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Abstract

Background: Impaired proprioceptive performance is a significant clinical issue for many who suffer osteoarthritis (OA) and
is a risk factor for falls and other liabilities. This study was designed to evaluate weight-bearing distribution in a rat model of
OA and to determine whether changes also occur in muscle afferent neurones.

Methodology/Principal Findings: Intracellular recordings were made in functionally identified dorsal root ganglion
neurones in acute electrophysiological experiments on the anaesthetized animal following measurements of hind limb
weight bearing in the incapacitance test. OA rats but not naı̈ve control rats stood with less weight on the ipsilateral hind leg
(P = 0.02). In the acute electrophysiological experiments that followed weight bearing measurements, action potentials (AP)
elicited by electrical stimulation of the dorsal roots differed in OA rats, including longer AP duration (P = 0.006), slower rise
time (P = 0.001) and slower maximum rising rate (P = 0.03). Depolarizing intracellular current injection elicited more APs in
models than in naı̈ve muscle afferent neurones (P = 0.01) indicating greater excitability. Axonal conduction velocity in model
animals was slower (P = 0.04).

Conclusions/Significance: The present study demonstrates changes in hind limb stance accompanied by changes in the
functional properties of muscle afferent neurones in this derangement model of OA. This may provide a possible avenue to
explore mechanisms underlying the impaired proprioceptive performance and perhaps other sensory disorders in people
with OA.
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Introduction

For many people with lower limb osteoarthritis (OA) loss of

proprioceptive performance is a significant clinical issue with

potential morbidity due to falls. This deficit potentially impacts

negatively on functional ability [1–7], as activities of daily living

require finely-tuned integration of sensory and motor systems.

Beyond limitations on functionality, impaired proprioceptive

performance has also been linked to variability in walking speed

and pattern [8], increased risk of falls [3,9,10], and it has even

been suggested that impaired proprioceptive performance may be

pathophysiologically related to progression of OA [7,11–13]. In

fact, it has been advocated that to promote improved functional

outcomes in OA, patients’ rehabilitation strategies should be

aimed at improving proprioceptive performance [14,15], partic-

ularly in early OA [4,10,16]. This evidence suggests that it may be

clinically important to understand and to treat the impaired

proprioceptive performance in OA patients.

Unfortunately, little is known about neural mechanisms

underlying impaired proprioceptive performance in OA patients

[2–4,7,11,13,17]. Proprioceptive performance in various tasks

including passive movement detection, joint angle reproduction,

standing balance, posture and gait requires the central integration

of tactile, proprioceptive, vestibular and visual information [18].

Many classes of mechanoreceptor in muscles, joint capsules,

ligaments and covering skin are capable of feeding proprioceptive

information to higher centres in the brain, with muscle afferent

neurones being the most important contributor [19]. Signals from

muscles seem to play an especially important role in motor control

and thus proprioceptive performance [20–22]. Altered muscle

afferent discharge is associated with impaired proprioceptive

performance, such as greater repositioning error in the lumbosa-

cral spine [23] and decreased control of posture and balance [24].
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Although muscle afferent neurones have been suggested to play

a critical role in proprioceptive sense and proprioceptive

performance, solid evidence about the functional changes in these

neurones in OA is still lacking. In a previous study recording

intracellularly from dorsal root ganglion (DRG) neurones in vivo,

we demonstrated that one month after model induction, when this

model displays a full spectrum of histopathological and behav-

ioural features of OA [25], significant changes are observed in the

properties of evoked action potentials (AP) in a number of

functionally differentiated fast conducting A-fibre mechanorecep-

tors but not in C- or Ad-fibre nociceptors [26]. These fast

conducting A-fibre mechanoreceptors are comprised of various

peripheral afferent neurones, including muscle afferent neurones.

Receptive field analysis reveals that afferent neurones innervating

regions beyond the affected joint and throughout the entire hind

limb are involved. This pattern of the widespread changes in A-

fibre afferent neurones resembles the neuropathic type of changes

[26]. In view of these features, and as there are signs of impaired

proprioceptive performance in this model of OA parallel to those

reported by OA patients, for the present study we hypothesized

that there are accompanying changes in the proprioceptive signals

generated specifically, but not necessarily exclusively, by muscle

afferent neurones, applying classification criteria defined by

Lawson et al. [27].

Materials and Methods

All experimental procedures were approved by the McMaster

University Animal Review Ethics Board and conform to the Guide

to the Care and Use of Laboratory Animals of the Canadian

Council of Animal Care, Vols.1 and 2. At the end of the acute

electrophysiological experiment each animal was euthanized

without recovery by an overdose of the anaesthetic.

