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Abstract

Technological advances in computing, imaging and genomics have created new opportunities for 

exploring relationships between histology, molecular events and clinical outcomes using 

quantitative methods. Slide scanning devices are now capable of rapidly producing massive digital 

image archives that capture histological details in high-resolution. Commensurate advances in 

computing and image analysis algorithms enable mining of archives to extract descriptions of 

histology, ranging from basic human annotations to automatic and precisely quantitative 

morphometric characterization of hundreds of millions of cells. These imaging capabilities 

represent a new dimension in tissue-based studies, and when combined with genomic and clinical 

endpoints, can be used to explore biologic characteristics of the tumor microenvironment and to 

discover new morphologic biomarkers of genetic alterations and patient outcomes. In this paper 

we review developments in quantitative imaging technology and illustrate how image features can 

be integrated with clinical and genomic data to investigate fundamental problems in cancer. Using 

motivating examples from the study of glioblastomas (GBMs), we demonstrate how public data 

from The Cancer Genome Atlas (TCGA) can serve as an open platform to conduct in silico tissue 

based studies that integrate existing data resources. We show how these approaches can be used to 

explore the relation of the tumor microenvironment to genomic alterations and gene expression 

patterns and to define nuclear morphometric features that are predictive of genetic alterations and 

clinical outcomes. Challenges, limitations and emerging opportunities in the area of quantitative 

imaging and integrative analyses are also discussed.
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INTRODUCTION

Visual information embedded in histologic specimens carries prognostic value and reflects 

the underlying molecular traits of disease. Human evaluation of histology is a time-honored 

practice and serves as the basis of modern pathology, yet is highly subjective and known for 

its inter- and intra-observer variations (1). Human observers are also limited by scale and the 

need to reduce information into summary categorical descriptions. Diagnostic evaluation of 

histologic specimens is often performed over a prescribed number of high-power fields, and 

reasonable reporting cannot possibly capture detailed descriptions of the tissue 

heterogeneities observed in many diseases.

The digitization of pathologic specimens has advanced with improvements in charge-

coupled device (CCD) sensors, storage and network performance. Early versions of slide 

scanning hardware suffered from slow image acquisition, and their practical use was limited 

by the expense of storage and network limitations that made file transfer and remote viewing 

difficult. Contemporary slide scanning devices are now capable of digitizing a single slide at 

40X objective magnification in two minutes or less, and can produce hundreds of whole-

slide images (WSIs) in a single day. With each image occupying hundreds of megabytes to 

several gigabytes, the recent precipitous decline in storage costs in the past decade has made 

generation and analysis of large WSI archives more practical. Faster networks and improved 

software have enabled users to fluidly view and interact with large WSI archives at their 

desktop by streaming imaging data directly from remote servers. Currently, no universal 

standards exists for file format or image compression within a WSI, despite some work by 

the DICOM Working-Group 26, creating significant challenges in the interoperability of 

various hardware and software platforms from different WSI vendors. Improvements in 

computing performance and image analysis algorithms enable large WSI archives to be 

mined to extract quantitative and objective imaging features that describe the visual 

characteristics of tissue architecture and microanatomy (2, 3). Advances in the theory of 

image analysis algorithms make it possible to reliably delineate objects across biological 

scales from cell nuclei and membranes (where stained) to complex multicellular structures 

and tissue interfaces (4–16). With these objects delineated, a set of descriptive features can 

be calculated to describe their appearance including shape, texture, and spatial relation to 

one another. New computing hardware like multi-core processors and graphics cards enable 

these techniques to be scaled to WSI archives that can contain billions of such objects.

A collection of algorithms has even emerged to mitigate technical effects introduced by the 

physical processing of tissues, allowing the automatic detection of artifacts, and the 

correction of color differences caused by variations in section thickness and staining (17–

22). These procedures improve the robustness of image segmentation processes and result in 

uniform features that reflect biological properties, while reducing noise introduced by 

technical artifacts. The size in bytes of features extracted from an image can rival that of the 

image itself, and the management and standardization of image features and their 

provenance is not trivial.

