[33] put forward the idea that ‘EGCG produces 
hydrogen peroxide in the lipid layer of bacterial 
plasma membrane’ and believed that this may be 
related to its bactericidal effect. Now it has also 
become one of the two main hypotheses to describe 
the bactericidal mechanism of catechin. Another 
hypothesis is the ‘membrane destruction hypothesis’, 
that is, catechin is embedded in the lipid bilayer, 
resulting in transverse expansion and membrane rup-
ture [34].

Some intracellular and extracellular enzymes pro-
duced by S.mutans are its important virulent factors. 
The membrane-bound F1F0-atpase system maintains 
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the internal pH by pumping protons out of cells, 
which is thought to be the main reason for the acid 
resistance of S. mutans. Lactate dehydrogenase(LDH) 
is responsible for the production of lactic acid, which 
further enhances the virulence of S. mutans. EGCG 
inhibits the F1F0-atpase and LDH activities of 
S. mutans at the transcriptional and enzymatic levels 
(50% inhibitory concentration between 15.6 and 
31.25 μg/ml), resulting in decreased acidogenicity 
and acid resistance [35]. The phosphoenolpyruvate- 
dependent phosphotransferase system(PEP-PTS), 
a group of enzymes involved in the transport of 
sugars into bacteria, consists of enzymes on the cell 
membrane and in the cytoplasm. The experimental 
results of Han et al. [36] clearly show that EGCG at 
0.5–2 mg/ml can inhibit the activity of PEP-PTS and 
reduce the uptake of glucose by bacterial cells in 
a short time, thereby inhibiting the growth of 
S. mutans and reducing the production of acid.

Glucosyltransferase(GTF) uses the glucose part 
of sucrose as substrate to synthesize glucan, which 
makes it possible for bacteria to adhere to enamel 
and microorganisms to adhere to each other [37]. 
S. mutans produces three GTF: GTF-B, -C, and 
-D. These polymers, especially the α-1, 3-glycosi-
dically linked water-insoluble glucans, are major 
constituents of plaque biofilm matrix [38]. 
Previous studies have shown that 250 μg/ml 
EGCG could significantly reduce the biomass 
and acid production of S. mutans biofilm [39]. 
Xu et al. [40] found that EGCG concentrations 
in the range of 7.8–31.25 μg/ml exhibited a dose- 
dependent inhibition of the initial attachment of 
S. mutans, and EGCG at sub-minimum inhibitory 
concentration(MIC) level(15.6 μg/ml) significantly 
inhibited the expression of gtf-B, C, D genes. 
Similar results were obtained by Schneider- 
Rayman et al. [41]. They also demonstrated that 
EGCG reduced the expression of nox and sodA 
genes involved in oxidative stress protection, and 
could immediately cause changes in membrane 
potential. This study revealed that EGCG has 
both antibacterial activity against S. mutans, 
such as changes in membrane potential and 
EGCG-induced protein precipitation, leading to 
the loss of their biological activity, and anti- 
biofilm activity, such as direct inhibition of 
genes involved in biofilm formation. These two 
activities are mediated by different mechanisms. 
Although reduced bacterial growth may lead to 
reduced biofilm formation, EGCG directly 
affected the expression of genes that regulate bio-
film formation, and the minimum biofilm inhibi-
tory concentration(MBIC) of EGCG was 
significantly lower than its MIC. Another study 
also showed that EGCG inhibited the formation 
of S. mutans biofilm and destroyed the formed 

biofilm, which was not mediated by interaction 
with Streptococcus lipoteichoic acid (LTA) [32].

In a word, EGCG destroys bacterial cell membrane 
to kill bacteria. At the same time, it inhibits a variety 
of intracellular and extracellular enzymes produced 
by S. mutans, including F1F0-atpase, LDH, PEP-PTS, 
GTF, etc., to reduce its acidogenicity and acid resis-
tance, inhibit its growth, adhesion, aggregation and 
other physiological activities, and interfere with the 
formation of plaque biofilm. Despite extensive in vivo 
validation, it remains unclear whether EGCG can 
exert beneficial activities in the complex oral envir-
onment. A study showed that the reduction rate of 
S. mutans in the saliva of children before and after 
gargling with EGCG solution was 79.9% [42]. But this 
is only a short-term effect. Considering that the 
maintenance of oral health does not require the com-
plete elimination of a specific bacteria, but rather the 
restoration of the proportion of resident microbiota, 
more in vivo experiments are warranted to assess the 
long-term effects of EGCG on the oral micro- 
ecosystem.

Lactobacillus
Lactobacillus is a member of the normal oral flora 
and can be isolated from the oral cavity of healthy 
individuals, accounting for about 1% of the oral cul-
turable microbiota [43]. It has strong acid resistance, 
can continue to survive in a strong acid environment 
and ferment sugar to produce acid, resulting in demi-
neralization of tooth hard tissue [44]. Because they 
cannot form plaque on the tooth surface by them-
selves, they need to rely on the extracellular polysac-
charides produced by other oral organisms (mainly 
Streptococcus) for colonization. In recent years, scho-
lars at home and abroad generally believe that they 
actively participate in the development of caries 
rather than the initial process [45,46]. It is reported 
that some species of lactobacilli are abundant in car-
ies sites, especially in deep dentin caries [47]. It is 
now commonly used as a microbial marker to assess 
the risk of dental caries [48].

