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Abstract: To improve the reliability of Global Positioning System (GPS) signal extraction, the tradi-
tional variational mode decomposition (VMD) method cannot determine the number of intrinsic
modal functions or the value of the penalty factor in the process of noise reduction, which leads to
inadequate or over-decomposition in time series analysis and will cause problems. Therefore, in
this paper, a new approach using improved variational mode decomposition and wavelet packet
transform (IVMD-WPT) was proposed, which takes the energy entropy mutual information as the
objective function and uses the grasshopper optimisation algorithm to optimise the objective function
to adaptively determine the number of modal decompositions and the value of the penalty factor to
verify the validity of the IVMD-WPT algorithm. We performed a test experiment with two groups of
simulation time series and three indicators: root mean square error (RMSE), correlation coefficient
(CC) and signal-to-noise ratio (SNR). These indicators were used to evaluate the noise reduction
effect. The simulation results showed that IVMD-WPT was better than the traditional empirical
mode decomposition and improved variational mode decomposition (IVMD) methods and that
the RMSE decreased by 0.084 and 0.0715 mm; CC and SNR increased by 0.0005 and 0.0004 dB,
and 862.28 and 6.17 dB, respectively. The simulation experiments verify the effectiveness of the
proposed algorithm. Finally, we performed an analysis with 100 real GPS height time series from
the Crustal Movement Observation Network of China (CMONOC). The results showed that the
RMSE decreased by 11.4648 and 6.7322 mm, and CC and SNR increased by 0.1458 and 0.0588 dB,
and 32.6773 and 26.3918 dB, respectively. In summary, the IVMD-WPT algorithm can adaptively
determine the number of decomposition modal functions of VMD and the optimal combination of
penalty factors; it helps to further extract effective information for noise and can perfectly retain
useful information in the original time series.

Keywords: variational mode decomposition; grasshopper optimisation algorithm; improved varia-
tional mode decomposition; wavelet packet transform

1. Introduction

With the rapid development of space observation technology, GPS has become an
important observational approach in geodesy and geodynamics [1,2]. Globally distributed
International GNSS Service (IGS, see Abbreviations) reference stations have accumulated
nearly twenty years of coordinate time series, which provide valuable basic data for the
study of the geodynamics and global tectonics of Earth’s lithosphere and mantle [3-7].
Moreover, GPS observable time series not only contain geophysical signals but also unmod-
elled errors and other nuisance parameters, making the GPS coordinate time series present
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a nonlinear variation that affects the performance of the estimation of site coordinates
and velocity [8,9]. The study and analysis of the Global Navigation Satellite Systems
(GNSS) time series are conducive to obtaining accurate positions and velocities of stations,
reasonably understanding plate tectonic movements, and establishing and maintaining
dynamic earth reference frames, and they contribute to the study of relevant geodynamic
processes. Therefore, in the study of GNSS signal processing, how to effectively reduce the
influence of various noises in the original timing signals has always been a hot research
issue in GNSS timing analysis.

In terms of GNSS time series noise reduction, Ghaderpour and Pagiatakis developed a
new method of spectral analysis, namely, the least-squares wavelet analysis (LSWA), which
decomposes a time series into the time—frequency domain, allowing for the detection of
short-duration signatures in the series [10-12]. In [13], they proposed a new method, the
Hilbert-Huang Transform (HHT), which compared to the wavelet and Fourier analyses,
offers much better temporal and frequency resolutions. In [14], the authors applied the
Kalman filter to GPS data noise reduction, and the experimental results show that the
Kalman filter has a good application effect on noise reduction of triple-difference observa-
tion data, but the accuracy of the system equation directly affects the filtering effect [14].
Mosavi et al. proposed the wavelet packet transform, which can decompose the low-
frequency part and better process the high-frequency part of the signal. The wavelet packet
transform improves the time—frequency resolution of the signal, but it cannot improve
distortion phenomena such as blurring of the signal edge [15-18]. Huang et al. improved
the empirical mode decomposition (EMD) algorithm and applied it to GPS time series
noise reduction. The noise reduction effect was effectively improved, but certain endpoint
effects and modal mixing phenomena occurred, affecting the noise reduction effect [19-21].
Through the optimisation of the EMD method, ensemble empirical mode decomposition
(EEMD) [22,23] and the complementary ensemble empirical mode decomposition (CEEMD)
method [24-28] are obtained. Although EEMD and CEEMD can effectively suppress the
modal aliasing phenomenon, the calculation is complicated and large. Zhang et al. [29]
improved the EEMD noise identification method based on the continuous mean square
error criterion and verified that the method could correctly identify the boundary point
between the signal and noise.

