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Abstract: Smart Grid (S.G.) is a digitally enabled power grid with an automatic capability to control
electricity and information between utility and consumer. S.G. data streams are heterogenous and
possess a dynamic environment, whereas the existing machine learning methods are static and stand
obsolete in such environments. Since these models cannot handle variations posed by S.G. and
utilities with different generation modalities (D.G.M.), a model with adaptive features must comply
with the requirements and fulfill the demand for new data, features, and modality. In this study,
we considered two open sources and one real-world dataset and observed the behavior of ARIMA,
ANN, and LSTM concerning changes in input parameters. It was found that no model observed
the change in input parameters until it was manually introduced. It was observed that considered
models experienced performance degradation and deterioration from 5 to 15% in terms of accuracy
relating to parameter change. Therefore, to improve the model accuracy and adapt the parametric
variations, which are dynamic in nature and evident in S.G. and D.G.M. environments. The study
has proposed a novel adaptive framework to overcome the existing limitations in electrical load
forecasting models.

Keywords: energy management; adaptive models; generation modalities; load forecasting; machine
learning; model deterioration; power stability; Smart Grid

1. Introduction

The current developments and modifications in electrical networks and infrastruc-
tures, including distributed energy resources (D.E.R.s), have supported the energy demand.
These advancements have helped clean power production through renewables integration
and have also increased electrical power systems’ complexity [1]. It has triggered several
complications in electrical forecasting due to the diversity involved in power production
and each power source’s distinct behavior concerning different variables over time. This
diverse phenomenon of energy production has challenged the electrical load forecast-
ing (E.L.F.) models to perform power predictions accurately. However, due to existing
complications, it always results in a certain percentage of error with the forecast.

Since E.L.F. is responsible for meeting the demand-supply gap, their accuracy is of
utmost importance and paid immense attention [2]. Many factors cause this occurrence
of results with errors inaccuracy. Some are due to incomplete data, noise, power surges,
inappropriate consideration of forecast factors, applications, appropriate model selection,
and parametric tuning [3].
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In E.L.F., short-term load forecasting (STLF) is a driving factor of day-to-day operations.
It impacts operations, financial costs, and savings, which are considered essential. Several
STLF models have been proposed using statistical, regression, and artificial intelligence
(A.I.) [4,5]. Based on the performance of these models, several hybrid models were also
introduced to improve the forecasting accuracy; these models included several techniques
with clustering and optimization algorithms. However, the models pose limitations to the
changing environment due to their static behavior.

In a Smart Grid (S.G.) environment, the electrical consumption patterns keep changing.
These changes are observed due to different factors, but not limited to weather, processes,
activities, and events. While these factors are not cyclic, the consumption pattern of
electrical load differs from one hour to another throughout time. Since the data streams
in the S.G. environment are continuous, pattern changes are observed on a large scale.
Numerous E.L.F. models have been proposed, but when new and unknown parameters
influence the electrical consumption pattern, the conventional machine learning (ML)
models cannot observe the changes and stand obsolete to handle such issues. These models
can be differentiated as below:

Traditional/Shallow learning models: The shallow learning models (S.L.M.) can be
described as the models designed for dedicated applications, industries, utilities, sectors,
and regions. These models have a pre-defined set of features and functions that cannot
update, change, or modify themselves over the requirement. Any change requirement
needs to be set manually and offline for each change operation. Therefore, these models
stand obsolete in continuous data streams in the S.G. environment. Thus, the deep learning
(DL) models have replaced them. Still, it is challenging for researchers to discover new
ways to improve precision and accuracy during the forecast and make models adaptive.
Despite many DL methods proposed by different researchers, the accuracy and adaptability
factors are still unsatisfactory.

Back draw of Traditional Models: The recent machine learning models for electrical
load forecasting comprise a set of trained features, and the same elements are kept constant
while testing. Therefore, the models keep specific acceptable results until the input feature
or application changes. However, when we observe a single or multiple changes in the input
features in an online system, the model starts to deteriorate and produce poor forecasts.
Such forecasts impact energy management and thus cause a loss in terms of millions of
dollars in operations and maintenance. Figure 1 describes a scenario where a deployed
model is trained on selected features (f-1, f-2, and f-3). However, introducing new features
(fn and fn+1) deteriorates the model performance.
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The change in feature could occur due to a change in database, application, sector,
or modality since the features selected in recent ML models are not standardized for any
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particularity. Therefore, their importance could change with respect to time. Moreover, the
electrical pattern observes continuous change depending on different factors. Therefore,
considering those factors are of utmost importance, and their integration as essential
features needs to be considered while designing the model.

It is observed that different parameters have a different impact on load forecasting.
This impact needs to be calculated before involving any parameter since it can either
increase/decrease the accuracy or cause complexity in the model performance.

Adaptable Machine Learning Model: Adaptability is a feature that transforms any
machine learning model to adjust itself and perform self-regulations following the en-
vironment. This is a self-regulatory attribute responsible for dynamically adjusting the
model concerning changes in data trends. These ML models can retain their precision
and accuracy even after parameter, application, utility, region, and sector variations. The
adaptability approach is categorized into the semi- and fully-adaptive approaches, with
few dynamic changes by fundamental structure improvement and autonomous module
incorporation for self-tuning as per required features.

The existing ML models have the nature of modeling static data. Therefore, these mod-
els cannot capture the dynamic changes observed in input parameters for load forecasting
in the S.G. environment and cannot update themselves automatically (neither the features
nor the model). This directs them to generate poor forecasts, have model limitations, and
have an inconsiderable error percentage in the results, causing a loss in terms of cost for
operations and generations [6].

The electrical consumption patterns in S.G. and D.G.M. are acyclic, for which the
model needs to be updated automatically with new features and patterns. These changes
in input parameters need to be automatically updated in the model because the parameter
tuning could not be performed physically in a real-time environment. Therefore, along with
the discussion of the deterioration of E.L.F. models, we have also proposed an adaptive
model framework for our future works, which can update itself for variations in parameter,
application, utility, region, and sector utilizing self-adaption strategies.

The proposed framework can entertain the S.G. and D.G.M. environment changes,
perform real-time correlation with different parameters, and utilize the input parameters
that have a more influential impact on the load while discarding the irrelevant features. The
difference between the previous and our proposed model lies in model adaptation, modality
recognition, parameter defining concerning modality, and continuous up-gradation of the
model with its relevant features in a real-time environment.

In this paper, we have examined the performance deterioration of existing load fore-
casting models concerning S.G. and D.G.M. environments, considering simple parametric
variations to support the theory and proof the same with the help of experimentation. The
study confirmed the performance deterioration of forecasting models on three different
datasets. The evaluation is based on forecasting results produced by the models conducted
before and after the change in input parameters. Based on the experimental results and
our observed limitations of existing load forecasting models. The study has proposed a
novel adaptive framework to overcome the existing challenges experienced in S.G. and
D.G.M. environments.

The main contributions of this study can be summarized as follows:

1. To highlight the performance deterioration in E.L.F. models due to changes in param-
eters and modality.

2. To highlight the importance of STLF in the S.G. and D.G.M. environment.
3. To evaluate existing load forecasting models.
4. To propose a novel adaptive framework to improve the model deterioration in E.L.F.
5. To emphasize the importance of adaptive models in real-time E.L.F.