Image analysis algorithms that precisely describe microscopic features within pathologic 

specimens provide tremendous opportunities for integration with genomic analyses and a 
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new platform for advancing genotype-phenotype comparisons. Contemporary genomic 

platforms have generated a new view of the genetic, transcriptional and epigenetic events 

that are embedded within tissue samples. Deep molecular characterizations of biospecimens 

are increasingly available and gaining clinical relevance and the complementary nature of 

genomic and quantitative imaging descriptions creates new opportunities for their integrated 

analysis. Genomics provide extremely high molecular resolution but poor spatial resolution, 

and the genomic signature of a specimen therefore represents an aggregate measure of 

heterogeneous molecular profiles within distinct components of the tissue analyzed. Laser 

capture microdissection provides a way to increase the purity of genomic measurements, but 

is labor-intensive and difficult to carry out on large cohorts, although image analysis has 

been used to reduce this burden (23). An alternative approach is the integration of genomic 

and imaging features through computational means to deconvolve distinct profiles from the 

aggregate profile, with the goal of recovering information that is lost when tissue is 

homogenized for genomic analysis. Histology is also a manifestation of underlying 

molecular profiles within tissues, so quantitative imaging features can be expected to contain 

predictive power as biomarkers of genetic alterations and gene expression patterns. By 

integrating imaging and genomic features into risk models, prognostic variance may be 

reduced compared to genomics or histopathology alone.

The availability of large de-identified data-sets from The Cancer Genome Atlas (TCGA) has 

greatly facilitated integrated analyses that use imaging, genomic and clinical data. This well-

characterized and comprehensive data set would be difficult to duplicate at a single 

institution due to prohibitive cost, privacy concerns, and patient volumes. TCGA is a large 

public resource that provides comprehensive molecular characterizations of more than 22 

cancers types. Although intended primarily as a genomic resource, TCGA contains over 

22,000 whole-slide images from more than 10,000 tumors, in addition to detailed clinical 

descriptions, and serves as an open platform to perform studies that integrate quantitative 

histology with molecular and clinical data. The use of these existing resources to conduct in 

silico scientific investigations has enabled researchers in this area to focus effort on 

developing analysis methods rather than data production, and to scale studies to a number of 

samples that would be otherwise difficult to achieve (Fig 1). While TCGA is an exceptional 

resource at this point in time, such multifaceted descriptions of tissues will likely become 

more commonplace within academic research institutions with increasing clinical adoption 

of genomics and digital pathology, and as the information management systems that manage 

these data improve.

In this paper we present a review of developments in the area of quantitative histology, 

using examples from glioblastoma to illustrate how imaging features can be integrated with 

genomic and clinical data to improve understanding. The first example explores issues of 

tumor microenvironment (TME), and how imaging features can illuminate the impact of the 

TME on the genomic signatures and molecular classifications. In the second example we 

present a pipeline for the morphometric characterization of nuclei that is capable of 

extracting quantitative descriptions of billions of cell nuclei in digital WSI archives. We 

show how this pipeline can be used along with statistical and statistical learning techniques 

to define imaging biomarkers of genetic alterations and epigenetic and transcriptional 
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patterns, as well as clinical outcomes. We finish by describing near-term potential 

opportunities for quantitative imaging and integrated studies, and discuss the limitations and 

challenges associated with these approaches.

MAIN BODY

The Cancer Genome Atlas

The Cancer Genome Atlas (TCGA) was established in 2005 to improve understanding of the 

molecular basis of human cancers through large-scale genomic analysis. With a goal of 

accruing 500 tumors for each cancer selected for study, TCGA has expanded beyond initial 

pilot projects in glioblastoma, lung and ovarian carcinoma to now span more than 22 tumor 

types. This effort relies on a pipeline of participating institutions that submit frozen tissues 

and clinical data to a central repository, a set of de-centralized genomic analysis centers that 

produce messenger RNA, micro RNA, DNA exome sequencing, DNA copy number, DNA 

methylation, and protein expression profiles, and an electronic clearinghouse that then 

makes this data available to the public (https://tcga-data.nci.nih.gov).