With the rapid development of time—frequency analysis methods, Dragomiretskiy et al.
proposed a new signal multiscale time—frequency analysis and processing method, vari-
ational mode decomposition (VMD) [30]. This method is based on VMD to denoise
mechanical signals, and the denoising effect is better than wavelet and EMD denoising
methods to varying degrees. In view of the advantages of VMD in analysing complex non-
linear, multiscale and nonstationary data, its algorithm has good antinomies performance,
but the number of modal functions and penalty factors in the VMD method needs to be set
in advance, and the use of inappropriate parameter combinations will result in insufficient
noise reduction, so it is not adaptive [31-35].

Saremi et al. proposed the grasshopper optimisation algorithm (GOA) in 2017 and
compared it with a variety of optimisation algorithms. The results show that GOA has
outstanding advantages in the optimisation of unimodal functions, multimodal functions
and composite functions [36]. Since GOA considers a given optimisation problem as a
black box and does not need any gradient information of the search space, this makes it a
highly suitable optimisation technique for any properly formulated optimisation problem
in different fields [37]. The GOA algorithm is not affected by the nonlinear or magnitude
of a problem, where usually other global optimisation techniques show early convergence,
it finds the best solution more efficient with faster convergence [38], and VMD is a non-
recursive approach that can adaptively derive an ensemble of band-limited intrinsic mode
functions (BLIMFs) from non-stationary and nonlinear signals simultaneously [39].

To solve the above problems, we propose an improved variational modal decomposi-
tion (VMD) algorithm combining wavelet packet and energy entropy mutual information
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as the objective function and combined it with data experiments and analysis to verify the
effectiveness and universality of the proposed method.

The rest of the paper is organised as follow. Section 2 describes the background theory
of VMD and WPD. The model of the IVMD and the flowchart of IVMD-WPT Algorithm
are discussed in Section 3. The validity of the proposed method was verified by simulation
time series and GPS height time series from the CMONQOC in Section 4. The conclusions of
the experiment are summarised in Section 5.

2. Principles and Methods
2.1. Basic Principles of the VMD Method

VMD is a new signal decomposition method that decomposes the input signal of f
into K modal components with centre frequency wy and reconstructs the input raw signal.
Therefore, the process of VMD can be regarded as the construction and solution of the
constrained variational problem described in Equation (1).

J
2
@

where py () is the intrinsic modal function, wy is the centre frequency of the modal function,
5(t) is the impulse function and e~/ is the estimated centre frequency of each analytic signal.

Here, a quadratic penalty factor « and Lagrange operator A(t) are used to render the
variational problem unconstrained. « can ensure the accuracy of reconstruction in the
presence of Gaussian noise, and A(t) can ensure the tightness of constraint conditions.
Therefore, the extended Lagrange expression is:
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Equation (2) is solved by using the alternating direction method of multipliers (ADMM)

and " T1(t), w1 and A"*1(t) are updated to find the optimal solution of the original

variational problem in Equation (2). Equations (3) and (4) give the iterative formulae of
each modal function p(t) and corresponding central frequency wy, respectively.
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where f(w), fig(w), "' (w) and A(w) represent the Fourier transform of f(t), pu(t),
n+1(t), A(t) and n is the number of iterations. Equation (5) is the iterative formula of the
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where 7 is the iteration step, and Equation (6) is the convergence condition, ¢ is the
convergence tolerance.