The study discusses the limitations that cause the model deterioration, and a novel
adaptive framework is proposed to improve the model deterioration since conventional
models are obsolete in such a dynamic environment. The proposed model is believed to
contribute to the D.G.M. and S.G. environment, where operation and power management
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are susceptible tasks. The proposed framework is crucial to assist utilities, independent
power producers (I.P.P.), industries, off-grid consumers, and Smart Grid management
in forecasting energy demand. It is also believed to help manage it through efficient
adaptability features to integrate D.G.M. and manage power under respective elements
affecting the power generation. Thus, intelligent energy management will be enabled
through the proposed novel framework to direct an intelligent implementation of D.E.R.s.
It will help with electricity planning, generation, transmission, distribution, scheduling,
operations, and efficient integration of multiple power sources for clean optimum power
generation and consumption.

The rest of the paper is distributed as Section 2 reviews the literature of related
works and previous propositions according to the proposed framework and conventional
modeling and their limitations, including traditional and adaptive load forecasting models.
Section 3 provides the methodology of model evaluations and their deterioration and
dataset descriptions. Section 4 provides the results and discussion of model deterioration.
Finally, Section 5 concludes the study and future research directions and work propositions.

2. Literature Review

Based on the intensive literature review, we conclude that the traditional methods
deployed for load forecasting and associated factors such as generation, transmission,
distribution, and operations and planning would require a more robust forecasting solution
to be deployed for S.G. and D.G.M. In the era of continuous technological evolution, one
hundred and ninety-three countries at the United Nations have agreed upon the agenda
of the sustainable development goals (S.D.G.s). Out of these goals, the smart city is of
crucial importance since it is estimated that today 54% of people live in cities worldwide,
but by 2050 this proportion is estimated to reach 66%. The cities are already facing the
issues such as power management, unsustainability, and some other fragile problems [7].
In such scenarios, the smart city, with its advanced technologies (comprising I.C.T. and
innovative advances) addresses these issues (providing efficient power management, im-
proving quality of life, promoting economic growth, and developing a sustainable and safe
environment). However, the foundation of a smart city lies with the implementation of
S.G.s that can efficiently support technological advances.

The S.G. is comprised of D.G.M., which could include D.E.R.s. This further integration
of different power resources supports system availability and increases robustness, but the
system complexity also increases. Though the S.G. is an unprecedented opportunity to
adapt IR 4.0 and update the energy industries into the era of reliability, availability, and
efficiency that contributes to intelligent power systems [8], E.L.F. accuracy is one of the
critical issues S.G. to forecast the future demand accurately. Figure 2 presents a hierarchical
structure highlighting the importance of the target area in smart cities and Smart Grids
for research impact on a sustainable future leading towards the efficient generation and
management of electrical power.

E.L.F. helps control and manage energy generation and reduces the behavior of energy
fluctuation [9]. Since load forecasting deals with minimizing the utility risk through
forecasting the future demand, it is one of the most crucial areas in implementing a Smart
Grid and creating the foundation of a smart city. Still, due to the dynamic behavior of load
in the S.G. environment, the current models either stand obsolete or rapidly deteriorate
their performance.

Though the transition period from conventional grids to Smart Grids is critical, the
benefits are rewarding. Some of the benefits include:

• Efficient generation, transmission, and distribution of electricity,
• Power acquired from different generation modalities,
• Fast network restoration (in case of any disturbance),
• Operations and management cost reduction for utilities,
• Reliable integration of large-scale renewables.
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Since S.G. is dependent on accurate and efficient load forecasting, E.L.F. is treated as
a critical operational task. Thus, it has been distributed into four categories concerning
the forecasting time-domain long-term load forecasting (LTLF), medium-term load fore-
casting (MTLF), short-term load forecasting (STLF), and very short-term load forecasting
(VSTLF) [10]. Several forecasting methods have been employed for these time domains,
including the knowledge base expert system and some statistical techniques, artificial
intelligence (A.I.) techniques, machine learning (ML) models, and hybrid techniques.

In S.G. and D.G.M. environments, the STLF (time zone ranging from a few minutes,
hours, or days) is a significant factor in day-to-day operations and planning of a power
utility and critical component of an energy management system. The STLF approach is
efficient in reducing financial costs and operational risks, and it impacts directly on savings.
Therefore, it is given much prominence and treated as a critical problem in the competitive
energy market [11,12]. Figure 3 shows the hierarchical structure leading from the Smart
Grid to this study’s load forecasting problem area.

Several STLF techniques have been proposed, some of which have been classified as
statistical methods, including linear regression, auto-regressive moving average (ARIMA),
and exponential smoothing (E.S.) [13]. Later in STLF, scientists introduced specific new
methods, including artificial neural network (ANN), fuzzy logic (F.L.), support vector
machine (SVM), recurrent neural network, and long short-term memory (LSTM) [12,13].

Numerous statistical, machine learning, and deep learning models have been proposed
in the literature for different forecasting applications [14]. Still, they have various limitations
in their design, architecture, application, region, sector, etc. Some current methods proposed
for different forecasting applications claim better accuracy but stand obsolete in dynamic
environments [15]. The traditional models are discussed below:
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2.1. Traditional Models

Some of the traditional load forecasting models include [16] where Tina, G.M. et al.
presented a state of the art review on ML-based methods for P.V.s, anomalies, fault, and
optimization detection and analysis. The review discussed several past studies of machine
learning algorithms used explicitly in P.V. generation, forecasting, and fault detection and
their pros and cons. Khodayar M. et al. [17] explored different neural networks (LSTM,
CNN, and G.R.U.) to forecast P.V. energy with the help of optimization dictionaries to
improve the forecasting results.

Rai, S. and De, M. [18] presented their analysis of different ML-based forecast models
relating to S.G. The work is dedicated to the N.I.T. Patna campus in India for STLF and
MTLF. The data was attained from the smart meters, where the claimed dataset is said to
be of multiple load types. However, considering the institutional operations, the dataset is
assumed to be cyclic. However, multi-node forecasting is an efficient process considered
for forecasting in the study. Deiss, M. B. et al. [19] compare the difference in electrical
load between office buildings and residentials during the COVID-19 pandemic. The
study provided the power consumption comparison while working at the office and work-
from-home scenarios, presenting the hypothesis of increment and decrement of energy
consumption in residential and commercial buildings in case of a pandemic.

Wu, T. and Wang, J. [20] discussed the artificial intelligence (A.I.) applications for the
operation and control of micro-grid (M.G.), emphasizing the deployment of deep learning
(DL) and deep reinforcement learning (DRL) for power applications, including distributed
energy resources in utilities. Wang, N. et al. [21] have explored the problems of prosumers
for energy trade through distributed ML applications focusing on the issues of data privacy,
limited communication, and computation. It focuses on developing a framework that
provides intelligent energy management for residential prosumers and allows them to
trade energy in the local vicinity. The study has proposed an ML-based framework for
optimizing load, accuracy of price forecast, and improved efficiency for trading energy for
a direct current (D.C.) grid.

Hafeez, G. et al. [22] proposed a hybrid model for STLF composed of modified-
mutual-information (MMI) for tailoring the input features, factored-conditional-restricted-
Boltzmann-machine (FCRBM) for predicting day and week demand, and genetic algorithm
along with wind-driven optimization (GWDO) for fast convergence. The proposed model
was tested on power grids of the U.S.A. Motepe S. et al. [23] proposed an A.I. and DL-based
method for load forecasting to prepare maintenance and operations at the distribution
network. The study has also conducted a comparative survey of the current state-of-the-art
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methods where LSTM was observed to provide better forecasting accuracy than ANFIS
and OP-ELM. However, the study is only related to South Africa, and the data’s spikes,
dips, and sags were removed. Such removals will expose the model to poor accuracy in
real-time environments.