Numerous studies have shown that gargling with 
green tea extract every day can reduce the amount of 
Lactobacillus in saliva [49–51]. The MIC and mini-
mum bactericidal concentration(MBC) of green tea 
extract against Lactobacillus acidophilus in vitro were 
0.3% and 0.9%, respectively [52]. An in vivo study 
demonstrated that the reduction percentage of 
Lactobacillus caused by gargling with EGCG solution 
alone (72.09%) was higher than that of green tea 
(59.17%), but both were lower than that of chlorhex-
idine (86.02%) [42]. Tea polyphenols have been 
shown to effectively inhibit the growth and acid pro-
duction of Lactobacillus [53]. In order to explore the 
effect of tea polyphenols on the initial adhesion of 
major cariogenic bacteria to type I collagen, Xiao 
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et al. [54] prepared an in vitro model of experimental 
film(C-HA) using hydroxyapatite and type I collagen. 
The results showed that no matter C-HA or bacteria 
were pretreated with tea polyphenols, 1.0–4.0 mg/ml 
tea polyphenols solution could effectively inhibit the 
adhesion of Lactobacillus to C-HA, and the inhibition 
rate was dose-dependent. This indicates that tea poly-
phenols may interfere with the combination of bac-
teria and collagen by changing the properties of 
collagen surface and interacting with bacterial surface 
adhesins to reduce the adhesion of bacteria to C-HA. 
However, in the above experiments, it is impossible 
to determine whether the reduction of Lactobacillus is 
due to the inhibitory effect of EGCG on Streptococcus 
that aids its colonization, and there is also a lack of 
research on each single component of tea polyphe-
nols. Therefore, it cannot be directly proved that 
EGCG has antibacterial activity against Lactobacillus.

Although Lactobacilli are considered to have cario-
genic potential, their positive effects in promoting the 
balance of oral flora and maintaining oral health have 
also been confirmed. It is well known that Lactobacillus 
is considered a probiotic [55], and some oral 
Lactobacilli are able to inhibit the growth of caries and 
periodontitis-related microbes such as S. mutans, 
P. gingivalis, and P. intermedia in vitro [56,57]. 
A randomized, double-blind, placebo-controlled inter-
vention study demonstrated that long-term consump-
tion of milk containing Lactobacillus rhamnosus 
reduced the incidence of early caries in kindergarten 
children [58]. In the study of Zhang et al. [59], both tea 
extracts EGCG and GCG exhibited growth-promoting 
effects on this probiotic. Later studies also proved that 
EGCG can enhance the viability of L. plantarum, 
L. fermentum, L. acidophilus and L. gasseri and stimu-
late their growth [60,61]. These results may be related to 
the sensitivity of bacteria to EGCG. Higuchi et al. [62] 
found that 2.5 mg/ml EGCG inhibited the growth of 
P. gingivalis, P. intermedia and Fusobacterium nuclea-
tum, 5 mg/ml EGCG inhibited the growth of S. mutans, 
10 mg/ml EGCG inhibited the growth of 
A. actinomycetemcomitans, and 25 mg/ml EGCG inhib-
ited the growth of L. salivarius WB21. This suggests that 
the pros and cons of EGCG on oral health may depend 
on the ingested dose. Low dose may inhibit oral patho-
genic bacteria and promote the growth of beneficial 
microbiota. If the concentration of EGCG that inhibits 
disease-associated microorganisms without inhibiting 
Lactobacillus can be determined, the combination of 
EGCG and Lactobacillus may have a more potent and 
extensive positive effect on the oral environment.

In summary, the current research can not clearly 
judge the effect of EGCG on Lactobacillus, and its 
influence mechanism needs exploring urgently. Our 
understanding of the role of Lactobacillus in oral 
microbiota is also far from sufficient. Lactobacillus 
seems to exhibit high resistance to EGCG in vitro, 

but different doses of EGCG in vitro studies directly 
affect the underlying molecular mechanisms, leading 
to different antimicrobial effects. And extreme doses 
also stress other cells in some way. Inappropriate 
doses introduced into the body can cause another 
microbiota imbalance. Overall, the evaluation of 
appropriate concentrations, the long-term tracking 
of in vivo effects, and the potential value of EGCG 
combined with probiotics are all worthy of further 
exploration.

Actinomyces
Common Actinomyces in the oral cavity include 
Actinomyces israelii, Actinomyces naeslundii, 
Actinomyces oris and Actinomyces odontolyticus. 
A. oris and A. naeslundii can cause root caries in 
animal experiments [63]. There are two types of 
fimbriae in A. oris. Type I fimbriae are mainly 
involved in the adhesion of bacteria to the tooth 
surface,and type II fimbriae mainly mediates the 
aggregation of bacteria and plaque formation [64]. 
Actinomyces can colonize a range of matrix surfaces 
in the oral cavity, including enamel and other oral 
mucosa, and play an important role in a series of oral 
diseases, including caries, periapical disease, period-
ontitis, actinomycosis, alveolar bone lesions and so 
on [65]. At present, there is no final conclusion about 
the role of Actinomyces in the occurrence and devel-
opment of dental caries.