Induction of the Animal Model of OA
Procedures for induction of the animal model of OA have been

described previously [28]. Briefly, female Sprague Dawley rats

(180–225 g) from Charles River Inc. (St. Constant, QC, Canada)

were used. Animals were anaesthetized with a ketamine-based

anaesthetic (ketamine, 100 mg/ml; xylazine, 20 mg/ml; and

acepromazine, 10 mg/ml). The right medial meniscus was

removed, and the right anterior cruciate ligament was cut. After

surgery, the animals were given 0.05 ml of the antibiotic Trimel

(sulfamethoxazole plus trimethoprim; Novopharm, Toronto, ON,

Canada) once per day for 3 consecutive days, and the analgesic

buprenorphine hydrochloride (Temgesic, Schering-Plough, Kenil-

worth, NJ, USA) twice per day for two consecutive days.

Hind Limb Weight Distribution
Standing differential hind limb weight distribution was

measured using an incapacitance tester from Linton Instrumen-

tation (Palgrave Diss, Norfolk, UK) to assess proprioception of the

ipsilateral hind leg as suggested by Liu et al. [29]. Tests were

conducted in naive and in OA animals at one day before surgery

and four weeks after surgery; control animals were run at the same

times for the purpose of temporal control. Animals were placed in

an angled plexiglas chamber positioned so that each hind paw

rested on a separate force plate. The force exerted by each hind

limb, measured in grams, was averaged over a 5-s period. Three

repeated readings were taken. Animals were allowed to acclimate

to the chamber for a period of 5–10 min before any readings were

taken. The quantification system described by Pomonis et al. was

used [30]. The percent weight on the right leg (ipsilateral to the

derangement leg) was calculated using the following formula:

% weight on the ipsilateral leg = [weight on the right leg/

(weight on the right leg+weight on the left leg)]6100.

Experimental Setup for in vivo Intracellular Recording
Four weeks after model induction, the animal was anaesthetized

at a surgical level using the mixture above. The experimental setup

and animal preparation for in vivo intracellular recording were

modified from what has been reported by another research group

[27,31,32].

The right jugular vein was cannulated for i.v. infusion of drugs.

Rectal temperature was maintained at 37uC by a servo-controlled

infrared lamp, and the animal was mechanically ventilated to

achieve an end-tidal CO2 concentration around 40 mmHg. An

initial 1 mg/kg dose of pancuronium (Sandoz, Boucherville, QC,

Canada) was given i.v. to eliminate muscle tone. Supplements of

pentobarbital (CEVA SANTE ANIMALE, La Ballastière, Li-

bourne, France; 20 mg/kg) were given via the i.v. catheter as

needed to maintain a surgical level of anaesthesia. Principles for

pentobarbital and pancuronium supplements have been described

in detail previously [28]; the effect of pancuronium was allowed to

wear off periodically to confirm a surgical level of anaesthesia and

pupil diameter, and withdrawal reflexes were monitored. Other-

wise, a supplement of pentobarbital and pancuronium (1/3 of the

initial dose) was administered every hour.

A laminectomy was performed to expose the L4 dorsal root

ganglion (DRG) ipsilateral to the surgical derangement. The

animal was suspended in a stereotaxic frame. The exposed spinal

cord and DRG were covered with warm paraffin oil to prevent

drying. The dorsal root of the L4 DRG was cut to allow a 12–

15 mm length for electrical stimulation, and one pair of bipolar

platinum stimulating electrodes was placed underneath. L4 DRG

was chosen for recording because it is one of the DRG containing

the most knee joint afferents [33], and also for the convenience of

placing vertebral clamps.

Intracellular recordings were made from somata in the L4 DRG

using micropipettes fabricated from filament-containing borosili-

cate glass tubing filled with 3 M KCl solution, with DC resistance

of 40–70 MV. The microelectrode was advanced using an EXFO

IW-800 micromanipulator (EXFO, Montreal, QC, Canada).

Intracellular recording was considered to have accurred when a

hyperpolarization of at least 240 mV suddenly occurred and an

AP could be evoked by electrical stimulation of the dorsal root.

Testing was initiated once a stable resting Vm had been recorded

for five minutes or more. Evoked APs were recorded with a

Multiclamp 700B amplifier (Molecular Devices, Union City, CA,

USA) and digitized on-line via a Digidata 1322A interface

(Molecular Devices) with pClamp 9.2 software (Molecular Devices).

Figure 1 illustrates the electrophysiological parameters that were

measured in each neurone, including resting membrane potential

(resting Vm), action potential duration (APD), AP half width, AP

amplitude, AP rise time, AP fall time, maximum rising rate

(MRR), maximum falling rate (MFR), afterhyperpolarization

(AHP) amplitude, 50% AHP recovery time (AHP50) and 80%

AHP recovery time (AHP80). After each experiment the

conduction distance was measured for each neurone recorded,

as the distance from the centre of the DRG to the stimulation site

(cathode). Conduction velocity (CV) was then calculated from this

value. Analysis was done offline using the pClamp 9.2 software.