Zheng J. et al. [24] proposed an analysis for considering multi-variable data based
on copula correlation to determine the optimal parameters and used the improved LSTM
methodology to attain better load forecasting accuracy. The factors affecting the L.F were
trained back and forth to train the model, resulting in comprehensively better accuracy.
Farsi B. et al. [25] presented an approach of ML algorithm by combining LSTM and CNN
in parallel to improve the forecasting results. The study considered the datasets from
Malaysia (hourly load) and Germany (daily load) to perform STLF and claims to improve
the forecasting accuracy considerably.

Bouktif S. et al. [26] modeled a framework using G.A. for parametric optimization
and LSTM for E.L.F. based on STLF and MTLF. The study involved the R.T.E. dataset from
France metropolitan’s electricity, and the modular development was univariate, making the
proposed model obsolete in a dynamic environment. S.G. Ghadimi, N. et al. [27] presented
a two-stage forecasting engine comprising R.N.N. and E.N.N. and a feature selection
technique making the model more competitive to consider only appropriate variables and
filter the rest.

Azeem A. et al. [6] presented a comprehensive review of different load forecasting
models concerning different sectors. The study has also exploited the related models
under residential, commercial, industrial, grid-connected, and off-grid sectors. It also
covers the importance of different generation modalities in the modern environment of
Smart Grids. It discusses the limitations of existing load forecasting models concerning
the implementation of S.G. and the behavior of electrical load concerning different factors
affecting load forecasting. Potocnik, P. et al. [14] compared different ML forecasting models
to determine the future natural gas demand for urban areas. The forecast variables consisted
of temperature, time, holidays, and events. The forecasting criteria cater to various horizons;
however, it concluded linear regression and recurrent neural networks fit different criteria.

Jahan, I. S. et al. [28] reviewed different load forecasting models, sectioning their
findings into groups of ANN, SVM, D.T., L.R., and F.S. It also discusses the critical factors
that affect load forecasting over the period. Yang, Y. and Wu, L. [29] discuss the power
system problems and their respective existing solutions, referring to unit commitment
(U.C.). The study examined several ML approaches for solving the issues in nonlinear
A.C. power flow. Guo W. et al. [30] discussed the three most prominent ML algorithms of
load forecasting (SVM, R.F., and LSTM) and presented a model by fusion of these methods
for improved STLF. Moreover, a comparative study to support the performance of the
proposed model is also given.

2.2. Adaptive Models

When the load forecasting environment kept improving, new D.E.R.s were introduced
to the power generation system. It enhanced the generation capability but also increased
the system complexity. Several adaptive models were proposed to accommodate those
complexities, including [15], where Ding S. et al. proposed a model for power generation
of photovoltaics utilizing the nonlinearity, periodicity, and fluctuation of parameters over
time and optimizing the solution. The model supposedly forecasts the P.V. generation,
including more complex long-term forecasting parameters. The study proposed a novel
adaptive model with time-varied parameters incorporated with the help of G.A. The study
claims to adapt the parameters but has not covered the aspects of sparse, noise, loss,
and data fluctuations, including new parameter introduction. However, the considered
parameters and their variations are a subset of total parameters compared to S.G. and
D.G.M. environments since P.V. is a subset of D.G.M.

Mohammed, N.A. and Al-Bazi A. [31] proposed an improved ANN along with an
adaptive backpropagation algorithm (ABPA) to cover the limitations of ANN and provide
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enhanced forecasting accuracy. The datasets comprised nine years of data attained from
the ministry of electricity in Iraq. The study considered different vital energy factors and
integrated them into the training to improve the forecast.

Wu, S. F., and Lee S. J. [32] presented a strategy for the local modeling strategy of ML
algorithms consisting of N.N.s, adaptive neuro-fuzzy inference system (ANFIS), and least
square SVM (LSSVM) to improve the forecasting performance of in predictions relating to
time series. The study has posed to achieve a target that was set prior. However, in cases of
the acyclic nature of data, Smart Grid, and multi-modality generations, such initial marks
are irrelevant since they pose higher degree errors.

Laib O. et al. [33] presented a two-stage predictive approach that consists of an adap-
tive hybrid forecasting model to predict the natural gas consumption using LSTM for
prediction and M.L.P. for profiling the next day’s gas consumption in Algeria.

S-Medina, J. J. et al. [34] proposed an adaptive model based on incremental linear
regression where the model on arrival continuously learns the new streams, and a new
window is generated to learn based on past windows. Though the model consistency was
a strength, the linearity proposition is unsuitable for highly nonlinear environments such
as S.G. and D.G.M.

Guo T. et al. [35] discussed the importance of streaming data in several real-time
applications. They proposed a method based on the adaptive R.N.N.s approach utilizing
the gradient method for learning. Since in STLF, we need good data forecast, but the model
only supports a step-ahead prediction.

Parameter optimization and selection of suitable models are critical when dealing with
E.L.F. Some other studies that proposed parameter optimization and dimension reduction
to improve the implication of critical parameters were also presented [36,37]. Still, it is
deduced that most of the studies have praised the importance of using R.N.N.s and their
significance in dealing with time series problems since it outperforms others [38,39].

2.3. Adaptive Models with Concept Drift

In the current challenging environment, the evolution of data occurs over time. The
patterns and associated correlations evolve, and this phenomenon in ML is termed concept
drift. A similar phenomenon occurs in dynamic electrical environments, which involves
S.G. and D.G.M. Some other studies considering the concept drifts are:

Jagait, R. K., et al. [40] presented an ensemble approach for online learning using
R.N.N.s and ARIMA. The study proposed an adaptive model based on concept drift using
R.N.N.s and considered ARIMA for creating a rolling window operation to create an
online scenario for the ensemble model. Though the model has achieved considerable
improvements, the model cannot be considered acceptable to be implemented in dynamic
environments, especially Smart Grids and with multi-generation modality, since the rolling
window operations have known values without any noise or loss. Still, real environment
scenarios differ. The same goes with the features improvement and consideration in D.G.M.
environments where the feature continuously changes with modality.

Madireddy S. et al. [41] proposed a model under concept drift for scheduling jobs in
production. Kracnnichfeldt, L. V. et al. [42] purported a model based on the approach of
Passive Aggressive Regression (P.A.R.). The utilized technique included individual and en-
semble forecasts learning to support model adaptivity. However, nonlinearity, complexity,
and exclusion of feature adaptivity make the model vulnerable to S.G. and D.G.M.

Fekri, M.N. et al. [43] presented an approach considering online Adaptive-RNN with
batch normalization technique with R.N.N. Lalis J.T. and Maravillas E. [44] presented a
dynamic model for load forecasting using an adaptive system considering multiplayer
and perceptron involving minimum complexity. Ammar N. et al. [45] propose a model
with adaptivity utilizing neuro-fuzzy-inference (ANFIS) to analyze the impact of different
weather parameters on current and previous electric loads.

Nalacaci G. et al. [46] utilized a multivariate adaptive regression spline (MARS) model
and compared it with ANN and L.R. to produce LTLF and deduced that result of MARS was
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improved in comparison to others. Xiaolan, L. and Zhou, J. [47] combined the strategies of
parametrization, fractal interpolation function, iterative learning, and chimp optimization
algorithm (CLFIF-IL-ChOA). They later compared it with statistical and other machine
learning algorithms, deducing that the model performs better in an adaptive environ-
ment. Zhang, Y. et al. [48] proposed a method for E.L.F. prediction interval based on
reinforcement learning with adaptivity to address probability–proportion selection and
quantile-forecasting.