2
o
T ©6)
= [z s

2.2. Grasshopper Optimisation Algorithm

The grasshopper optimisation algorithm (GOA) is a nature-inspired algorithm with
high search efficiency and fast convergence. It simulates the predation behaviour of natural
grasshopper swarms. The process of searching for food sources can be divided into two
steps: exploration and development. In the exploration process, the long distance of the
swarming is conducive to the global search, while in the development process, it is local.
The behaviour is mathematically modelled as follows:

X, =S5+G+ A; (7)

where X; is the location of the ith grasshopper; S; is the interaction factor between the ith
grasshopper and other grasshoppers; G; is the force of gravity on the first grasshopper; A;
expresses wind advection. The calculation formula of S; is as follows:

Si= ), s(|Xj—Xi])-dj ®)
=174

where N is the population size; | X; — X;| is the distance between the ith and jth grasshop-
pers; d;i; = (X; — X;)/ ’X]- — X;| represents a unit vector from the ith to the jth grasshopper;
s is the social forces between grasshoppers as shown below:

s(r)=f-eT —e" )

where f is the attraction intensity between grasshoppers and [ is the ratio of the attraction length.
G; and A; can be calculated by Equations (10) and (11).

G; = —geq (10)

A; = uey, (11)

where ¢ is the gravity constant; e, is the unit vector pointing to the centre of the earth; u is the
wind force constant; ¢, is the unit vector of wind direction, so the X; expansion is as follows:

N X; — X
X = Z s(]Xj—Xi|)(/d“1)—geg+uew (12)
=T i

In solving practical problems, gravity is usually not taken into account, the wind
direction is always set to the optimisation target of T; and the parameter coordination
global and local search process is introduced. Then, the position formula is as follows:

N o X: — X:
Xid:C< ) C'UdzLd's(’Xj—Xi|)'(]d~l))+Td (13)
J=Lj# gl

where U, and L are the upper and lower limits of the function in dimensional space; T, is
the optimal solution of the current grasshopper position; c is the attenuation coefficient as

shown below: . .
max — tmin 14
L — Lin (14)

€= Cmax — |-
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where cmax and ¢y are the maximum and minimum values; [ is the current iteration
number; M is the maximum number of iterations.

2.3. Principle of the Wavelet Packet Algorithm

Wavelet decomposition decomposes the original time series into high frequency and
low frequency through a set of high-pass and low-pass filters and then decomposes the low
frequency part. By wavelet packet decomposition, the high-frequency part not involved in
wavelet decomposition is further decomposed, and then the optimal wavelet basis function
is selected. The time—frequency analysis effect is better than that of the wavelet function.
The specific steps are as follows:

Step 1: Define ¢(x) and (x) as the orthogonal scaling function and its corresponding
wavelet function. Set hi(k) as the low-pass filter coefficient and g(k) as the high-pass
filter coefficient.

(x) = V2L h(k)p(2x — k)

kez
P(x) = V2T g(K)g(2x — k) 1

kez

Let uo = ¢(x) and p1 = p(x) then:

pon(x) = V2§ h(k)pn(2x — k)

kez 16
pr1(x) = VE g0pa(2x— 19

Step 2: Assume subspace Ll]’-1 as the closure space of function i, (x) and subspace UJ»Z”

as the closure space of function i, (x) and 8j € uj. C{’” is the coefficient of ¢(x) in the
subspace, so g (x) can be expressed as:

" = [ g @t - 17)

gl =Y M un(@x —1) (18)
l
The wavelet packet decomposition algorithm can be obtained as:

y o
" =Y h(k—2)C, "

k
i2n+1 i+1, (19)
cyr :%g(k—zmq+ 4

Step 3: Decompose the wavelet packet, perform the inverse operation and obtain the
wavelet packet reconstruction expression as follows:

" = Yo [nt -2 + g1 — 2000 (20)
k

3. IVMD-WPT Algorithm

As discussed in the previous section, the key to VMD performing feature extraction
on time series data is the determination of the decomposition modal number K and penalty
factor a. If K is less than the number of useful components in the processed signal, it will
cause insufficient data decomposition; conversely, it will cause an over-decomposition
phenomenon. An improper value of the penalty factor « may lead to centre frequency
overlap of the modal function; therefore, appropriate parameters must be selected.
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3.1. Improved VMD Method

Since GPS time series data are polluted by stationary and nonstationary noise and a
single indicator cannot be used to obtain signal features, the mixing of two or more single
indicators provides stronger robustness [40,41]. Thus, to determine VMD parameters, the
energy entropy mutual information (EEMI) index composed of energy entropy and mutual
information is adopted in this paper. The sum of the EEMI of the previous two modal
functions is taken as the objective function, and the VMD parameters are optimised by the
GOA algorithm as shown in Equation (21).