Once the sensory properties of a neurone had been fully

characterized, neuronal excitability was studied. Evaluation of

spontaneous activity in muscle spindle neurones was NOT

adopted in this study in that it was difficult to accurately

differentiate the pathophysiological spontaneous activity due to

the increased neuronal excitability and the physiological ongoing

Muscle Afferent Neurons in Osteoarthritis Model
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discharge resulted from various muscle spindle tensions. The

alternative approach to investigate neuronal excitability was to

measure the neuronal response to electrical stimulation of the

dorsal root as well as to injection of a depolarizing current into the

neurone. To measure electrical threshold along the dorsal root, a

series of 0.04 ms rectangular pulse stimuli, starting from 0.1 mA

with increments of 0.1 mA, were delivered to the dorsal root until

an AP could be evoked. The minimum current strength to evoke

an AP was recorded as the activation threshold. To determine the

response of a neurone to direct current injection, a 20 ms, 2 nA

depolarizing current was delivered via the glass pipette. The

number of APs occurring during and after current injection was

recorded. The measurement of input resistance was unsuccessful

due to large variances in value resulted from electrode blocking.

This blocking issue was the limitation of the in vivo intracellular

recording technique in which the recording electrode was very

sharp and DRG neurones were still covered by connective tissues

and glia.

Acceptance Criteria
Neurones were included in this study if they exhibited an evoked

AP from dorsal root stimulation, had a resting Vm more negative

than 240 mV and had AP amplitude larger than 40 mV. For

each neurone, before sensory testing was performed a continuous

recording was obtained for at least five min after electrode

penetration. Only neurones with stable resting Vm throughout

recording and sensory testing are included in this report.

Classification of Muscle Afferent Neurones
Neurones were classified according to established criteria in the

published literature. According to the criteria of Harper and

Lawson [34] for the classification of CV of peripheral axons in

sensory neurones in rats, Aa fibres (an equivalent of Group I

fibres) conduct at 30–55 m/s and Ab fibres (an equivalent of

Group II fibres) conduct at 14–30 m/s. Thus, the differentiation

CV between Aa fibres and Ab fibres was set at 18 m/s along the

dorsal root (equivalent to 30 m/s along the sciatic nerve according

to the report that the dorsal root CV is roughly 0.6 times of the

corresponding sciatic nerve value [35]). Moreover, as reported in a

previous in vivo electrophysiological study in female Wistar rats

[36] Aa and Ab fibre neurones have CVs faster than 6.5 m/s

along the dorsal root. We adopted these criteria because they most

closely apply to the present study compared to criteria from other

labs, as argued in one of our earlier studies [28], including the

same gender, a similar age at experiment, similar recording

temperature due to a similar surgical exposure, heating strategy

and core temperature set-point.

Neurones were also classified as muscle afferents on the basis of

the discharge and activation properties defined by Lawson et al.

[27], which served as the basis for our present classification

criteria. Thus a neurone was classified as a muscle afferent

neurone if it could be activated by touching along the muscle belly

or changing joint position, and could NOT be activated by touch

or pressure stimuli only applied to the covering skin; in this latter

case the skin was lifted or pulled aside to ensure that stimuli were

Figure 1. Action potential (AP) recorded intracellularly from a muscle afferent neurone, illustrating parameters measured in each
neurone studied. The AP in the upper trace was elicited in a muscle afferent neurone by electrical stimulation of the L4 dorsal root. 1, latency (by
measuring the distance from the stimulating site to the centre of DRG after each experiment, the conduction velocity is calculated); 2, AP rise time; 3,
AP fall time; AP duration at base (the value equals AP rise time plus AP fall time); 4, AP half width; 5, 50% afterhyperpolarization recovery time; 6, 80%
afterhyperpolarization recovery time; 7, resting membrane potential; 8, AP amplitude; 9, afterhyperpolarization amplitude. Lower trace is the
differentiated derivative of the upper trace recording, and plots the change of voltage over time: 10, maximum rising rate; 11, maximum falling rate.
doi:10.1371/journal.pone.0036854.g001
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not applied to deeper tissue. The neurone must also have a

subcutaneous receptive field confirmed by thorough receptive field

testing and response to low intensity stimulation of deep structures.

Muscles examined for a receptive field encompassed all thigh, calf

and toe muscles of the ipsilateral limb.