Among the literature survey, Jameel S. et al. [49–51] proposed multiple adaptive frame-
works in their studies. They presented an adaptive framework for different ML and DL
applications that included complex and multispectral image analysis, image classification
following the digital transformation of IoT and IR 4.0, and disease identification in skins to
detect it at an early stage.

From the literature, we can safely state that the load forecasting models face accuracy
challenges due to parametric variations causing irregular consumption patterns, and non-
or-partial adaptability in the models is a critical problem [52]. Some recently proposed
adaptive models’ strengths have also been discussed in Table 1. Since the current models
perform on few parameters and if new changes are introduced, the model performance
degrades gradually. To conclude, we will analyze various load forecasting approaches
and their learning strategies in a later section and adopt the best method to improve the
structure dynamically. Hence, a significant contribution of this study is to introduce an
adaptable model framework for continuous data stream in a Smart Grid environment to
improve the accuracy of load forecasting models.

Table 1. Summary of the comparative study of a+daptive E.L.F. models based on their strengths.

Ref. Models
Adaptive Strengths

Remarks
A F/P M Rt Re/S

[15] ATDGM ** * X * X
Inefficient to handle the existence of complex-nonlinearity. Exhibits
periodicity due to incurred errors. Morbidity of the matrix occurs
due to the large magnitude of observations.

[31] ABPA ** * X * X

Segregation of train, validation, and forecast is required.
Furthermore, B.P.A.s are slow and have unreliability regarding new
environments. They cannot quickly adapt their parsing and need
an alternative.

[32] ANFIS-LSSVM ** * X * X
It is not adaptable to real-time and feasible for only pattern-based
scenarios due to its dependency on K.N.N. Noise sensitivity exits,
leading to unacceptable results.

[33] FM-MLP ** X X * X
Produce errors with changes in patterns on special days and events.
Unresponsive to change behavior in real-time is highly likely in the
S.G. and D.G.M. environment.

[34] I.L.R. ** X X * X

The proposition is based on a linear approach that highly unfits to
satisfy the requirement of S.G. and D.G.M. to their continuous
nonlinearity and existence of noise and insufficient data. Thus, the
model does not suit other generation sources.

[35] SGD-RNN ** * X ** X

The presented model has claimed to perform adaptive forecasting
with outliers’ resistance; however, the strategy dealing with outlier
and change points has severe complexity leading the model to
deviate from actual predictions. Moreover, the model lacks the
integration of new parameters and modality, which is an integral
part of S.G. and D.G.M.

[40] ARIMA-RNN ** * X ** X

Rolling ARIMA sliding window is considered to develop a
real-time environment that is error and noiseless, thus creating an
ideal environment not comparative with a real-time environment.
Moreover, ARIMA in a highly nonlinear environment will produce
more errors resulting in more untrue sequences, producing more
unrealistic data. Thus, on the contrary, model performance could be
considered acceptable, but it will deviate a lot in a real environment,
leaving the model to be unacceptable for S.G. and D.G.M.
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Table 1. Cont.

Ref. Models
Adaptive Strengths

Remarks
A F/P M Rt Re/S

[41] BC-MMT ** X X * X

The proposal focused on HPC systems dealing with data
disruptions during hardware and software up-gradation or
degradation only and adapts accordingly. However, in comparison,
the scenarios verily differ. Therefore, unacceptable in S.G. and
D.G.M.

[42] P.A.R. *** X X *** X

The model has improved forecast with great adaptability but has
limitations regarding parameters, modality, and region expanding
to industry, utility, and application. However, the model has
produced many forecasts. The modifications could result in
considering the model for S.G. and D.G.M.

[43] R.N.N. *** X X *** X

The proposed adaptive R.N.N. produced better predictions than
other models; however, the online models deal with real-time
environment data with no significant parameter or modality
changes. However, the model has produced acceptable results, but
integrating with S.G. and D.G.M. requires significant modifications
as the relationship modeling between model behavior to
parameters and occurrence of concept drift.

[44] AMLP ** X X X X
The presented results have a high error rate and adaptability
limitations regarding parameters, modality, and region expanding
to industry, utility, and application.

[46] MARS ** * X X X
MARS has produced efficient results but dealing in a single
generation data type flexes the model performance. However, the
effects on real-time deviate as the environment changes.

[47] CLFIF-IL-ChOA ** ** X ** X

The model is built constructively to deal with parameterization and
has produced effective forecasts. However, parameter adaption is
not only a function in S.G. and D.G.M. Therefore, applicable
modifications are also required.

[48] R.L. ** X X ** X

The proposed model performed prediction interval (P.I.) for finding
uncertainty in distribution systems. The employed R.L. strategy is
efficient; however, the behavior of S.G. and D.G.M. environments
are comparatively different from P.I.s.

[49–51] CNN *** *** X *** X

The study proved to be a benchmark for several studies in
classification. However, the S.G. and D.G.M. environment are
based on regression. Therefore, modifications are required to
improvise the model and devise it according to regression.

- Proposed’
framework *** *** *** *** ***

The proposed framework encompasses the characteristics that
feasibly adjust the parameter selection and rejection based on
modality. It is based on the feature identification, classification, and
recognition module that records the new parameters. The model is
continuously updated, making it more rigorous and robust to keep
track of changes and improve the performance accordingly.

Strengths Abbreviations

* Good A Adaptability Rt Real-time
** Better F Feature Re Region
*** Best P Parameter S Seasonality
X Feature does not exist M Modality

Abbreviations of models used in Table 1.

ABPA ANN-back
propagation Algorithm AMLP Adaptive multi-

layer perceptron ANFIS-LSSVM Adaptive neuro-fuzzy inference system
least-squares support vector machine

AT
DGM

Adaptive time-varying
discrete grey model CNN Convolution NN BC-MMT Bayesian-Changepoint Moment-Matching

Transformation

FM Forecasting monitor HPC High-performance
computing CLFIF-IL-ChOA

Composite Linear Fractal Interpolation
Function with Iterative Learning and Chimp
Optimization Algorithm

I.L.R. Integrated linear regression R.L. Reinforcement
learning MARS Multivariate Adaptive Regression Splines

P.A.R. Passive
aggressive regression R.N.N. Recurrent

neural networks SGD-RNN Stochastic Gradient Descent—RNN

* = Good, ** = Better, *** = Best.
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2.4. Brief Review of Some Load Forecasting Methods

The literature reveals many approaches used for load forecasting, whether as a single
method, hybrid method, mixture of different techniques, or clustering and optimization
methods for improved electrical load forecasting results. After an in-depth literature review,
we found some most prominent load forecasting approaches used in literature either in
singular form or with different techniques. It is also highlighted in Figure 4a, where ANN
was combined with ARIMA, wavelet neural network (W.N.N.), genetic algorithm (G.A.),
particle swarm optimization (PSO), deep neural network (D.N.N.), and LSTM. Similarly,
Figure 4b presents different combination used with LSTM that includes gated recurrent unit
(G.R.U.), CNN, R.N.N., estimation distribution algorithm (E.D.A.), random forest (R.F.),
and nonlinear auto-regressive exogenous (NARX) model. This section briefly reviews the
most prominent approaches used in numerous studies relating to electrical load forecasting.
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2.4.1. Artificial Neural Networks