Green tea extract has been shown to have antibac-
terial activity against A. oris with a MIC of 0.06 mg/ 
mL [66]. Tea polyphenols with a concentration lower 
than or equal to 8 mg/ml can effectively inhibit the 
growth of A. oris and its acid production [67]. Wang 
et al. [68] found that EGCG inhibited the attachment 
of A. naeslundii to hard surfaces such as glass and 
stainless steel by reducing the hydrophobicity of the 
cell surface. It is speculated that the hydrogen bond 
formed between the cell and the matrix surface was 
disrupted due to EGCG binding to cell surface 
ligands, but this did not occur on the hydroxyapatite 
surface, probably because EGCG has an affinity for 
hydroxyapatite. The results of an in vitro study 
showed that there was no statistical difference in the 
attachment of A. naeslundii to human gingival fibro-
blasts before and after EGCG treatment [69].

In conclusion, the effects of green tea extract or tea 
polyphenols rich in multiple chemical constituents on 
Actinomyces seem to be more significant than the use 
of single EGCG. However, more studies are needed to 
further identify the specific active ingredients and 
their mechanisms of action.

Periodontal disease-related microbes

Periodontal status is thought to be closely related to 
changes in gingival sulcus microbiota. Periodontal 
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tissue is continuously exposed to oral microbiota and 
physicochemical stimuli from chewing and breathing, 
and a delicate balance is maintained between local 
immune responses and the microbiota under physio-
logical conditions. Under the influence of environ-
mental factors and host susceptibility, some specific 
microorganisms increase, causing dysbacteriosis, the 
increase of pathogenicity of the whole community, 
and the excessive activation of the host immune 
response, which eventually leads to the destruction 
of periodontal tissue [70,71]. It is generally believed 
that if the clinical symptoms of periodontal disease 
persist after thorough mechanical treatment, such as 
attachment loss and exploratory bleeding,a combina-
tion of drug therapy should be considered to control 
plaque and inflammation [72]. However, the frequent 
recolonization of periodontal pathogens to the treat-
ment site and the emergence of antibiotic resistance 
have led to the exploration of new drugs and methods 
for periodontal disease treatment in recent years [73].

Porphyromonas gingivalis
P. gingivalis, a gram-negative anaerobic bacterium, is 
considered as the ‘key microorganism’ of chronic 
periodontitis [74,75]. They accumulate locally and 
express a series of virulence factors, including lipo-
polysaccharide, collagenase, gingival protease and 
fimbriae, which cause tissue damage directly or indir-
ectly, and escape host immune surveillance by invad-
ing cells and tissues [76]. Heme is the only source of 
iron and protoporphyrin IX of P. gingivalis, which is 
essential for their growth and survival in periodontal 
pockets [77].

An in vivo study shows that continuous oral 
administration of EGCG alleviates periodontitis in 
mice caused by P. gingivalis [78]. But this study 
focused on proving the anti-inflammatory activity of 
EGCG, and no suitable animal model for evaluating 
the antibacterial effect has been found. In vitro, 
EGCG was observed to destroy the cell membrane 
and cell wall of P. gingivalis, inhibit the formation of 
biofilm and destroy the established biofilm [79]. The 
MIC and MBC of EGCG against P. gingivalis are 
97.5 µg/mL and 187.5 µg/mL, respectively. At sub- 
MIC level, it can reduce CH3SH production by inhi-
biting mgl mRNA and protein expression [80]. mgl, 
the gene encoding L-methionine-α-deamino-γ- 
mercaptomethane lyase, is responsible for the pro-
duction of methylthiol (CH3SH) by oral anaerobic 
bacteria, which proves the potential of EGCG in 
reducing halitosis caused by volatile sulfur com-
pounds (VSC).

Gingival proteases are a group of cysteine pro-
teases on the cell surface of P. gingivalis. They are 
important virulence factors, accounting for 85% of 
the total proteolytic activity of P. gingivalis. They 
can degrade a variety of host proteins, including 

integrin-fibronectin binding, cytokines, immunoglo-
bulins and complement factors, etc [81]. Depending 
on different substrates, they can be divided into argi-
nine-specific(Arg-X) and lysine-specific(Lys-X) gingi-
val proteases. Arg-X includes RgpA containing one 
proteolytic domain and one adhesion domain and 
RgpB containing only one proteolytic domain. 
There is only one type of Lys-X, the Kgp that con-
tains one proteolytic domain and one adhesion 
domain [82,83]. In the study of Okamoto et al. [84], 
EGCG significantly inhibited the Rgp activity of 
P. gingivalis, and also showed a lesser degree of inhi-
bition on Kgp activity. This inhibitory activity was 
only observed in catechins containing the galloyl 
moiety.