2
fitness = min {— ) EEMI}
r=(Ka) L i=1
K€ [2,8]
a € [1000, 10000]

(21)

where fitness is the objective function, 7 = (K, &) is the value range of the decomposition
modal number K and penalty factor « and EEMI = EE * MI, EE and MI are the energy
entropy and mutual information, respectively, which can be calculated by:

0 | . 2 .
Ei = [T |imfi(t)Pdt;,i = 1,2,...,K
0'1' = Ei/E

N
EE = - Y (0;)In(0;)
i=1

(22)

y) — op PY)
MI(X;Y) —ygwgp(x,y)l 80 p(y) (23)

where imf;(t)(i = 1,- - - , K) are the modes of different frequency bands, E; = {Ey, E, ..., Ex}
is the energy distribution of the vibration signals in the frequency domain, E = E; + - - - + Ek,
p(x) and p(y) are the edge probability distribution functions of X and Y, respectively, and
p(x,y) denotes the joint probability distribution function of X and Y.

3.2. IVMD-WPT

Aiming at the problem that the VMD method cannot determine the number of modal
functions K and the penalty factor & and that the removed noise contains any valid infor-
mation, this paper adopted the energy entropy mutual information (EEMI) index as the
parameter adaptive to VMD and wavelet packet of the objective function. The specific steps
of the combined GNSS coordinate time series noise reduction algorithm are as follows, and
the flowchart is depicted in Figure 1.

Step 1: The parameter range of the VMD algorithm was set and the parameters of
the GOA algorithm were initialised in [34,35] the modal component number K € [2,8],
K € [2,10] and penalty factor a € [1000, 10000]; however, in [40,41], K takes an integer in
the interval of [2, 8], and this paper focused on VMD applying to the GPS; thus, the authors
considered that the range of K and « was [2, 8], [1000,10000], and the population number
of the GOA algorithm N = 30, and the maximum cycle number L = 10 [34,35].

Step 2: The method described in Section 3.1 was used to select the optimal parameters
of the VMD method, and the VMD method with the optimal parameters was used to
decompose the GNSS coordinate time series.

Step 3: The composite evaluation index T [42] was used to form the reconstructed
time series by summing each modal component successively, and the composite evaluation
index T value of each reconstructed time series was calculated. When the T value was the
smallest, the corresponding reconstructed time series was a denoising time series, and the
remaining IMF components were regarded as high-frequency noise.
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Step 4: The decomposed noise was further denoised by wavelet packet transform (WPT).
Finally, the effective signal component after denoising by wavelet packet transform and the de-
noising time series obtained in Step 3 were reconstructed into the final denoising time series.

Received signal

Initialization Paramter of GOA
and set VMD parameter ranges

|

‘ Decompose the signal for IVMD %7

Calculate smess of each mode #,

%

Save the optimal parameters

Signal decomposition using VMD
with the optimal parameters

Calculate T of IMFs

Inf tion dominati : s
HICERAZOT COmmAnon Noise domination IMFs
IMFs
Decompose the noise for
WPT

Imformation component

Interference free
signal

Figure 1. IVMD-WPT algorithm flowchart.

To effectively evaluate the effectiveness of the text combination method, the signal-to-
noise ratio, root mean square error (RMSE) and correlation coefficient (R) were selected as the
evaluation indices for noise reduction, and the calculation formulae are shown as follows:

N-1
Y S
Ren = 10 x log % (24)
Y (Sn—Sn)
n=0
1¢ 2
RMSE = EZ(xi — %) (25)
i=1
N < 7| BN S (26)

Var[X]Var[Y]’

where n and N denote the number of sampling points in the sequence; x;, S, and X denote
the sequence of the signal; ¥;, S; and Y denote the original sequence.
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4. Experiment Analysis and Discussion

In this section, two groups of simulation data were used to verify the effectiveness of
the IVMD-WPT method for denoising common periodic signals and time series signals, and
GNSS measured elevation coordinate time series data were used to verify the universality
of the IVMD-WPT denoising effect.