ANN has apprehended numerous applications due to their high skill in learning.
These methods are popular for forecasting for their reliability and accuracy. An estimation
of function could be performed using ANN. It consists of layers termed input, hidden, and
output, shown in Figure 5a as a primary architecture model. The layers consist of nodes
equal to variables existing in each layer, respectively [53]. Input layer and parameter (N.F.)
are equal, represented in the size of the column vector of [NFx1], xt, where “t” is the time
constant. The number of hidden layers depends on the methodology.
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For a single hidden layer consisting of NH weighting a matrix of WH with a bias bH
vector, using activation ρH function, the hidden layer output could be expressed as:

yH
t = ρH(WHxt) + bH (1)

Treating its input for the final output we receive:

yo
t = ρo

(
WoyH

t

)
+ bo (2)

yo
t output size: ρo is the function of activation and Wo is weight matrix. To minimize

the error criterion, the ANN throughout training changes biases and weights, which can be
expressed as below function:

minW,b
1
2

T

∑
t=1

(yt − yo
t )

2 (3)

2.4.2. Long Short-Term Memory

One of the deep recurrent neural network family members is LSTM, used in various
models such as time series, recognition of speech, and language. LSTM models have
outperformed other methods for learning from earlier stages which is vital for the future
forecast. In contrast to a feed-forward neural network, LSTM consists of cycles of network
activation, which feeds from the recent step as a network input, influencing current time
predictions [54]. Consequently, the model develops its memory from previous events and
is in its hidden state variables encoded. As shown in Figure 5b, the system takes xt as input
at the current time, ht−1 as output from prior LSTM, Ct−1 as previous unit memory, ht as
current system output, ct as current unit memory, it as model input, ot as model output,
and ft as forget gate.

The input gate decides to add info from the present input state of the cell. The forget
gate’s decision includes removing the report from ht−1, only keeping the most relevant
information, and the output gate takes a decision regarding out info from the current cell
state. The equations controlling the cells of LSTM are as follows:

it = (Wi.[ht−1, xt] + bi) (4)

ft = σ
(

W f .[ht−1, xt] + b f

)
(5)

ot = σ(Wo.[ht−1, xt] + bo) (6)

C̃ = tanh(Wc.[ht−1, xt] + bc) (7)

Ct =
(

Ft ∗ Ct−1 + it∗Čt
)

(8)

ht = ot ∗ tanh(Ct) (9)

Ct is the cell state, ht is the hidden state, and σ is the sigmoid function. Thus, the
system performs computation that decides the output and is dependent on input, past
values, and past analyses, enabling the model to grasp different time-scaled information
for current computation purposes.

2.4.3. Auto-Regressive Integrated Moving Average (ARIMA) Model

When the data perceived in a process is not stationary, it must first be transformed
into a static form. The variance in the ARMA and ARIMA model transforms time series
into static by d-order difference before fitting the series (d represents order difference).
ARIMA also has issues such as over or underfitting data due to p and q values. A criterion,
namely B.I.C., is used out of a set of models to select the optimal model used to reduce
uncertainty and improve prediction accuracy. The lowest B.I.C. score is chosen as the best
fit model [55].

BIC = k × ln(m)− 2 ln ˆ(L) (10)
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where ‘k’ represents the number of model parameters, ‘m’ sample size, and ‘L’maximizes
the value of the function. Though the ARIMA model was modified with the help of B.I.C.,
it is not yet adequate to accommodate the electrical load without its combination with some
other method that can change the absence of data compensation [56].

It is evident from the literature and our experimental results that most load forecasting
models are static and cannot adapt to the changes. The changes could be for parameters,
application, sector, region, modality, etc. Due to this deficiency, they do not improve
their model accuracy and are dedicated to only designing static applications. Therefore,
such models need manual modifications to update themselves whenever a new feature
is introduced. Besides, every application has a dedicated model, which stands obsolete
in a different environment. Moreover, the existing literature lacks in addressing a model
which encompasses different generation modalities, fully adaptive forecasting, and fully
adaptive real-time forecasting. A model that can accommodate the changes in input
features, applications, modality, and regions can be sufficient for the S.G.M. and D.G.M.
environment and possess the dynamic ability to enhance the model’s ability to adapt to
multi-variable online and real-time environments.

Therefore, such models are required can adapt themselves automatically without
interruption and manual modifications. Considering such capabilities, we have proposed
a novel framework to address the issues and challenges experienced by existing load
forecasting models. The proposed approach is designed to obtain data from multiple
sources. The data is then deployed to the classifier and outlier sub-module in its feature
identification module to fulfill the initial D.G.M. requirements. Later, to record the old
and new changes, a repository is formed which captures dynamic features and constantly
compares itself with identification and classification to fulfill S.G. and D.G.M. requirements
of continuous change interpretation.

Furthermore, the online training module consistently receives the input from the
output. The LSTM ensemble is designed in a multi-layer parallel working mode that
evaluates the forecast and generates optimum results. Thus, all incoming data is assessed
for new data, features, and other changes to be adapted if observed, making it a novel
framework. The description of the proposed framework, its modules, and their working is
detailed in the methodology section.

The existing models cannot adapt to the dynamic changes observed in S.G. and D.G.M.
environments. Such as input feature changes in a real-time deployed environment and
observed differences following region, modality, sector, and application. Thus, these
models stand obsolete in such vibrant scenarios. Therefore, due to its ensembled module
capabilities and novelty of continuous adaptivity in features and observed changes in its
environment, the proposed model stands unique in comparison to existing models. It is
deduced that the traditional models stand obsolete, and the proposed adaptive models face
various challenges to contend in such a dynamic environment. They pose challenges for
accuracy and precision, effective energy management, planning and operations, and future
load prediction. Therefore, it generated the need to investigate the recent models concerning
the challenges encountered in the S.G. and D.G.M. environment, observe the model’s
behavior, and produce forecasts with different variable shifts and parameter changes.

To overcome the described adaptability challenges, this study is crucial to explore the
E.L.F. models and observe their performance in a distinct environment where the data has
multiple changes in terms of modality and parameter. Moreover, it discusses the existing
challenges and the proposition of a new framework to overcome the current issues in E.L.F.
models following S.G. and D.G.M.

3. Methodology

This section explores the existing load forecasting models regarding S.G. and D.G.M.
and elaborates on the proposed tentative adaptive framework. The intuition behind this
framework is to adapt the modality and variations in parameter and region features. It
is evident from the literature that to achieve accuracy in E.L.F. models, the data under
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observation shall be free of noise, loss, and error to attain acceptable results. In this
study, we have considered two open-source datasets provided with the name of American
electric power (A.E.P.) ranging from 2004 to 2018 and New York City (N.Y.C.) ranging from
2012 to 2017. The third dataset belongs to the real environment of Universiti Teknologi
PETRONAS (U.T.P.), ranging from Nov to Dec 2019The dataset comprises “hourly load
data” in megawatts (M.W.s) but have different parameters.

Due to the involvement of unidentical parameters, we have observed the change of
performance in model accuracy with the evolution of parameters. Thus, the difference in
parameters has caused the models’ performance deterioration. The study uses ARIMA,
ANN, and LSTM models on each dataset. Therefore, the study is subdivided into three case
studies for better understanding and description.

3.1. Dataset Description

The utilized database comprises three datasets; two of them are available online at
Kaggle with descriptions provided below. Since the load data is time series, the analysis
of such vital attributes is required. To observe those attributes, we have decomposed our
datasets into ‘trend’ showing the stability and instability of data, ‘seasonality’ expressing
the fluctuations occurring at a certain periodicity, and ‘residual/noise,’ which depicts the
remains. Further details are discussed below:

3.1.1. American Electric Power (A.E.P.)

The dataset was obtained from the A.E.P., a power utility company covering 11 states
in the United States and delivering energy to more than 5 million consumers. The collected
data is in univariate time series and ranges from 31 December 2004 to 2 January 2018.
Figure 6 represents the decomposition of the A.E.P. time series with hourly values rep-
resenting the original, trends, seasonal, and residuals over the different periods. The
figure highlights the pattern variations of electrical data measured in Megawatt’s (M.W.s)
concerning other dates.
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3.1.2. New York City (N.Y.C.)