Sakanaka et al. [85,86] found that EGCG at 
a concentration of 250–500 μg/ml could completely 
inhibit the growth and adhesion of P. gingivalis on 
oral epithelial cells. And it could inhibit the produc-
tion of its toxic end metabolites, which are known to 
easily penetrate into the periodontal tissue from the 
periodontal pocket, disrupt the cellular activity and 
defense system of the host. The results showed that in 
general anaerobic medium, 0. 5 mg/mL EGCG inhib-
ited the production of phenylacetic acid. The resting 
cells of P. gingivalis lack the ability to grow, but they 
can still produce phenylacetic acid by metabolizing 
various substrates. This ability was also completely 
inhibited by EGCG. Since the above-mentioned activ-
ities were also only expressed in catechins containing 
galloyl moiety, it is speculated that some inhibitory 
effects of EGCG may be related to the existence of 
galloyl groups, which are linked to the 3-OH of the 
catechin or epicatechin moieties.

Previous experiments have demonstrated that both 
aqueous and 50% ethanolic extracts of catechins 
strongly inhibited the collagenolytic activity of 
P. gingivalis and reduced cytotoxicity to human gin-
gival fibroblasts [87], but did not explore specific 
active components or groups. Later, Makimura et al. 
[88] added various green tea catechins to the reaction 
mixture containing collagenase and collagen, respec-
tively. They found that ECG and EGCG had the 
strongest inhibitory effect on collagenase activity, 
and gallyl-containing catechins could completely 
inhibit collagenase activity in gingival crevicular 
fluid from aggressive periodontitis in adults, while 
C, EC, EGC and GC did not show any collagenase 
inhibition, suggesting the role of galloyl structure in 
the inhibition of collagenase from eukaryotic and 
prokaryotic cells.

Fimbriae is another powerful virulence factor of 
P. gingivalis, which can promote the adhesion of 
bacteria to salivary proteins, extracellular matrix, 
eukaryotic cells and the same or other kinds of bac-
teria, and mediate the formation of biofilm. Type 
I(major) fimbriae plays an important role in 
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colonization and invasion,the fimA gene encodes its 
major subunit, and type II(minor) fimbriae have 
a higher pro-inflammatory capacity [89,90]. 
Meanwhile,P. gingivalis can actively invade gingival 
epithelial cells and maintain viability and replication 
in them [91]. This invasive ability also derives from 
its type I fimbriae, which bind to β1 integrin on the 
host cell surface to promote adhesion and lead to 
remodeling of the actin and tubulin cytoskeleton to 
allow internalization [92,93]. Fournier-Larente et al 
[94] found that EGCG dose-dependently inhibited 
the adhesion of P. gingivalis to oral epithelial cells. 
On the one hand, EGCG inhibits the expression of 
some genes involved in host colonization(fimA, hagA, 
hagB), tissue destruction(rgpA, kgp) and heme acqui-
sition(hem). Reducing the expression of fimA may 
also help to reduce inflammation, because this viru-
lence factor has the ability to induce host cells to 
produce cytokines. On the other hand, EGCG 
increased the expression of the stress protein htrA 
gene. The periplasmic high temperature requirement 
A protein(HtrA) is known to be responsible for 
resisting oxidative stress in P. gingivalis, helping 
them survive under stressful conditions [95], which 
indicates that EGCG exerts a stress on the bacteria.

To sum up,EGCG not only damages the cell 
membrane and cell wall of P. gingivalis, but more 
importantly, it affects the growth and adhesion of 
P. gingivalis, interferes with its biofilm formation, 
weakens its invasiveness to host cells and tissues, 
and reduces the production of VSC and the resulting 
halitosis by inhibition of relevant virulence factors 
(gingival protease, collagenase, toxic end metabo-
lites, fimbriae, etc.). Most of the current researches 
related to periodontal pathogens are based on one 
pathogen or single species biofilm. Exploring the 
interaction between two or more bacteria and study-
ing the efficacy of EGCG in more complex microbial 
ecosystems should become the direction of future 
research.

Aggregatibacter actinomycetemcomitans
A. actinomycetemcomitans is a gram-negative bacter-
ium closely associated with the development of 
locally aggressive periodontitis. Leukotoxin (Ltx) is 
an important virulence factor secreted by them. It 
exists in two forms, one is free soluble protein, and 
the other is membrane-soluble Ltx related to outer 
membrane vesicles(OMVs) [96]. The former binds 
[97]** to cholesterol on host cells and the β2 integrin 
receptor lymphocyte function-associated antigen 1 
(LFA-1), triggering internalization and subsequent 
cell death, the latter is transported to host cells by 
cholesterol-and receptor-independent mechanisms. 
Both disrupt the host immune response, making it 
easier for bacteria to colonize in tissues[[98-]]. 
Inhibition of Ltx activity is considered to be the key 

to reducing the pathogenicity of 
A. actinomycetemcomitans.