An important, yet underappreciated aspect of acquiring clinical data from tissue source sites 

includes the collection of digitized whole-slide images of submitted tumors. Frozen sections 

are produced from the top and bottom of tissue samples that are submitted for genomic 

analysis, and are used for quality control to evaluate the percentage of tumor, the presence of 

necrosis and other factors that will influence the quality of genomic results. These images 

are a valuable resource since they are immediately adjacent to tissues used for genomics, 

and provide the most faithful representation of genomic-annotated tissues. Diagnostic 

permanent section slides are also solicited from participating institutions. The higher quality 

of these images and lack of freezing artifacts makes them more suitable for algorithmic 

analysis, particularly at high magnification. Expert pathology committees that are selected 

by disease area review these permanent sections to ensure correct diagnosis and to evaluate 

the presence of important pathologic criteria. Examples from the GBM project include the 

categorical scoring (0, 1+, 2+) of qualities like microvascular proliferation, 

pseudopalisading necrosis and lymphocytic infiltration. All permanent and frozen sections 

are digitized at 20X or 40X objective magnification and made publicly available for 

download.

The Tumor Microenvironment and Transcriptional Classification of Glioblastomas

One of the main outcomes of the TCGA analyses has been the development of genomic sub-

classifications of many cancers. Using clustering analysis of gene expression and other 

molecular platforms, the goal of these analyses is to define cohesive sub-classes of tumors 

with distinct molecular signatures that may benefit from class-specific targeted therapies. In 

glioblastoma, two studies using TCGA data have identified tumor sub-classifications based 

on gene expression and DNA methylation (24, 25). The initial TCGA analysis of GBMs 

identified four gene expression classes (GESs): proneural, neural, classic and mesenchymal. 

These classes exhibit clear and distinct patterns of gene expression, and are highly correlated 

with genetic alterations in EGFR, IDH1, NF1, PDGFRA, and TP53. A subsequent analysis 

of DNA methylation data revealed that pro-neural GBMs are further subdivided into two 
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groups - those with IDH mutations that have significant hypermethylation of CpG islands 

(GCIMP) and are typically secondary GBMs afflicting younger patients, and IDH wildtype 

tumors that do not exhibit DNA hypermethylation patterns.

One of the first goals of our in silico research was to investigate the relationships between 

gene expression classifications and the tumor microenvironment in GBMs (26, 27). Most 

tissue-based transcriptional classification studies of tumors are subjective in that neoplasms 

are highly heterogeneous, and gene expression measurements can vary significantly among 

different samples from the same tumor. Glioblastomas are no exception, being spatially 

complex tumors that harbor a variety of non-neoplastic cell types and microenvironmental 

elements that can significantly impact gene expression measurements. Pseudopalisading 

necrosis and micro-vascular proliferation are perhaps the most notable elements, being part 

of the diagnostic criteria that distinguish glioblastomas from lower-grade gliomas, and 

indicators of poor prognosis (28). The development of necrosis and microvascular 

proliferation is can be focal at first, but then expands, and signals severe underlying hypoxia 

with resultant profound transcriptional changes.

Having access to both frozen sections and comprehensive molecular profiles from adjacent 

tissues from TCGA, we sought to measure the impact of necrosis and angiogenesis on gene 

expression patterns used to classify GBMs. We hypothesized the extent of necrosis and 

angiogenesis in a histologic section are tightly associated with the presence of hypoxia, 

which could play an important role in establishing GES signatures by activation of hypoxia-

inducible transcription factors. With the degree of hypoxia varying spatially throughout a 

tumor, multiple GES classes could possibly co-exist within the same tumor, and so 

classification by gene expression could be subject to random effects in tissue sampling. 

Intra-tumoral variations in GES classification would have significant implications in using 

these classes as platforms for the development of targeted therapies.

Using a human-computer interface, we annotated 177 digitized frozen section images to 

define the boundaries of necrosis and angiogenesis for 99 tumors. The lumens within 

angiogenic regions were subtracted using an image analysis segmentation algorithm. The 

sections in these images are immediately adjacent to those used for genomic analysis, and 

these annotations therefore provide the most faithful representation of the 

microenvironmental conditions in genomically analyzed tissues (Fig 2A). The extent of 

necrosis and angiogenesis was calculated as a percentage of the total tissue area, and these 

quantitative features were linked to gene expression and other genomic measurements from 

the same tissue (Fig 2B).