The dataset was obtained from the N.Y.C., and it is a multivariate dataset that addi-
tional includes temperature and precipitation values and ranges from 2012 to 2017. Figure 7
represents the decomposition of the Dayton time series with daily values representing
the original, trends, seasonal, and residuals over the different periods. The figure high-
lights the pattern variations of electrical data measured in Megawatt’s (M.W.s) concerning
other dates.
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3.1.3. University Technology Petronas (U.T.P.)

This data set was obtained from the U.T.P. gas district cooling (GDC) department,
which provides the rest departments’ electrical services. This is a real data set comprised of
hourly load demand for November and December 2019. The dataset is multi-variable with
load demand, temperature, humidity, and wind speed variables. Figure 8 represents the
decomposition of the A.E.P. time series with daily values representing the original, trends,
seasonal, and residuals over the different periods. The presented figure highlights the
pattern variations of electrical data measured in kilowatts (kW) concerning different dates.
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3.2. Data Preprocessing

The datasets were preprocessed to eliminate the existence of any loss, noise, or insuf-
ficient data. Such values were eliminated considering respective appropriate algorithms.
Later, the datasets were decomposed to attain the daily, weekly, and monthly hidden fea-
tures. The features were then compared according to their correlations and influence on the
output. The most optimized features were obtained, and the rest were discarded. However,
during the data preprocessing, it was also noticed that weekly and monthly features had
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a similar impact on all three datasets. Moreover, the influence of specific parameters in
combination was more significant than as individuals.

3.3. ARIMA

Framework: The developed framework was to analyze the behavior of the ARIMA
model on different datasets to calculate the performance change along with respective
factors. Moreover, to observe the model deterioration when applied to different datasets,
sectors, and applications. The model comprised modules performing data processing,
verifying the seasonality, and removing the seasonality. Figure 9 presents the methodology
followed in this framework.
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Later, the model estimates the model parameters, checks for any residuals, and per-
forms testing of the model. Finally, to produce a forecast considering all three datasets with
parameter variations over the period.

3.4. ANN

Framework: The developed framework was based on the ANN architecture and is
believed to provide the model performance and deterioration when input parameters vary
with time. The process includes data preparation modular and forecasting modular. A brief
pictorial is presented in Figure 10.
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Data Preparation Modular: Databases provide the data, which are filtered for NaN
and 0 values. Later the data is further preprocessed and scaled following the model
requirements. Once the dataset is mounted, the input parameters are defined along with the
data distribution with training, testing, and validation split with 70, 10, and 10, respectively.
The input parameters are kept constant for initial simulations, and later the parameter
changes are applied to observe the model behavior over time for the changed parameter.
At this stage, the initial parameter change is limited to change in one parameter, including
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change in the t − 1 and t − 2 times the historical load. The scaled values are then processed
for prediction.

Forecasting Modular: The forecasting modular comprises ANN architecture called
neural networks and is inspired by the human brain. The neural networks are intelligent
enough to learn from data to recognize the patterns, data classifications, and prediction
of future values based on historical information. The architecture of ANN is discussed in
detail in the literature review section.

The ANN forecasting modular comprises two input, three hidden, and one output
layer. The parameter optimization is performed along with minimization of the loss
function to avoid overfitting. An overfit function fails to uncover the hidden features, due
to which it performs poorly. Different combinations for layers were utilized for optimal
performance, but better results were generated using 27, 18, and 18 combinations for hidden
layers and a dropout of 0.2. The model ran with 25 epochs at a batch size of 100 with a
linear activation function known as ‘Relu.’

3.5. LSTM

Framework: We developed the framework to examine the performance of existing
E.L.F. models on different datasets, which explored the impact and factors affecting the
accuracy of E.L.F. models and causing model deterioration. The process flow includes
data preparation involving data cleaning, transformation, reduction, and feature extraction.
Later it is introduced to the forecasting modular to produce the forecasting involving
parametric tuning, error comparison, and forecast production, as depicted in Figure 11.
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In this case study, we considered the datasets mentioned above. We also observed
the impact and performance of the forecasting model before and after parametric tuning.
We noticed the improvements in the forecasting results using the long short-term memory
(LSTM) model. The methodology flow is distributed into two modules, namely, data
preparation and forecasting. Figure 11 also presents the flow of methods.

The model performance is observed on the below basis:

1. Training Accuracy: We get the accuracy if we apply the model to training data.
2. Training Loss: It indicates how well the model fits the training data.
3. Validation Loss: It indicates how well the model fits new data.

Dataset Preparation Modular: The data are received from databases and forwarded
for sorting to separate the null values from the dataset to improve its credibility. Later, the
clean dataset is processed for data extraction of existing features and values such as load
behavior daily, weekly, monthly, and yearly. Based on respective segments, the graphs are
plotted to understand the load behavior concerning the different time ranges. For final
processing, the received data is later considered for daily values, taken through average
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means. These values are scaled using Minmax Scaler. The absolute values are subsequently
processed to forecast modular for further actions.

Forecasting Modular: The forecasting modular comprises sub-modules, namely, data
split, model development, parametric tuning, error measurement and comparison, and
production of load forecast.

Data Split: The dataset is split into training and testing, considering 70 and 30 percent ratios.
Model Construction: The construction of the LSTM model is comprised of 4 layers

with unit values of 64, 32, and 16 with 25 epochs, the batch value of 32, Adams as an
optimizer, and Relu as the current activation function. The drop out layer is set with a
value of 0.3 and dense with a unit value of 1.

Parametric Tuning: The tuning of parameters is performed by selecting different
combinations of values from Table 2, giving different sets of output with different per-
centage of accuracy and error. Numerous simulations with different combinations were
run to check the best suitable parameters throughout tuning. Every parameter impacted
forecasting results that were run on the combinational basis of heads of parameters named
in Table 2.

Table 2. Parametric tuning components and their respective variational combination table.

Epochs Optimizers Activation Functions Batches

5/10/25 Adams Sigmoid/Tanh/Relu 8/32/64
5/10/25 RMS Prop Sigmoid/Tanh/Relu 8/32/64
5/10/25 Adadelta Sigmoid/Tanh/Relu 8/32/64
5/10/25 Adagrad Sigmoid/Tanh/Relu 8/32/64
5/10/25 Stochastic Gradient Descent Sigmoid/Tanh/Relu 8/32/64

Error and Comparison: After every simulation is performed, the values of tuning
parameters are changed, and each simulation has its product of error measurement, which
is then stored to compare with other simulations to decide the optimal parameters for E.L.F.

Forecast: Once the different combinations of unique optimal parameters are obtained
after continuous and regressive simulations. The results are compared, and the most
effective combination of parameters is selected for producing the forecast.

3.6. Tentative Proposed Framework

Due to the rapid change in electrical dynamics and exponential growth in load de-
mand, there is a need for continuous developments in machine learning and deep learning
models. These models are capable of self-learning and adaptation to changes. Though the
researchers are covering some dynamics in other fields for the transformation of models in
classification applications [49–51], some propositions in regression works also exist [25,40].
Still, in regression, many features need to be incorporated when the task is specifically
of electrical load forecasting to enable the model to be eligible for multi-modality or
Smart Grid.