Statistical Analysis
Numerical data are presented as mean 6 S.E.M. Differences

between the weight bearing prior to model induction and four

weeks after model induction in the OA group were analyzed with

the paired t-test. Differences in numbers of neurones between

control and OA animals, such as number of APs evoked at specific

stimulus strength to the dorsal root or the number of neurones

with specific evoked responses following 2nA direct current

injection, were analyzed with the Chi-square test. Electrophysio-

logical data were tested for normality using the D’Agostino and

Pearson omnibus normality test. Student’s t-test or the Mann-

Whitney U-test was used for comparisons between the control and

OA model animals, where appropriate. All tests and graphing

were done using Prism 4 software from Graphpad (La Jolla, CA,

USA). The P values of the t-tests are indicated in the figures, where

appropriate, and P,0.05 was set as the level of statistical

significance.

Results

Effects of Knee Derangement on Hind Limb Weight
Distribution

Baseline readings taken before surgery demonstrated equal

weight distribution on both hind limbs in both groups of animals

and there was no difference between the groups. There was also

no difference in the percentage of weight bearing on either leg in

control animals after 4 weeks of housing (data not shown).

However, at four weeks after surgery in model animals, just before

they were used in the acute in vivo electrophysiological experi-

ments, 47.960.19% of the total hind limb load was placed on the

ipsilateral hind limb (N = 9). This percentage was significantly less

compared to the baseline values in this group before model

induction (49.260.46%; N = 9; paired t-test, P = 0.02; Figure 2).

Before model induction, these model animals almost placed equal

weight on both limbs, although slightly more weight either on the

left or right hind limb was recorded, but this was randomly

distributed. After model induction these model animals consis-

tently placed more weight on the left (contralateral) hind limb. The

weight bearing difference between two limbs was significantly

increased to 7.560.54 gram after knee surgery, which was

significant either compared to the baseline value before knee

surgery (2.261.35 gram, N = 9; P = 0.002) or compared to the

value in a group of control animals with similar age and body

weight (1.961.46 gram, N = 6; P = 0.001).

Electrophysiological Properties of Muscle Afferent
Neurones

Successful recordings that met the acceptance criteria were

from a total of 35 neurones from 17 control animals and 40

neurones from 14 OA model animals. Among these neurones, 31

out of 35 in control animals and 33 out of 40 in OA animals had

CVs faster than 18 m/s, and were thus classified as Aa muscle

afferent neurones according to the criteria defined by Lawson et

al. [27]. The rest were considered to be Ab muscle afferent

neurones according to these criteria. The slowest conduction

velocity measured in these Ab muscle afferent neurones was

12.3 m/s in control animals, and 12.8 m/s in OA animals.

These Aa and Ab muscle afferent neurones were pooled together

in the analysis for the following reasons: 1) we did not have a

specific hypothesis regarding the role of different subtypes of

muscle afferent neurones in altered proprioceptive functions; 2)

there was no evidence of substantial differences in the AP

configuration in these two subclasses of muscle afferent neurones,

except for an obvious difference in conduction velocity and a

difference in the pattern of discharge; 3) even within the same

conduction velocity range, muscle afferent neurones never

formed a homogenous group, partially because of the variance

in innervating structures.

In control rats, properties of muscle afferent neurones were

similar to those in previous in vivo reports in guinea-pigs [37,38],

and are also within the range reported from in vitro studies [39,40].

CVs were significantly slower in OA model rats (20.760.38 m/s,

N = 40) compared to control rats (22.960.92 m/s, N = 35;

Student’s t-test, P = 0.04; Figure 3A).

Resting Vm reflects neuronal excitability, as a depolarized

Resting Vm is closer to the threshold of activation of an AP,

thereby causing a greater excitability. In all cases, resting Vm

remained stable throughout the respective recording session.

There was no difference in mean resting Vm between control rats

(261.0761.21 mV, N = 35) and OA model rats

(261.6561.02 mV, N = 40; Student’s t-test, P = 0.72).

APD results from the summation of the depolarizing driving

forces and the repolarizing driving forces. Compared with the

APD in control rats (0.7360.03 ms, N = 35), that in model rats

(0.8560.03 ms, N = 40) was significantly longer (Student’s t-test,

P = 0.006; Figure 3B). In addition, another way to evaluate the

APD is to measure the width of the AP at half amplitude. AP half

width was statistically not different between OA model rats and

control rats (0.3860.01 ms, N = 40 vs. 0.3460.01 ms, N = 35,

respectively; Student’s t-test, P = 0.06).