4.1. Simulation Experiment A

Simulation GNSS elevation time series 1 (Sim_1) consists of a trend term, seasonal
term (periodic term) and noise term. First, Sim_1 TS containing three constant amplitude
period terms and Gaussian white noise was generated by Equation (27) in which the
sampling frequency was 1 Hz, the sampling number was 1024 and the signal-to-noise ratio
was 6 dB. Figures 2 and 3 are the simulated original time series diagram and simulated
component waveform diagram, respectively.

y1 =5 sin(%%”) sin(%%”)
Y2 = 7sir1(257(§6i)
Y3 = 2sin< zégi) 27)
€ = noise

f=yn+tytyste

Y/

0 200 400 600 800 1000 1200

epoch/day

Amplitude/mm

Figure 2. Simulation of the original time series.

E s € 10
E E
@ )
So R
g 2
% 500 0o = Vg 500 1000
epoch/day epoch/day
(a) (b)
E £
=g =%
@D [
So So
g- g
< 5 500 000 < o 500 1000
epoch/day epoch/day
(c) (d)

Figure 3. Waveform diagram of each component of the analogue signal: (a) waveform diagram of y1,
(b) waveform diagram of y2, (c) waveform diagram of y3, (d) waveform diagram of noise.
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The method in this paper was used to decompose simulated data A to select the
optimal decomposition modal number K and penalty factor a of the VMD. The GOA
parameters were set as follows: search agent # = 30 and maximum number of loops
L = 10. Figures 4 and 5 are the historical values of K and « and the convergent variation
diagram of the objective function. Figures 4 and 5 show that the optimal parameter
combination of VMD is K = 6 and a = 1009. We prove the EEMI effectiveness by analysing
the multiple indexes of the modes, including MI, EE and EEMI. As shown in Figure 6, the
change in indexes MI was very small for the difference IMFs, while the indexes EE and
EEMI obtained by GOA were larger than ML It was indicated that EE and EEMI were
sensitive to the two parameters of VMD, and the EEMI index was effective.

Search history (K and alpha)
) T T * T

. .

9000

8000

7000 | 4

6000

T
[ ]
L]

L

5000 | . =

4000 |

3000

2000 | .

o) P b

1000 . . :
2

Figure 4. Historical values.

Convergence curve

-0.02 - 1

&
o
B
T
1

-0.06 - a

-0.08 - :

012 7

014 + 1

-0.16 - J

Best score obtained so far

-0.18 - 1

'0.2 1 1 1 1 1 1 1 1
1 2 3 4 5 6 7 8 9 10

[teration

Figure 5. Convergence of the objective function of data L
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Figure 6. The three indexes for different IMFs.

The VMD method with the optimal parameter combination was used to decompose
simulated data A. Figure 6 shows the decomposition result graph and the corresponding
spectrum graph. Analysis of the spectrum diagram in Figure 7 shows that the IVMD
decomposed the simulated data I into six IMFs, among which the IMF1-IMF3 modal com-
ponent extracted the main information in the simulated data, while IMF4-IMF6 contained
noise and some useful information. Then, to better distinguish high-frequency noise from
low-frequency useful signals, the composite evaluation index T was adopted, and each
modal component (IMF1-IMF6) was successively accumulated to form reconstructed time
series, and the composite evaluation index T value of each reconstructed time series was
calculated. The corresponding reconstructed time series was a denoising signal when the T
value was minimal, and the remaining IMF components were regarded as high-frequency
noise. Table 1 shows the corresponding T value of each reconstructed time series. When
the reconstructed time series is i IMF;, T = 0.1697 reached the minimum, so % IMF; was
regarded as a denoising time selrielzs and IMF; — IMFs was a high-frequency rllolise.
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Figure 7. VMD decomposition and spectrum diagram.
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Table 1. T indicators corresponding to different IMFs of data I.
Reconstructed Time Series
1 2 3 4 5 6
Index Y IMF; Y IMF; Y IMF; Y IMF; IMF; Y IMF;
i=1 i=1 i=1 i=1 i=1 i=1
T 0.6015 0.1679 0.1731 0.2089 0.2961 0.3985

As the high-frequency noise IMF; — IMF; also contained part of the original time series
information, wavelet packet analysis was carried out for further noise reduction. The param-
eters of wavelet packet: thresholding rule = 4.2975, thresholding function was hard, decom-
position level number = 4, wavelet function = db3. The autocorrelation coefficient threshold
method combined with EMD and IVMD was used to denoise the analogue time series, and a
comparative analysis was performed with the method in this paper. The effect of denoising
was evaluated using three indicators: root mean square error, correlation coefficient, and
signal-to-noise ratio. The statistical table of the analysis results is shown in Table 2.