EGCG has definite antibacterial activity against 
A. actinomycetemcomitans [99,100], but its effect on 
Ltx secretion and activity is complex. When EGCG 
and Ltx were co-cultured with HL60 cells, EGCG 
significantly inhibited the lysis of HL60, indicating 
that EGCG can reduce the cytotoxicity of free Ltx 
[101]. Later, Saito et al. [102] co-cultured EGCG and 
Ltx-containing vesicles with human monocyte THP-1 
cells, they found that EGCG also inhibited the lysis of 
THP-1 cells, indicating that EGCG also inhibited 
vesicle-related Ltx. They labelled 
A. actinomycetemcomitans vesicles with fluorescent 
dyes and found that when EGCG, vesicles, THP-1 
cells were co-cultured, or vesicles pretreated with 
EGCG were co-cultured with THP-1 cells, the lysis 
of THP-1 cells was significantly reduced, and their 
cytoplasmic membranes were rarely fluorescently 
labeled. However, when THP-1 cells pretreated with 
EGCG were co-cultured with vesicles, the lysis was 
not inhibited. Therefore, that EGCG inhibits the 
interaction between vesicles and THP-1 cells or the 
secretion of Ltx in vesicles by binding with vesicles is 
considered to be the possible mechanism of its action.

Chang et al. [103] deeply studied the inhibitory 
mechanism of catechin on free Ltx. Since compounds 
that reduce membrane fluidity can prevent toxins 
from entering the cell membrane to reduce toxin 
activity [104], and all three gallylated catechins 
(EGCG, ECG, and GCG) can significantly reduce 
the membrane fluidity of THP-1 cells, they speculated 
that if this is why catechin inhibits the activity of Ltx, 
pretreatment of THP-1 cells with catechin before 
adding Ltx should show a stronger inhibitory effect. 
In this case, however, they only observed a similar 
inhibitory effect as adding catechin and Ltx to the 
cells simultaneously. When they pretreated Ltx with 
various catechins separately, and then added the mix-
ture to THP-1 cells, the inhibitory effect was greatly 
enhanced. Three gallylated catechins exhibited the 
greatest inhibitory effect on Ltx, almost completely 
blocking its activity. This indicates that catechins act 
on Ltx rather than cell membrane targets to achieve 
protective effects. And compared with other cate-
chins, EGCG still retained its inhibitory activity on 
Ltx when the concentration was reduced by 10-fold 
and 100-fold. They also found that catechins, espe-
cially gallylated catechins, could alter the secondary 
structure of Ltx proteins, thereby reducing the affinity 
of Ltx for cholesterol on the host cell membrane, and 
this interaction is an important initial step in its 
toxicity.

It is reported that the MIC of EGCG against 
A. actinomycetemcomitans is 10 μg/mL. At sub- 
inhibitory concentrations(5 μg/mL) that do not affect 
bacterial growth, EGCG promotes Ltx production, 
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with total Ltx production almost twice as high as in 
the untreated group, but the amount of Ltx released 
into the supernatant is lower than that in the 
untreated group. This is due to the enhanced affinity 
of Ltx to bacterial cell surface caused by EGCG. 
Immediately after Ltx is secreted by 
A. actinomycetemcomitans via the type1 secretion 
system, EGCG promotes its reassociation with the 
bacterial membrane, which inhibits the release of 
Ltx from bacterial cells during early growth stages 
[105]. The amount of Ltx in OMV produced by 
A. actinomycetemcomitans treated with EGCG is 
about 6 times higher than that in the group without 
EGCG, which may also be due to the increased bind-
ing of Ltx to the bacterial cell surface by EGCG. 
Another interesting finding is that the initial addition 
of 5 μg/mL EGCG to the co-culture did not inhibit 
the toxicity of A. actinomycetemcomitans to THP-1 
cells, but addition of 5 μg/mL EGCG to the co-culture 
at 0, 6 and 13 hours each resulted in a significant 
decrease in cytotoxicity [106]. One possible explana-
tion is that Ltx is continuously produced in the whole 
co-culture experiment. With the passage of time, the 
ratio of EGCG/Ltx decreases to an extent that is 
insufficient to inhibit Ltx activity. Repeated adminis-
tration of EGCG appears to be more effective in 
promoting antibacterial effect.

In general, high concentrations of EGCG directly 
inhibited the growth of A. actinomycetemcomitans, 
while low concentrations of EGCG changed the 
structure of Ltx, resulting in decreased affinity for 
cholesterol on the host cell membrane and increased 
affinity for bacterial cell surface components, thus 
reducing the toxicity to immune cells in the super-
natant. A single low-dose administration of EGCG 
may not protect host cells from bacterial cytotoxicity, 
and multiple administration strategies have signifi-
cantly improved effects. Further refinement may 
determine the optimal concentration and mode of 
administration. Since enough in vitro studies have 
demonstrated the efficacy of EGCG at the molecular 
and cellular levels, it is necessary to develop animal 
models and conduct clinical trials in order to more 
rigorously evaluate its role in mixed infections and 
obtain more precise and effective information.

Other periodontal disease-related microbes
P. intermedia has strong enzymatic activity, which is 
believed to be involved in the development of various 
periodontal diseases together with P. gingivalis [107]. 
Green tea catechins have obvious inhibitory effect on 
P. intermedia, the MIC is 1 mg/ml, and it has bacter-
icidal effect at high concentration [108]. The 
researchers found that EGCG can effectively inhibit 
the protein tyrosine phosphatase activity of 
P. intermedia, and this effect is derived from the 
galloyl moiety in its structure [109].

A. israelii was found to be significantly increased 
in the gingival sulcus of patients with gingivitis. 
EGCG also has bactericidal activity against it and 
can inhibit its biofilm formation to a certain 
extent [110].