The amplitude of an AP results from the summation of the

depolarizing driving forces and the repolarizing driving forces of

the AP. In the present study, the AP amplitude in muscle afferent

neurones seldom exhibited an overshoot, unlike smaller neurones

reported by others [38]. There was no difference in AP amplitude

Figure 2. Effects of knee derangement on differential hind limb
weight distribution in the incapacitance test. The percentage of
weight bearing of the right hind limb (ipsilateral) was compared
between one day before surgery (baseline) and 4 weeks after surgery. In
each scatter plot, the mean (horizontal line) is superimposed. After
confirming that the data was normally distributed, paired t-test was
used in the comparison. Significant difference in the percentage of
weight bearing of the right hind limb between OA and control rats was
found at 4 weeks after surgery.
doi:10.1371/journal.pone.0036854.g002
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between control and OA rats (OA model rats, 54.4661.15 mV,

N = 40; control rats 55.761.55 mV, N = 35; Student’s t-test,

P = 0.51).

Initiation of an AP is produced by opening of Na+ channels, and

any change in the type, relative density or opening properties of

Na+ channels can alter the dynamics of depolarization. AP rise

Figure 3. Scatter plots of conduction velocity (A), AP duration (B), AP rise time (C), maximum rising rate (D), fall time (E) and
maximum falling rate (F) of individual muscle afferent neurones in control and OA animals. In each case the median (horizontal line) is
superimposed. Student’s t-tests were used in the comparisons between OA (N = 40) and control (N = 35) muscle afferent neurones, except that Mann-
Whitney U-tests were used in the comparison for the AP fall time and maximum falling rate, because the control AP fall time and OA maximum falling
rate data failed the D’Agostino and Pearson omnibus normality test. The data indicate slower axonal conduction velocities and slower dynamics of AP
generation particularly depolarization in neurones in OA animals.
doi:10.1371/journal.pone.0036854.g003
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time was taken as the time for depolarization from baseline to peak

amplitude. As shown in Figure 3C, there was a longer AP rise time

in OA model animals (0.3860.01 ms, N = 40) compared to control

rats (0.3260.01 ms, N = 35; Student’s t-test, P = 0.001).

MRR was used as another measure of the dynamics of the

depolarization phase of the AP. It was derived by a mathematical

conversion of the AP configuration, the derivative of voltage

changes during AP with respect to time. Thus, the differentiated

curve (Figure 1B) represents the rate of voltage change over time.

MRR reflects the maximum depolarization driving force, mostly

generated by sodium influx current. Figure 3D shows that MRR

was 277.769.81 V/s (N = 40) in the OA rats, which was

significantly slower than 313.8612.63 V/s in control rats

(N = 35; Student’s t-test, P = 0.03).

A similar rationale was adopted to determine the dynamics of

repolarization, where AP fall time and MFR were used to measure

the dynamics of the repolarization phase. Repolarization of the

neurone to the resting Vm occurs mainly due to closing of Na+

channels and opening of K+ channels. This repolarizing phase can

influence the rate at which a neurone can discharge. AP fall time

had larger individual variance than AP rise time. AP fall time

tended to be different from neurone to neurone. This heteroge-

neity might partly explain the lack of statistical difference revealed

in the repolarization phase compared with the depolarization

phase. As shown in Figure 3E, no statistical difference in AP fall

time was observed in neurones in OA model rats (0.4760.02 ms,

N = 40) compared to those in control rats (0.4160.02 ms; N = 35;

Mann-Whitney U-test, P = 0.06).

Similarly, as shown in Figure 3F, MFR was not significantly

different in the OA model rats (186.169.14 V/s, N = 40)

compared to control rats (218.2613.89 V/s, N = 35; Mann-

Whitney U-test, P = 0.1).

AHP is generated predominantly by potassium efflux as K+

channels close, creating a relatively refractory period. This

relatively refractory period governs the maximum rate at which

a neurone can discharge. Examination of the parameters of the

AHP showed no difference between model and control rats,

whether the AHP duration or the AHP amplitude. The AHP

amplitude was 8.9460.67 mV (N = 39) in OA model rats, similar

to the values in control rats (9.460.56 mV, N = 35; Student’s t-test,

P = 0.61). Furthermore, the AHP50 in OA model rats was similar

to that in control rats (1.7460.14 ms, N = 39 vs. 1.8960.16 ms,

N = 35, respectively; Mann-Whitney U-test, P = 0.34), as was the

AHP80 (3.4260.41 ms, N = 35 vs. 4.1360.58 ms, N = 33, respec-

tively; Mann-Whitney U-test, P = 0.29). In 7 neurones (5 in OA

rats and 2 control rats), measurements of the AHP associated

parameters, particularly AHP80 could not be completed because

of greater baseline fluctuation due to a higher noise level during

recording.