Table 2. Statistical table of the evaluation parameters for different noise reduction methods in data I.

Correlation Signal-to-Noise Ratio
Methods RMSE/mm Coefficient (R) (Rsn/dB)
EMD 0.2403 0.9992 637.95
IVMD 0.2278 0.9993 1494.06
IVMD-WPT 0.1563 0.9997 1500.23

Table 2 shows that this method is superior to the EMD and IVMD methods on the
whole, and the root mean square error of the simulated noise reduction results was
0.1563 mm. Compared with the EMD and IVMD methods, the root mean square er-
ror decreased by 0.084 and 0.0715, respectively, and the correlation coefficient was 0.9997.
Compared with EMD and IVMD, the improvement was 0.0005 and 0.0004, respectively,
thus verifying the effectiveness of the method.

4.2. Simulation Experiment B

The method in this paper was used to conduct noise reduction analysis on elevation
data of GNSS coordinate time series. A simulated time series containing a trend term,
periodic term and noise term was constructed according to the GNSS single station and
single component coordinate time series function model and random model, and the
function expression is as follows:

27tt;
T

(4rtt;
T

47tt;
T

2 .
) + d cos( ml) + esin

y(ti):a+%+csin( T

T ) + f cos(

)+oui (28)
where t; is the observation time in units of year; a is the starting position of the time series of
the station; b is the linear speed of the station movement; ¢, d, ¢, f are the amplitudes of the
annual and semi-annual movements of the station, respectively; v; is the noise in the GPS
coordinate time series, which is more realistic and simulates GPS time series noise. In this
paper, Equation (28) was used to generate white noise and coloured noise to realistically
simulate GPS time series noise.

o(t;) = w(t),i <2
{ v(t;) = fi-v(ti-1) + fa-o(ti2) +w(t;),i >3 29)

where w(t;) is white noise with zero mean and variance of 1; f; and f, are 0.2 and 0.2,
respectively. According to Equations (28) and (29), this paper generated simulated time
series data II with a length of 1826. Table 3 shows the parameters of the simulated data,
and Figure 8 shows the simulated time series.
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Figure 8. Simulated time series data.

Table 3. Simulation data statistics.

Intercept Linear Annual Annual Half-Year Half-Year
Time @ /mnI: Velocity Amplitude Amplitude Amplitude Amplitude Period (T)
(b)/(mm/a) (c)/mm (d)/mm (e)/mm (f)/mm
2013-2017 1 2 1 1.2 1.2 0.8 200

According to the steps in Section 2.1, the EMD, IVMD, and IVMD-WPT methods
were used to analyse the noise reduction of analogue data II. Figures 9 and 10 show the
parameter changes determined by the IVMD method, and Table 4 shows the corresponding
T values of reconstructed time series. The analysis of Figures 8 and 9 shows that the
optimal parameter combination of VMD of the simulated data Il was K = 7 and « = 1000.
Combined with Table 4, the T index reached the minimum when the three IMF modal
components were accumulated, so % IMF; will be used as the signal after denoising. Then,
the root mean square error, correllat%on coefficient, and signal-to-noise ratio (SNR) after
noise reduction using the EMD, IVMD and IVMD-WPT methods were calculated. Table 5
shows the statistical results of the three indicators.

Search history (K and alpha)
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1000 L & . L &
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Figure 9. Historical values of simulated data II.
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Figure 10. Convergence of the objective function of data IL

Table 4. T indicators corresponding to different IMF; of data II.