Fusobacterium nucleatum is a gram-negative anae-
robic bacterium that often causes multibacterial co- 
infection with other anaerobic or facultative anaero-
bic bacteria, such as necrotizing ulcerative gingivitis 
and root canal infection [111]. EGCG has obvious 
antibacterial activity against planktonic F. nucleatum 
[112]. It is reported that the MIC and MBC of EGCG 
against F. nucleatum are 500 μg/mL and 1000 μg/mL, 
respectively, and the antibacterial mechanism may 
involve disruption of bacterial cell membranes and 
dose-dependent chelation of iron, which is an essen-
tial nutrient for bacteria. At the concentration lower 
than MIC, EGCG did not interfere with the growth of 
F. nucleatum but prevented its biofilm formation, and 
the addition of 62.5 μg/ml EGCG reduced biofilm 
formation by 55.4%. EGCG at MBC level could 
decrease the activity of established biofilms over 
time. Furthermore, in an in vitro basement mem-
brane model, EGCG reduced the adhesion of 
F. nucleatum to oral epithelial cells and extracellular 
matrix proteins, and attenuated the hemolytic activity 
and H2S-producing ability of F. nucleatum. 
F. nucleatum provides iron for itself and other micro-
organisms associated with periodontal disease by lys-
ing red blood cells and releasing hemoglobin, 
promoting their proliferation in the periodontal 
pocket, and participates in the occurrence of halitosis 
through the ability to produce volatile sulfur com-
pounds such as H2S, which also have strong toxicity 
to immune cells and mucosal cells [113].

Common oral pathogenic fungi

Candida, especially Candida albicans, is currently 
recognized as the most clinically significant oral 
opportunistic pathogenic fungi. Changes in host 
immunity, stress, resident microbiota and other fac-
tors can lead to the overgrowth of C. albicans, result-
ing in a spectrum of Candida infections ranging from 
superficial mucosa to hematogenous dissemination. 
The formation of biofilm provides an important 
guarantee for the survival of Candida in various 
adverse conditions [114]. The main problem of anti-
fungals currently used is not their antifungal activity, 
but the emergence of drug-resistant strains and the 
potential side effects, since most of them are nephro-
toxic or hepatotoxic [115]. Therefore, it is necessary 
to develop and test less toxic compounds from 
nature.

EGCG can inhibit a variety of pathogenic Candida 
clinically isolated. Its antibacterial activity against 
different Candida is not the same, but overall slightly 
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higher than the tested antifungal drugs, including 
amphotericin B, itraconazole, fluconazole, flucytosine 
and miconazole, etc [116,117]. The antifungal activity 
of EGCG is pH-dependent. For the tested C. albicans 
strains, the MIC90 of EGCG is 2000 mg/L at pH6.0, 
500 ~ 1000 mg/L at pH6.5, and 15.6 ~ 250 mg/L at 
pH7.0 [118].

A study by Navarro-Martínez et al. [119] explored 
the mechanism of action of EGCG on C. albicans. 
They found that EGCG potently inhibited the activity 
of dihydrofolate reductase of C. albicans. This inhibi-
tion was highly regulated by pH and more active at 
slightly alkaline pH. When combined with azole anti-
fungals(ketoconazole and itraconazole) or ergosterol 
biosynthetic pathway inhibitors, they exhibit syner-
gistic effects. At the same time, this study provides 
a possible explanation for the molecular mechanism 
of EGCG’s antifungal effect: EGCG indirectly inter-
feres with the ergosterol biosynthetic pathway by 
disrupting the folate cycle, and inhibits ergosterol 
biosynthesis by inhibiting sterol C-24 methyltransfer-
ase through the reduction of S-adenosyl-methionine 
cell pool. Through electron microscope observation, 
some researchers found that the cell structure of 
C. albicans treated with EGCG was deformed, the 
cell wall was broken, and the cell contents were 
released. And in the molecular docking experiment, 
EGCG was observed to have a strong interaction with 
ergosterol, a fungal cell membrane molecule [120].

An in vitro study showed that EGCG, EGC and 
ECG all inhibited the growth of C. albicans biofilm 
and disrupted the formed biofilm, and EGCG was 
more active than the other two catechins. 
Proteasome exists in all eukaryotic cells. In 
C. albicans, it is responsible for regulating metabo-
lism and responding appropriately to environmental 
signals. The C. albicans proteasome regulates 3 major 
proteolytic activities: trypsin-like, chymotrypsin-like, 
and peptidyl-glutamyl peptide-hydrolyzing activities. 
EGCG inhibits the latter two activities, which is 
a factor leading to the decline of C. albicans growth 
rate and the obstruction of biofilm formation and 
maintenance. The control group not treated with 
EGCG could not transport the fluorescent peptide 
substrate into the cytoplasm, but the cells treated 
with EGCG for 24 hours could, suggesting that 
other targets of EGCG may involve the cell mem-
brane or cell wall, or both [121]. Han et al. [122] 
studied the synergistic effect and mechanism of 
EGCG combined with amphotericin B in the mouse 
model of disseminated candidiasis caused by 
C. albicans. BALB/c mice given EGCG intraperitone-
ally before intravenous inoculation with C. albicans 
yeast cells had a longer mean survival time (MST) 
than mice given diluent. EGCG treatment inhibited 
the mycelial formation of C. albicans in yeast form 
and the growth of Candida cells. Compared with 

0.5 mg/kg amphotericin B alone(MST:11.7d) or 
2 mg/kg EGCG alone(MST:13.9d), the survival time 
of mice given both drugs(MST:42.1d) was signifi-
cantly prolonged.