Excitability of Muscle Afferent Neurones
Besides measurements of AP characteristics and dynamics of

change of membrane potential, neurones were also studied for

properties of excitability. Experiments to determine neuronal

excitability were done independently of the experiments described

above to investigate changes in AP configuration in the somata. A

different group of animals was studied to minimize the changes in

the neurone properties induced by repetitive discharge. A total of

15 control animals and 17 OA animals were included in this part

of the study; 25 neurones from control rats and 37 neurones from

OA rats were tested. One experimental protocol tested the

activation threshold of dorsal roots; 4 neurones from control

animals and 2 neurones from OA animals were not studied.

To determine the activation threshold of the dorsal root

rectangular pulse stimuli were delivered at a current strength just

sufficient to evoke an AP. This minimum activating current

delivered from the dorsal root in control animals was

0.3560.12 mA (N = 21), and was not different from that in OA

animals, in which this value was 0.1760.11 mA (N = 35; Mann-

Whitney U-test, P = 0.1; Figure 4A). In control neurones, the

percentage of neurones activated at various current strengths was

shown as follows: 0.1 mA (23.8%), 0.2 mA (47.6%), 0.3 mA

(14.3%), 0.5 mA (4.8%) and .0.5 mA (9.5%) There was also no

difference in the composition of the number of neurones activated

at different current strengths between control and OA animals

(Chi-square test, P = 0.29; Figure 4B); in OA animals, the

composition was: 0.1 mA (40%), 0.2 mA (52%), 0.3 mA (8%),

and none for the 0.5 mA and .0.5 mA current strengths.

Somata excitability was determined by direct depolarizing

current injection into the neurone via the recording pipette.

Examples of repetitive firing during direct current injection from

muscle afferent neurones in control and OA model animals are

shown in Figure 5A, 5B; there was a greater percentage of

neurones exhibiting seven or more APs in OA animals: 45.9% in

OA (N = 25) vs. 16.1% in control (N = 37). In addition, 68% of

control muscle afferent neurones exhibited only one AP (36.1%) or

no AP (32.2%) following a 20 ms, 2nA depolarizing current

injection. In neurones from OA animals this percentage was

considerably less, at 32.4%: one AP (18.9%), no AP (13.5%).

These differences indicate a significant shift towards greater

repetitive firing frequencies during current injection in OA

animals (Chi-square test, P = 0.02). A detailed composition of

APs in both groups of neurone is shown in Figure 5C. The average

number of APs following the 20 ms, 2nA depolarizing current

injection was 2.2860.59 (N = 25) in the control muscle afferent

neurones. This number was greater in OA muscle afferent

neurones, at 4.7360.57 (N = 37; Mann-Whitney U-test, P = 0.01;

Figure 5D), indicating a greater neuronal excitability in muscle

afferent neurones in OA animals.

Discussion

We present here evidence that there is a change in weight

bearing pattern in the surgically-induced knee derangement model

of OA, possibly due to a change in posture in OA animals. As we

stated previously [26], this model displays histological and imaging

profiles resembling those in human knee OA, and mimics the most

common aetiology of knee OA [41], which is mechanical injury.

Further, we present evidence that there are significant changes in

the functional properties of Aa fibre and Ab fibre neurones

innervating the ipsilateral hind limb muscle. These neuronal

changes include slower CV, wider APD and slower AP rise time,

as well as slower dynamics of depolarization, including slower

MRR and an increased number of APs generated during

depolarizing current injection. These functional changes in muscle

afferent neurones, which thus seem to be correlated with the

change in the hind limb weight-bearing pattern in OA animals,

might reflect changes in proprioceptive sense and/or propriocep-

tive reflex, and thus might generate a novel explanation for

impaired proprioceptive performance in humans with OA.

Peripheral Neuropathy and Proprioceptive Performance
– an Application in OA

There are two observations in OA model animals highly

indicative of neuropathy-like responses that resemble typical

changes in models of peripheral neuropathy [39,42,43]. These

observations include: 1) low-threshold, large myelinated A-fibre

Muscle Afferent Neurons in Osteoarthritis Model
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neurones underwent functional changes; 2) the nature of AP

configurational changes in these neurones, such as broad APD and

slow rising/falling rates. These findings are important in

understanding OA-related neurological disorders, particularly

impaired proprioceptive performance, in that peripheral neurop-

athy has been shown to be a cause of impaired proprioceptive

performance [44–48].

The surgical procedure to induce the model involves transection

of two highly innervated articular structures, the ACL and the

medial meniscus [49,50]. This might trigger the release of

‘‘damage-associated molecules’’, such as hyaluronan fragments,

fibronectin and myelin debris, and then initiate a cascade of

downstream nerve injury-like response, including alternations the

expression of various transcription factors and ion channels, via a

possible Toll-like receptor mediated mechanism [51].