Reconstructed Time Series

Index 1 2 3 4 5 6 7
Y IMF; Y IMF; Y IMF; Y IMF; Y IMF; Y IMF; Y IMF;
i=1 i=1 i=1 i=1 i=1 i=1 i=1

T 0.3616 0.3105 0.2931 0.3150 0.3773 0.4950 0.6384

Table 5. Statistical table of the evaluation parameters for different noise reduction methods in data IL

Correlation Signal-to-Noise Ratio
Methods RMSE/mm Coefficient (R) (Rsn/dB)
EMD 0.6546 0.9785 23.5371
IVMD 0.6459 0.9792 24.2762
IVMD-WPT 0.6456 0.9792 24.3001

By analysing the results in Table 5, it can be seen that the root mean square error
decreased by 0.0087, and the correlation coefficient and the signal-to-noise ratio increased
by 0.0007 and 0.7391, respectively. Therefore, for the GNSS coordinate time series data, the
improved VMD method in this paper also had a better noise reduction effect than the EMD
method. In the comparison between the IVMD-WPT method and IVMD method, the root
mean square error decreased by 0.0003 and the signal-to-noise ratio increased by 0.0239,
indicating that the IMF modal component that was removed also contained information.
Therefore, the IVMD-WPT method proposed in this paper can extract effective information
in the original time series more effectively.

4.3. Noise Reduction Analysis with Real GNSS Elevation Time Series

To further verify the reliability and applicability of the proposed method, this paper
adopted the time series of the original elevation coordinates of 100 land state network refer-
ence stations in China to conduct noise reduction research (data came from the GNSS Data
Product and Service Platform of the China Earthquake Administration). The observation
epoch was a total of 5 years of elevation coordinate time series signals from 1 January 2010
to 1 January 2015, with a sampling interval of 1/365.25 a and a sampling frequency of
365.25 Hz. EMD, IVMD and the method in this paper were used to denoise the elevation
data of 100 reference stations, and the relevant parameter settings were consistent with the
simulation experiment. The BJFS station was taken as an example for detailed illustration.
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Figure 11 is the denoising effect diagram of the three methods for the BJFS station, and
Table 6 is the statistical table of the denoising evaluation parameters of some stations.

?D T 1 T 1 1 T I I
Original signal
EMD

60 1 IVMD I
IVMD-WPT

50 A .

40

30

Amplitude/mm

20

L 4AR
Ih‘,'“‘l 1&1

10

'H”J |

_10 L 1 1 1 1 1 |
0 200 400 600 800 1000 1200 1400 1600 1800

epoch/day
Figure 11. Noise reduction effect of the three methods for the BJFS station.

Table 6. Statistical table of the noise reduction evaluation parameters.

. Correlation Signal-to-Noise Ratio
Site Methods RMSE/mm Coefficient (R) (Rsn/dB)

EMD 4.8749 5.3318 0.9187
ARTU IVMD 3.5984 10.3401 0.9568
IVMD-WPT 2.5846 20.8624 0.9781
EMD 8.8094 25.4094 0.9808
BJFS IVMD 6.9204 41.3146 0.9882
IVMD-WPT 3.2106 194.6615 0.9975
EMD 5.8779 10.8899 0.9550
CHAN IVMD 3.9240 23.9965 0.9800
IVMD-WPT 2.5389 58.2924 0.9917
EMD 5.3458 2.0200 0.8184
CHUN IVMD 3.6352 5.0499 0.9215
IVMD-WPT 2.9589 7.9185 0.9496
EMD 142.7200 0.3229 0.0596
DLHA IVMD 101.3457 0.2601 0.5831
IVMD-WPT 36.8291 6.4418 0.9772
EMD 5.7921 23.4629 0.9792
HRBN IVMD 3.9684 50.0957 0.9903
IVMD-WPT 2.8025 101.1486 0.9952
EMD 7.5211 1.6570 0.7910
KMIN IVMD 5.3586 3.7707 0.9017
IVMD-WPT 3.1839 11.9409 0.9687
EMD 4.0890 4.8302 0.9092
LUZH IVMD 3.8465 5.2619 0.9203
IVMD-WPT 2.4760 13.6532 0.9684
EMD 4.5288 29.0476 0.9831
PIMO IVMD 4.5896 27.6731 0.9827

IVMD-WPT 4.1185 34.4699 0.9861
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Table 6. Cont.