In summary, EGCG has obvious antibacterial 
activity against Candida, which may even be higher 
than that of currently used antifungal agents. EGCG 
has been reported to enhance the antifungal effects of 
ketoconazole, miconazole, fluconazole, and ampho-
tericin B, including planktonic and biofilm cells. 
Combined with fluconazole, EGCG can induce apop-
tosis of fluconazole-resistant Candida tropicalis 
[120,123,124]. Combined treatment with EGCG may 
reduce the dose of commonly used antifungal agents, 
preventing adverse reactions and the emergence of 
drug-resistant strains. Further research is required at 
present.

Common oral viruses

Worldwide, more than 630 million people are 
infected with human papillomavirus(HPV), which 
can cause papillomas or warts and malignant tumors 
in the mucosa, genitals and anus. The prevalence of 
oral HPV infection differs significantly by geographic 
location, which is approximately 7% among 
U.S. adults aged 18 to 69 [125].

Condyloma acuminatum is one of the most com-
mon sexually transmitted diseases. It is caused by 
low-risk HPV, mainly HPV 6 and 11. EGCG shows 
a strong anti-HPV11 effect and can inhibit the 
expression of HPV11 E6 and E7 mRNA in recombi-
nant HPV11. HaCaT cells. E6 and E7 genes play an 
important role in HPV replication and interaction 
with host cells leading to disease [126]. 
Interferon(IFN) is a component of the innate 
immune system, which prevents viral infection 
through antiviral, antiproliferative and immune sti-
mulation mechanisms. Type I IFN signal induces the 
transcription of interferon stimulated gene(ISG), 
whose protein products inhibit the viral life cycle. 
HPV-2 E7 inhibited the expression of ISG by down-
regulating the type I IFN signaling pathway. EGCG 
pretreatment resulted in a dose-dependent decrease 
in HPV-2 E7 mRNA expression, and E7 expression 
was blocked by inhibiting E7 transfection, thereby 
maintaining the expression of ISG and components 
in type I IFN signaling pathway [127]. Similar results 
were obtained in the experiments of Yap et al. [128], 
that is, EGCG downregulates the expression of HPV- 
18 E6 and E7 oncoproteins, thus allowing the re- 
expression of its target gene TSG, leading to the 
growth inhibition and apoptosis of keratinocytes. 
But their analysis showed that EGCG treatment did 
not affect the mRNA levels of E6 and E7, but instead 
stimulated their protein conversion by enhancing the 
degradation of E6 and E7 through the ubiquitin- 
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proteasome pathway. In addition to the inhibitory 
effect on HPV oncogenes and oncoproteins, several 
studies have shown that EGCG has a series of activ-
ities against cancer cells, including anti-proliferation, 
anti-metastasis and pro-apoptosis. The combination 
application with other chemical drugs also showed 
considerable Prospects. Since the focus of this review 
is to summarize the activity of EGCG on oral patho-
gens, we would like to recommend the article by 
Wang et al. [129], which provides a detailed review 
of the relevant contents.

Herpes simplex virus(HSV) is responsible for 
some oral and genital herpes, blindness, and ence-
phalitis, which often causes repeated infection. 
When drug-resistant HSV mutants emerge, use of 
current antiviral therapies may be limited [130]. It 
has been reported that 1–2 μM EGCG has virucidal 
activity against HSV virions at 25–37°C, and 0.5– 
20 μM EGCG can reduce the plaque formation 
ability of HSV virions [131]. EGCG inactivates mul-
tiple clinical isolates of HSV-1 and HSV-2, and this 
anti-HSV activity directly targets virions, not cells. 
On the one hand, EGCG directly inactivates HSV 
virions by binding to the envelope glycoproteins gB, 
gD or another envelope glycoprotein [132]. On the 
other hand, EGCG inhibits the primary attachment 
of HSV-1 to the cytoglycan heparan sulfate, a key 
step in viral entry, by interacting with virion surface 
proteins [133]. Studies have shown that treatment 
of oral epithelial cells with EGCG at 25 μg/ml, 
either before or after HSV-1 inoculation, can avoid 
HSV-1-induced cell death and significantly reduce 
the amount of virus released. The expression of 
viral protein infected cell protein 0(ICP0) and 
ICP5 was greatly inhibited. At the same time, 
EGCG may synergize with acyclovir(ACV) to 
reduce the cytotoxic effect of HSV-1. When com-
bined with ACV, the expression of virus ICP5, 
thymidine kinase and gD decreased significantly. 
In addition, in the presence of EGCG and ACV, 
viral DNA replication in infected cells was greatly 
reduced [134]. A study exploring structure-function 
relationships through self-organizing graphs and 
backpropagation neural networks provides new 
insights into structural effects in the anti-HSV-1 
activity of gallylated polyphenols, arguing that elec-
trostatic effects and distances between atoms are 
closely related to the anti-HSV-1 activity of these 
compounds [135].