Since electrical data is acyclic and the demand continuously varies depending on
different factors, including meteorology, region, power modality, events, etc. [6]. Therefore,
a model which can integrate these changes when and where required in an online plat-
form is required. Based on the conducted literature review, it is deduced that a model is
needed which can incorporate the model changes based on meteorology, region, modality,
application, and demand sector.

The intuition behind this framework is to adapt the modality and variations in param-
eter and region features. In the proposed framework, the projected ensemble mechanism’s
diversity helps to handle the new features’ possible arrival, specifically modality, parame-
ters, and meteorological features. More precisely, this ensemble proposes a novel approach
that contributes diversity to a simple yet effective ensemble system. Considering the exist-
ing research gaps in the proposed framework, we have integrated two different modules
to introduce adaptive load forecasting. These modules incorporate the requirements to
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enhance and develop a novel adaptive model to fulfill the demand of modern load fore-
casting comprised of multi-modality generation and Smart Grid. Modular-1 consists of a
data stream pipeline composed of different modalities and features, including the changing
scenarios. Modular-2 is termed an adaptive ensemble framework modular, which is fur-
ther sub-sectioned into three sub-modules: feature change identification, online training,
variable weightage, and forecasting module. The detail of Figure 12 is presented below:
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Data Stream Pipeline: The data stream pipeline is responsible for providing the
data from input sources (different generation modalities) to the adaptive framework after
observing the feature change. This module further consists of feature change scenarios
which could be one or many concerning the case.

Feature Change Scenario: The first modular, namely the feature change scenario, takes
input from the different generation modalities and sorts the features accordingly. This
modular might experience a change of input features at the different time stamps from
any or each input database involved. Thus, the set of features introduced at time t − 1
may experience a change at time t − 2 (shown in modular-1, feature change scenario).
Such changes could occur as a completely new feature or a transformation of existing
into new segments. Moreover, these changes could be experienced as single or multiple
value changes.

Consequently, they cause the model deterioration in terms of its performance. Thus,
examining the features and relevant changes at the initial stage is of utmost importance
for the better performance of the model. Therefore, we capture these changes at an earlier
stage to counter the impact on the model and work towards the timely provision of an
appropriate solution.

Adaptive Framework: This modular comprises three further modules (feature change
identification, online training, variable weightage, and forecast ensemble), which complete
the requirement of an adaptive framework for a dynamic and challenging environment.
The modules could be further described as below:

Feature Change Identification: The features received from the “feature change sce-
nario” modular are now processed in the feature change identification modular. The
modular is responsible for identifying the features and classifying them according to their
presence or absence from the standard feature repository. The features resulting in negative
compared to the standard feature repository are considered feature changes or new features.
The modular involves feature classification and new feature recognition based on classified
and outlier approach, later compared to the standard feature repository. Each feature is
then identified, analyzed, and compared with the common feature repository to decide
whether the feature is new or old. The features with favorable comparison travel to the old
library whereas the features with negation are identified as new features and stored in the
new feature repository.



Sensors 2022, 22, 4363 20 of 28

This phenomenon of new feature identification repeats itself after the standard period,
and these identified variables are then trained accordingly. The introduced features are
updated in the library to feed the ensemble LSTM model for feature selection. These new
features, unidentified in traditional load forecasting models, are responsible for the model’s
performance deterioration. Therefore, we have integrated this modular to identify the
feature change phenomenon in our framework. This will help the model analyze the input
parameters with respect to changing modality and produce acceptable results compared to
traditional models.

Variable Weightage Module: Once the change in feature is identified and compared
with the features library. The element is later weighted along with the existing and new
library to compare the consideration weightage, and final variables are processed for
dimensional reduction to filter only relevant and essential features to be considered for load
forecasting. This function could be a single or a combination of multiple strategies to decide
the variable weightage depending on the factors related to the application of forecasting.

Ensemble LSTM Forecasting Module: The forecasting module is built on a parallel
concept working with multiple layers. It comprises parallel working LSTM modules that
work in parallel to perform better forecasting to attain the desired results. LSTMs are
believed to work better on large datasets, and due to their excellent performance, they
produce acceptable results. However, we plan to introduce the modified LSTM network that
will further enhance the capabilities and fit the requirement of multi-modality generation
and S.G.s.

The existing models do not accept multiple input sources of generation or changes
in input parameters at different time intervals (also stated in Figure 1 and described in
traditional models). Moreover, they are not adaptive in terms of variation in feature, regions,
application, classification, and identification of newly introduced parameters. Furthermore,
no phenomenon of constantly updating the model concerning features and continuous
feedback from output to update the model from the input is presented in the literature. The
models reported in the literature require manual modification for every change required.
Thus such models stand obsolete in dynamic environments. Therefore, we have proposed
an adaptive framework that encompasses the adaptive characteristics that decide the
feasibility of parameter selection and rejection according to the modality, which is based on
the feature identification, classification, and recognition module. Such change identification
records the introduction of new parameters and handles the repetition with the help of a
feature repository that keeps a record. The data from the repository continuously updates
the framework to update features and constantly update the training data, making it more
rigorous and robust to keep track of changes and improve the performance accordingly.
Thus, such characteristics of the proposed framework stand in a unique position compared
to existing models.

Moreover, the considered data for implementation of the framework belongs to U.T.P.
The data is susceptible and could not be released openly. However, we will discuss the
attributes of the data and some system constraints. Due to high energy demand, efficient
energy systems are required. A suitable solution for that is the gas district cooling (GDC)
system using natural gas as a primary fuel source. The electricity generated at the U.T.P.
comprises two units of gas turbines that support U.T.P. demand, internal usage, and chillers
usage for the air-conditioning system. The data provided insights into peak hours ranging
from 8:00 a.m. to 9:00 p.m., whereas off-peak hours are from 10:00 to 7:00 a.m. The change
combination of parameters used before and after comprised date, time, historical load,
temperature, wind speed, and humidity.

Furthermore, the system under observation could experience constraints such as
noise, insufficient data, false data, or data anomaly. The current framework consists of a
module for dealing with noise, but more implications are required for further improvement.
However, during the deployment of the framework, respective modules need to be actively
deployed along with the framework.
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Thus, this framework provides better results in a dynamic environment than existing
load forecasting methods that stand obsolete in such environments, employing contin-
uous updates on features, rigorous training of variables, and an ensemble of multiple
multi-layer LSTM regression modules. Our future work is implementing the proposed
framework to enhance load forecasting practically and lay the forecasting foundation for
multi-modality generations.

4. Results and Discussion
4.1. Case Study-1 (Using ARIMA)

We explored three different datasets with ARIMA and observed their behavior over
time. We have presented the results of all these three different data sets before and after the
variable change in Figure 13. Since the various parameters were introduced to the ARIMA
model, unfortunately, the ARIMA model could not detect the features and kept its result
based on a time series basis. Therefore, the before and after results were not much deviated.
The metrics to observe and discuss the model’s performance are presented in Table 3. The
ARIMA model could not detect the importance of newly introduced parameters, and the
results remained more or less the same with minimal deviations. In Figure 13, (a) and (b)
are represented for A.E.P., (c) and (d) for U.T.P., and (e) and (f) for N.Y.C. datasets referring
to before and after figures, respectively.

Table 3. ARIMA model performance on A.E.P., N.Y.C., and U.T.P. datasets before and after
parametric variations.