We first examined the abundance of necrosis and angiogenesis in tumors organized by 

TCGA transcriptional class. Tumors with a mesenchymal GES were clearly enriched with 

higher amounts of necrosis (one-way ANOVA p = 8.7e-4, see Fig 2C), suggesting a strong 

association between the mesenchymal gene-expression signatures, necrosis, and hypoxia. 

All tumors with greater than 22% necrosis were members of the mesenchymal class. The 

relationship between angiogenesis and transcriptional class was less clear. The percentage of 

angiogenesis ranged from 0–4% for the large majority of tumors. There were only 4 outliers 

with much higher levels of angiogensis and 3 were from the mesenchymal GES and 1 was 
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from the proneural GES. While we would expect the presence of angiogenesis to influence 

gene expression, the ability to detect this feature may in part be limited by the relatively 

small contribution these regions make to the total amount of DNA/RNA extracted for 

analysis.

Next we performed a genome-wide analysis of transcriptional data to discover the impact of 

necrosis on gene expression. A normalized linear regression coefficient was calculated for 

each transcript to measure the strength of relationship between extent of necrosis and gene 

expression for more than 22,000 transcripts measured with Affymetrix arrays. Significance 

Analysis of Microarrays (SAM) correction was applied to obtain multiple-test corrected p-

values for each gene (29). This analysis identified 2422 genes that are significantly 

correlated with extent of necrosis at 5% false-discovery rate or below, suggesting that 

necrosis has tremendous influence on gene expression in GBMs. Among the genes most 

significantly correlated with necrosis were a set of transcription factors known as 

mesenchymal master regulators: CEBPB, FOSL2, CEBPD, STAT3, BHLHE40 (ranked 4th, 

10th, 60th, 213th and 221st respectively). These transcription factors have been shown to 

form a small module regulating a much broader gene expression network that is responsible 

for mesenchymal tumor phenotype in glioblastomas (30). At the top of this regulatory 

module are the transcription factors CE-BPB/CEBPD and STAT3, whose coexpression is 

necessary and sufficient for activating the mesenchymal expression network. To explore the 

expression of these regulators in tissues, we performed immunohistochemistry on archived 

surgically resected glioblastomas from our own institution. We observed that CEBPB/

CEBPD expression was strongly and specifically expressed in the hypoxic pseudopalisading 

cells surrounding areas of necrosis (Fig 1D). CEBPB was strongly expressed in nuclei of the 

first 2–5 cell layers immediately surrounding necrosis, and CEBPD expression was found in 

both nuclear and cytoplasmic regions of perinecrotic cells but extending slightly farther 

beyond CEBPD. In regions between foci of necrosis, only a small portion of cells expressed 

either CEBPB or CEBPD. STAT3 did not show a specific perinecrotic pattern of expression.

Gene expression classifications are made by measuring the distances in gene expression 

space between a tumor’s expression profile and a set of points or centroids that represent 

each class. The tumor is assigned to the class with the “nearest” centroid, which can be 

measured using a variety of metrics including simple Euclidean distance. While a given 

tissue could potentially contain individual cells/regions with diverging gene expression 

profiles, these classifications force a selection of a single gene expression class that best 

defines the entire sample. To explore how the formation of necrosis influences the 

expression patterns of non-mesenchymal GBMs, we examined the relationship between 

extent of necrosis and distance to the mesenchymal expression centroid in this cohort. We 

observed a clear trend – the more necrosis that a sample contains, the more its expression 

profile resembles the mesenchymal centroid (Fig 1E). This finding further suggests that 

mesenchymal gene expression is strongly impacted by hypoxia and that expression 

signatures are strongly impacted by regionally varying elements of the microenvironment.
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Molecular and Clinical Associations Revealed Through Quantitative Nuclear Morphometry

The morphologic characteristics of cell nuclei convey important clinical information in 

many types of neoplasms. Besides determining histologic classification and subtype, nuclear 

qualities including shape, texture and spatial arrangement can be indicative of more specific 

molecular alterations and patient prognosis. Gains, losses and rearrangements of DNA along 

with epigenetic modifications affecting chromatin structure can manifest in observable 

changes within nuclei of neoplastic cells. In the diffuse gliomas, nuclear features are of 

particular importance, as their classification of oligodendroglioma or astocytoma is based in 

large part on nuclear morphology. However, histopathologic classification based on human 

review is subjective and prone to substantial interobserver variation. Understanding the 

relationships between nuclear morphology, tumor genetics and clinical outcomes will 

provide a better understanding of tumor biology and further improve the precision of clinical 

predictions.