In the present study, OA muscle afferent neurones were

identified innervating thigh, calf and toe muscles, all remote from

the initial injury site. This pattern is in line with our previous

findings that other low-threshold, large myelinated A-fibre sensory

neurones with receptive fields far beyond the knee joint were also

altered in function in OA [26], and is also consistent with other

evidence in the literature that muscle afferent neurones are

commonly affected in various peripheral neuropathies [40,52,53].

Altogether, this evidence supports a neuropathy-like functional

change in muscle afferent neurones, and further prompts us to

suggest that the neuropathy of muscle afferent neurones may also

underlie compromised proprioception sense in people with OA.

However, further evidence is needed about transcriptional changes

in these DRG neurones that reflect nerve injury like responses,

such as the expression of ATF3, a cell injury marker in neuropathy

models [54–56].

It has been reported that patients with various forms of

peripheral neuropathy, with diabetic neuropathy being the most

studied disease entity, have poor proprioceptive sense, and poor

proprioceptive performance including larger body sway and

unstable stand [44–48]. Importantly, in a study on patients with

diabetic peripheral neuropathy postural instability was found to

increase linearly with the severity of the neuropathy rather than

with the severity of the disease [47].

Altered Hind Limb Weight Bearing Pattern – Evidence for
Impaired Proprioceptive Performance or Nociception or
both?

In the present study there was a small yet significant shift in the

weight distribution pattern from the ipsilateral to the contralateral

hind limb. This raises the question as to how functionally

significant this is. Literature review reveals that our observations

are in line with previous reports using the gait analysis [57,58]. In

the monosodium iodoacetate-induced OA model, the area/

pressure of the ipsilateral paw in contact with the floor, as

measured by the CatWalk test, is significant different from that of

the control animals [58]. This suggests that these OA animals

change the loading on the paw during gait and a change in the

weight bearing pattern/posture in the arthritic limb, although the

authors attributed these to avoidance of movement of a painful

joint [58]. In another study, in the monosodium iodoacetate-

induced induced OA model [57], OA animals exhibit clear and

consistent reductions in peak vertical load bearing by the affected

limb. There is prominent weight bearing redistribution among the

four paws, with the contralateral forelimb taking the major share

of extra load. Similar results have been reported in this dynamic

weight bearing test [59].

Evaluation of proprioceptive performance in human subjects is

commonly based on generally adopted tasks, such as passive

movement detection and joint angle reproduction [60]. Due to the

obvious human-animal difference, these tasks cannot be repro-

duced in animal studies. Gait analysis and the weight bearing

pattern analysis remain two frequently used methods to evaluate

gait and or posture in freely moving animals [29,57,58]. Afferent

discharge in response to externally produced changes of muscle

length and tension is another common measurement for propri-

oception, but in anaesthetized animals.

The incapacitance test, by evaluating the standing/posture

might not be a specific measurement of proprioception, as

standing/posture is an overall summation of many functions,

including muscle strength, skeletal biodynamics, nociception,

vision, proprioception, etc. Any difference in weight bearing in

this test could be interpreted as a change in posture due to altered

Figure 4. Activation threshold of dorsal root in control and OA animals. A 0.04 ms rectangular pulse stimulus was delivered to dorsal roots
at 4 weeks after surgery in control and in OA animals. (A) Shows the comparison of minimal electrical current sufficient to evoke an AP between OA
(N = 25) and control muscle afferent neurones (N = 21). The Mann-Whitney U-test was used. (B) Shows the number of neurones evoked at various
current strengths to the dorsal root in both control and OA muscle afferent neurones.
doi:10.1371/journal.pone.0036854.g004
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proprioceptive performance, or due to a change in joint

nociception, or both.

In some studies, differential hind limb weight distribution has

been interpreted as an index of joint pain [61,62]. Even in our

recent study in an animal model of bone cancer pain, such a

difference, though more robust, was attributed to nociception [63].

Moreover, the incapacitance test has been associated with

nociception in inflammatory joint models of OA

[30,61,62,64,65]. Fernihough et al. measured hind paw weight

distribution in a surgically-induced rat model of OA and in an

inflammatory joint model of OA [66], and reported less robust

changes in the surgically-induced model, similar in magnitude to

our results.

Here we associate the modest difference in hind limb weight-

bearing in OA primarily to stance and proprioception. Riskowski

et al. have shown experimentally that the difference in gait

kinematics tightly correlates with the difference in the ability to

detect motion and reproduce joint angle [67]. In other words, a

difference in weight bearing pattern/posture suggests an impaired

proprioceptive performance. It is also relevant to point out that in

OA animals, there are no overt signs of guarding behaviour that

could result in significant changes in standing/posture, including

paw lifting and licking and nail pulling or biting, but these signs

are commonly observed in various inflammatory and neuropathic

chronic pain models [68,69]. However, this does not preclude the

possibility that pain or change in nociception even that is below

the level of causing overt guarding responses might partially

contribute to a change in weight bearing pattern though unknown

nociception-proprioception interaction mechanisms.