Model Dataset MAPE R2 Score

Before After Before After

ARIMA
AEP 21.5 19.3 0.54 0.67
NYC 28.5 22.1 0.48 0.50
UTP 38.2 36.4 0.44 0.47

4.2. Case Study-2 (Using ANN)

After reviewing several proposed models for load forecasting utilizing ANN [31,33,42,44],
it is concluded that ANN methods have better forecasting accuracy than statistical methods.
However, in this study, we utilized ANN and other forecasting models to understand the
performance and behavior of models towards feature change scenarios. Most statistical
methods stand obsolete in such a dynamic environment. Therefore, we utilized ANN
and observed the performance of ANN in our feature change scenario. Despite having
good accuracy results in several studies [42], the change remained unnoticed by ANN.
We had to incorporate the shift physically into the model to improve its accuracy and
determine its importance.

Therefore, the results presented in Figure 14 show that despite good accuracy and
precision, the ANN models do not respond to feature change scenarios automatically. In
some situations, they even deteriorate their performance and provide poor forecasts. Due
to this reason, we moved a step ahead and considered another forecasting model to observe
its behavior. However, since the models’ do not tend to change their input behavior while
monitoring the data, they tend not to change their set directive until defined. The inclusion
and exclusion of parameters in the observed dataset have impacted the forecasting accuracy,
but these changes were made to be observed manually. Some of the models that resulted in
performance degradation are presented in Table 4. Figure 14, (a) and (b) are represented
for A.E.P., (c) and (d) for U.T.P., (e) and (f) for N.Y.C. datasets referring to before and after
figures, respectively.
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Table 4. ANN model performance on A.E.P., N.Y.C., and U.T.P. datasets before and after
parametric variations.

Model Dataset MAPE R2 Score

Before After Before After

ANN
AEP 3.6 1.79 0.94 0.99
NYC 3.2 1.89 0.96 0.99
UTP 24.6 8.1 0.55 0.89

4.3. Case Study-3 (Using LSTM)

In this article, we reviewed studies that proposed LSTM models for electrical load pre-
dictions [12,21,29–32] and observed their performance. We have utilized the configuration
of multivariate LSTM to cater to the maximum number of variables. However, there still
exists room for improvement. Figure 15 provide LSTM models’ performance before and
after parametric change for A.E.P., U.T.P., and N.Y.C. datasets, respectively.

The dataset of A.E.P. and N.Y.C. were distributed over two years and are open-
source datasets, whereas the U.T.P. dataset is a real environment dataset available for
only two months. The before variables included DateTime and load, and the after variables
included temperature along with earlier variables. The LSTM model was first run with
different combinations of activation functions and optimizers and tested on distinct vari-
eties described in the modular forecasting section to optimize and tune the parameters for
optimum results.

It is to be noted that when we introduced a new change in the dataset, it was un-
recognizable in 2 cases. In contrast, the third case decreased its output accuracy after
introducing a new parameter. Therefore, to measure the importance of this new variable,
we introduced it to the model manually and measured the error percentage before and
after the introduction of the new variable. The introduction of a new variable has improved
the forecasting accuracy in all three cases. Therefore, it is deduced that the models cannot
notice the presence and importance of any newly introduced variable until or unless it is
present in the model or altered manually, which affects the model performance. Figure 15,
(a) and (b) are represented for A.E.P., (c) and (d) for UTP, and I and (f) for N.Y.C. datasets
referring to before and after figures, respectively.

The experimental results are presented in Tables 3–5 numerically for ARIMA, ANN,
and LSTM. The table provides the model’s performance before and after the context of
variable change, including MAPE and R2 values as performance metrics. We can notice
that the minimum value of MAPE can be observed in simulations performed under the
“After” label, which means introducing new parameters manually in the model. However,
the maximum MAPE values can be kept under the “Before” label, which indicates the
traditional parameters results. Moreover, it is to be noticed that the introduction of new
parameters was also made in the dataset under the “Before” label. Still, they remained un-
noticed, and some models even depreciated more than the presented results. Furthermore,
a similar situation is experienced by the R2 score; however, the highest score is considered
better, which shows the data fit percentage.
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Table 5. LSTM model performance on A.E.P., N.Y.C., and U.T.P. datasets before and after
parametric variations.

Model Dataset MAPE R2 Score

Before After Before After

LSTM
AEP 3.7 2.7 0.92 0.95
NYC 5.7 5.4 0.87 0.89
U.T.P. 24 20.654 54 0.65

When we compare the performance of different models over the A.E.P. dataset, it is
evident from the results that the ANN model has outperformed ARIMA, and LSTM results
were the nearest. A similar situation was encountered in the N.Y.C. and U.T.P. datasets as
well. The performance of models can be graphically observed in Figures 13–15. The A.E.P.
and N.Y.C. data had multiple years of hourly load due to which they were observed to be
well-trained; however, the data of U.T.P. was for just two months, due to which the models
were unable to perform sufficiently on that. It is to be noted that the nature of U.T.P. data is
different in comparison to others; therefore, modeling that data requires more precision.

However, it is evident from the presented results that the performance of E.L.F. models
deteriorates over time with different changes and is also dependent on the methodology
adopted at development time. Moreover, it is also evident from presented facts and litera-
ture that the S.G. and D.G.M. environments are dynamic, and such traditional models will
stand obsolete. Furthermore, the literature’s proposed adaptive models have limitations
discussed in Table 1.

Therefore, an adaptive model framework is proposed in this study as future work,
which will adhere to the adaptability limitations of features, parameters, modality, region,
industry, utility, power sector, D.E.R.s, I.P.P.s, and application environment. The presented
framework is believed to be significantly crucial in S.G. and D.G.M. environments where
the data is highly nonlinear with dynamic behavior and consists of multiple different
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generation resources having various factors which impact the prediction accuracy of E.L.F.
model.

5. Conclusions

STLF has been of utmost importance for implementing S.G.s and integrating D.G.M.s.
Several factors challenge accurate load forecasting, including meteorological and produc-
tion sources. Moreover, the models that can incorporate the characteristic change over time
and are adaptable are significant. Since the traditional models are obsolete in dynamic
and real-time environments. Several models have been discussed, but industry, residential,
utility, S.G.s, D.G.M.s, and D.E.R.s are the environments where an efficient adaptive E.L.F.
model is of paramount significance.

This paper investigated the limitations of recent models. It proposed a framework by
combining a classifier approach and outlier detection to improve the feature change and
identification scenario significantly. An LSTM ensemble working with feedback and contin-
uous feature update will adapt the model to the outer environment, parameter, modality,
and scenario change. Minimal studies explore or employ the online E.L.F. learning tech-
niques and require sufficient modifications and diversification for dynamic environments.

Despite the described advantages of the presented framework, some limitations in-
clude defining significant differences in training and forecasting in real-time due to non-
stationarity and continuous data input. Furthermore, some challenges that we would like
to address in future works include analysis of injection of unlabeled and labeled data,
defining boundaries for noise removal modular, different parametric tuning incorporation,
and defining standards for inclusion or exclusion of parameters.

By analyzing the experiments performed above, the following conclusions can be drawn:

• Change in input variables deteriorates the performance of load forecasting models.
• Input variables impact the rate of error, which is inconsiderable for the S.G. and

D.G.M. environment.
• Change in input variables impacts error percentage depending on the parameter introduced.
• Consideration of month and week as variables has no significant impact on consid-

ered datasets.
• Meteorological variables profoundly impact the E.L.F. model performance, and no

standard is defined for such parameters since the parameter change concerning region,
sector, modality, and application.

• Traditional models stand obsolete in S.G. and D.G.M. environments. Thus, real-time
adaptive models are required.
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