In general, EGCG inhibits cell growth and viral 
proliferation by inhibiting the expression of HPV 
oncogenes and oncoproteins, exerts anti-HSV effects 
by directly acting on virions, and also inhibits the 
expression of HSV protein and DNA replication. 
EGCG can be regarded as a potential drug for HPV 
or HSV infected patients. Further work is required to 
assess the precise mechanism of EGCG virucidal 

activity and its application in the treatment of viral 
infectious diseases.

Summary and prospect

Caries and periodontal disease are the two most pre-
valent oral diseases associated with endogenous bac-
teria. Specific microorganisms are defined as key 
‘pathogens’ whose accumulation can alter the local 
environment and the proportion of other microor-
ganisms in the ecological niche. Most treatments now 
aim to control their amounts or suppress their viru-
lence. Growing evidences suggest that EGCG has 
strong and broad-spectrum antibacterial properties. 
For the flora related to dental caries and periodontal 
disease, high doses of EGCG mainly kill bacteria by 
destroying bacterial structures, while low doses exert 
antibacterial effects by inhibiting important virulence 
factors, which often leads to bacterial biofilm disrup-
tion and growth inhibition, the obstruction of bacter-
ial adhesion and aggregation, the weakening of the 
ability to absorb nutrients, and the reduction of inva-
sion to tissues. EGCG also showed significant anti-
bacterial activity against oral Candida. When EGCG 
is combined with other antifungal drugs, the antibac-
terial effect can be enhanced, and adverse reactions 
and the emergence of drug-resistant strains can be 
prevented at the same time. For some common oral 
viruses such as HPV and HSV, the expression of their 
pathogenic genes and viral proteins are inhibited by 
EGCG, and HSV is directly inactivated under the 
action of EGCG. These results demonstrate the 
potential of EGCG in the treatment of oral infectious 
diseases. EGCG may be used alone or in combination 
with other anti-infective drugs to fight against oral 
pathogens.

Stability, biosafety and availability are the main 
issues in clinical translation of EGCG. EGCG is not 
stable under alkaline and neutral conditions. 
Meanwhile, high water solubility and poor trans-
membrane hydrophobicity result in low cellular 
uptake rates. Metabolic transformations such as 
methylation, glucuronidation and sulfation and 
active efflux through multidrug resistance-related 
protein 2 also contribute to the lower bioavailability 
of EGCG [136]. One of the most common problems 
in the chemotherapy of caries and periodontal dis-
ease is the inability to maintain drug concentrations. 
When the antibacterial agent is introduced into the 
oral cavity at the initial concentration, the drug con-
centration decreases immediately, eventually falling 
below the MIC. Therefore, some new methods are 
needed for the sustained delivery of antimicrobial 
drugs to the local area. In addition, liver injury 
associated with green tea and its extract EGCG has 
been reported from time to time [137]. An in vitro 
study shows that high doses of EGCG induce 
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mitochondrial outer membrane damage and uncou-
pling of oxidative phosphorylation in rat hepato-
cytes [138].

Chemical modification of EGCG, reliable delivery 
system and combination with other drugs seem to be 
feasible strategies to improve the therapeutic potential 
of EGCG. Adding a long acyl chain(C16-18) to EGCG 
was shown to increase its anti-influenza virus activity 
by 44-fold, and the chemical stability of EGCG was also 
enhanced by acylation. These acylated derivatives exhi-
bit several times higher antibacterial activity than 
EGCG, especially against gram-positive organisms, 
and their antifungal MICs were also 2 to 4 times 
lower than EGCG [139]. Nanovesicle in situ gel based 
on EGCG phospholipid complex can improve the sta-
bility and utilization of EGCG and enhance the efficacy 
of caries prevention [140]. Adding 0.1%(w/w) EGCG 
to glass ionomer cement(GIC) can improve the 
mechanical and antibacterial properties of GIC without 
affecting its fluorine release property [141].

Although numerous phytochemicals have shown 
excellent antimicrobial activity in vitro, the activity of 
these drugs should be fully investigated in multi- 
bacterial models, especially for some bacteria that 
play an important role in co-infections, given the 
great resistance brought about by biofilm formation 
and the complex interactions among microbiota, such 
as the aforementioned F. nucleatum that can provide 
iron sources for itself and other periodontal disease- 
related microorganisms. On the other hand, consid-
ering the open nature of the oral environment and 
the complexity of host immunity, some significant 
differences observed in vitro may not necessarily 
cause appreciable changes in vivo. Whether EGCG 
can exert meaningful biological efficacy in vivo must 
be rigorously and long-term evaluated using in vivo 
experiments. There are still major deficiencies in 
these two aspects, which should be the focus of future 
research. In addition, it is also worthy of attention to 
explore the anti-infective effects of EGCG combined 
with other chemical drugs or oral materials, develop 
targeted or controlled release systems of EGCG and 
its derivatives, develop better in vivo models and 
standardize of technical procedures in vitro. More 
work is needed to apply EGCG as a routine anti- 
infective drug in clinical practice.
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