However, the interaction of nociception and proprioception

might be complex. It is possible that nociceptive signs and

proprioceptive alterations are not exclusive to each other.

Recently, Felson et al. proposed a change in proprioceptive acuity

of knee flexion angle reproduction in OA patients that is associated

with the presence and severity of knee pain [2]. Actually,

nociceptive and proprioceptive mechanisms influence each other

in the spinal cord or in the periphery. Proprioceptive alterations

could manifest in patients either without pain or with pain [70–

73]. In the pain-free population, one should not expect that

analgesics would block the proprioceptive alterations. However, in

a painful arthritis population, analgesics might improve proprio-

ceptive measurements. For example, in joint angle reproduction

Figure 5. Excitability of muscle afferent neurones determined by depolarizing current injection in control and OA animals. 2nA
direct current was injected into neurones at 4 weeks after surgery in control and in OA animals. (A and B) show repetitive firing in a control and an
OA muscle afferent neurone, respectively. In both recordings, the upper trace indicates the 2 nA depolarizing current, and the lower trace is the
intracellular recording signal. (C) Shows the histogram showing the number of neurones with various evoked APs following depolarizing current
injection in both control and OA muscle afferent neurones. (D) Shows the comparison of the number of APs evoked by 2 nA direct current injection
between OA (N = 37) and control (N = 25) muscle afferent neurones. The Mann-Whitney U-test was used.
doi:10.1371/journal.pone.0036854.g005
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task, analgesics might relieve the preventive impacts that a joint

pain might have on task performance.

The Role of Muscle Afferent Neurones in Proprioceptive
Performance

We observed significant functional changes in muscle afferent

neurones, suggesting a change in muscle sensory input and leading

to a possible change in proprioceptive function. In deed, altered

posture (static) and gait (dynamic) have been clearly demonstrated

in various animal models of OA [57,58,61,66], including our own

data. Thus, the purpose of the following discussion is to establish a

possible role for altered function of muscle afferent neurons as a

contributing mechanism for OA-related neurological disorders,

such as gait changes and standing deficits. However, it is important

to remain cognizant of the importance of other mechanisms, such

as visual and vestibular inputs that contribute to overall stability

and proprioceptive performance.

It is widely recognized that sensory information produced by

muscle spindles constitutes a crucial part of proprioception [20–

22]. It has been shown that vibration on muscle tendon induces

muscle lengthening and perceived illusory joint movement in the

direction that would have stretched the muscle [74]. Group Ia

muscle afferent neurones are preferentially activated by vibration

on muscle tendon [74–76]. It is further reported that sensory input

from Group Ia muscle afferent neurones in response to a given

movement can be collected, stored, and then translated back into

illusory movement via proper vibration on muscle tendon [77,78].

In the present study, the changes in muscle spindle neurones

raise the possibility of altered proprioceptive codes generated from

these neurones. Difference in response to somal depolarization, the

decreased conduction velocity and the decrease in axonal

threshold may be due to common mechanisms, such as changes

in membrane resistance or to other factors.

Here we attempt to link the change in posture in OA animals to

functional changes in muscle afferent neurones, but other

cutaneous or joint mechanoreceptor might also be at play. In

our previous studies, it was found that low threshold mechano-

receptors, including cutaneous afferents, Pacinian afferents and

glabrous rapid adapting afferents, undergo significant changes in

AP configurations [26], which might also play a role in the

modulation of proprioceptive reflexes.

Detailed mechanisms of how the neuronal alterations in muscle

afferent neurones lead to proprioceptive alterations are still

unclear. However, when trying to interpret our data, the following

confounding factors should be considered: 1) nociceptive and

proprioceptive mechanisms could occur in parallel, and influence

each other in the spinal cord, if not also in the periphery; 2)

changes in somal APs do not necessarily represent changes in

primary afferent axons; 3) distinct ion channel mechanisms might

underlie decreased conduction velocity, increased neuronal

excitability and slower dynamics of depolarization. Thus, further

experiments should be aimed to investigate correlations between

neuronal excitability and measurable behaviourally expressed

proprioceptive alterations, and to study the role of changes in

primary afferent axons in the proprioceptive function.

Conclusions
We suggest that the impaired proprioception sense associated

with OA may be related to neuropathic type of changes in sensory

neurones from muscle, based on the similarity in the loss of

proprioception sense in people with peripheral neuropathy and

those with OA, and the similarity in the neuronal changes in

animal models of peripheral neuropathy and the present model of

OA.
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