. Correlation Signal-to-Noise Ratio
Site Methods RMSE/mm Coefficient (R) (Rsn/dB)

EMD 5.2684 5.0086 0.9108

TAIN IVMD 3.8686 9.3159 0.9533
IVMD-WPT 2.7201 19.5294 0.9776

EMD 5.1815 10.8638 0.9562

WUSH IVMD 4.3153 15.2726 0.9699
IVMD-WPT 2.9788 32.7606 0.9860

EMD 6.6184 1.3874 0.7279

XIAG IVMD 4.4656 3.3062 0.8854
IVMD-WPT 2.6475 10.6794 0.9629

As seen from Figure 10, compared with the EMD method, the IVMD-WPT method and
IVMD method in this paper can better avoid the influence caused by the endpoint effect and
have a better noise reduction effect at both ends of the original time series. The time series
denoised by the IVMD-WPT method in this paper can better fit the original time series.
It can effectively reflect local trend motion changes and small periodic oscillations. Table 3
summarises the root mean square error, signal-to-noise ratio and correlation coefficient of
the results of the three algorithms. It can be seen from the table that the IVMD-WPT method
in this paper is superior to the other two single methods on the whole. Compared with
the other two methods, the IVMD-WPT method increased the root mean square error by
11.4648 and 6.7322 mm on average, respectively. The SNR index increased by 32.6773 and
26.3918 dB, and the correlation coefficient increased by 0.1458 and 0.0588, respectively,
indicating that the noise reduction effect of the IVMD-WPT method presented in this paper
was better and that the noise reduction results were more reliable.

5. Conclusions

Since the traditional VMD method cannot be sure of the number of decomposition
mode functions (IMFs) and the value of the punishment factor in the process of noise reduc-
tion, resulting in inadequate decomposition or making the decomposition part a problem
of denoising the time series effectively, a kind of energy entropy mutual information was
proposed as the objective function to improve variational mode decomposition (VMD)
combined with the wavelet packet denoising algorithm. The method was based on the
traditional method of VMD, energy entropy mutual information as the objective function
and the locusts optimised algorithm (GOA) to optimise the objective function; thus, the
mode decomposition number and value of the punishment factor were determined adap-
tively, and the composite index T was used to determine the noise. Subsequently, the noise
component was filtered using wavelet packet transform, and the filtered time series and
denoising time series were reconstructed to obtain the final denoising time series. In this
paper, two groups of analogue time series and 100 groups of measured time series of the
land state network were used for research and analysis.

The main contributions of this approach are summarised below.

1.  Compared with the traditional VMD method, this paper used the energy entropy
mutual information as the objective function and used GOA to optimise the objective
function to adaptively determine the number of decomposition mode functions (IMFs)
and the value of the punishment factor and to improve the effect of noise reduction.

2. Compared with the single EMD method, the IVMD method can effectively weaken
the influence of the endpoint effect, thus improving the noise reduction effect. The
simulation results showed that the RMSE decreased by 0.0106 mm and the CC and
SNR increased by 0.0004, and 428.42 dB, respectively.

3. Compared with the two single models of traditional EMD and IVMD proposed in this
paper, the IVMD-WPT method was superior to the two single models in the three indica-
tors of root mean square error, correlation coefficient and signal-to-noise ratio. The real
results showed that the RMSE decreased by 11.4648 and 6.7322 mm and CC and SNR in-
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creased by 0.1458 and 0.0588 and 32.6773 and 26.3918 dB, respectively, thus verifying the
effectiveness of the IVMD-WPT method in noise reduction. In addition, the local opti-
mum problem of GOA (the appropriate parameters of WPT) need further exploration.
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Abbreviations
GPS Global Positioning System
VMD Variational Mode Decomposition
IMFs Intrinsic Modal Functions
IVMD-WPT  Improved Variational Mode Decomposition and Wavelet Packet Transform
EEMI Energy Entropy Mutual Information
GOA Grasshopper Optimisation Algorithm
RMSE Root Mean Square Error
CC Correlation Coefficient
SNR Signal-to-Noise Ratio
EMD Empirical Mode Decomposition
IVMD Improved Variational Mode Decomposition
CMONOC Crustal Movement Observation Network of China
IGS International GNSS Service
GNSSs Global Navigation Satellite System
LSWA Least-Squares Wavelet Analysis
HHT Hilbert-Huang Transform
EEMD Ensemble Empirical Mode Decomposition
CEEMD Complementary Ensemble Empirical Mode Decomposition
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