Our studies of tumor microenvironment used human markups and annotations to generate 

quantitative features from whole-slide images. The limitations of human annotations are 

apparent when dealing with nuclear morphology - nuclei can number in the hundreds of 

millions in even a modestly sized set of images, and qualities of interest like nuclear texture 

are difficult to accurately characterize objectively by human observers. To address these 

challenges we have developed a computational system for the study of nuclear morphometry 

in large archives of whole-slide images (Fig 3A). This system uses image analysis 

algorithms to delineate individual cell nuclei, and to calculate a set of objective nuclear 

features for each nucleus to describe its shape and texture. High performance and parallel 

computing approaches are used to scale this approach to hundreds of millions of cells. This 

system presents opportunities to define quantitative morphologic biomarkers of molecular 

and clinical endpoints by enabling the extraction of objective, repeatable measurements 

from WSI archives.

Our initial morphometric study focused on the quantitative characterization of 

oligodendroglial differentiation in glioblastomas (31). Although GBM is defined as a grade 

IV astrocytoma, an important subset exhibits varying degrees of oligodendroglial 

differentiation in addition to the dominant astrocytic component (28, 32–34). Neoplasms 

with pure oligodendroglial differentiation typically have slower growth and better survivals 

when compared with astrocytomas of the same grades. The morphologic characteristics of 

oligodendrogliomas distinguish them from astrocytomas: oligodendroglial nuclei tend to be 

smaller, round and hyperchromatic with a lack of detailed texture, in contrast with 

astrocytoma nuclei that are larger, irregularly shaped, typically elongated and unevenly 

textured. In most instances, GBMs contain a heterogeneous mixture of neoplastic cells with 

wide variations in nuclear characteristics, many of which are not clearly astrocytic or 

oligodendroglial. The volume and heterogeneity of cells present in GBMs combined with 

subtle differences in morphologic diversity make them an ideal candidate for computational 

morphometric approaches.

Using our computational pipeline, we analyzed 200 million nuclei from digitized images of 

diagnostic slides corresponding to 117 TCGA GBMs. Twenty-three quantitative features 
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from four categories (shape, intensity, texture and gradient) were calculated to describe each 

nucleus. To represent the differentiation of each nucleus along the oligodendroglial/

astrocytic spectrum, we built a regression model that uses the nuclear feature values to 

calculate a score for each nucleus representing its degree of oligodendroglial appearance 

(Fig 3B). Combining the 200 million scores obtained from our pipeline with gene 

expression, copy number, DNA sequence and methylation data from the same TCGA 

tumors, we were able to clearly separate a set of tumor enriched with oligodendroglial-like 

cells that had strong associations with PDGFRA amplification, proneural transcriptional 

class, and expression of the oligodendrocyte signature genes MBP, HOXD1, PLP1, MOBP 

and PDGFRA. These results provide molecular validation that the quantitative features 

extracted by our software pipeline can capture the morphologic variations of nuclei 

encountered in gliomas.

Our differentiation study used a supervised approach to build a quantitative model of the 

oligodendroglial/astrocytic spectrum in gliomas. Model-based approaches are a powerful 

way to incorporate prior knowledge into morphologic analyses, and to use quantitative 

measures of recognized morphologic patterns to explore their molecular correlates. Because 

model-based approaches are built on prior knowledge, their ability to reveal previously 

unrecognized or unknown morphologic patterns is limited. To address this limitation, we 

have developed several unsupervised or model-free approaches that do not impose 

established constructs in the morphological analysis of WSI data. Instead, these approaches 

let data speak for itself, using clustering analysis and other statistical learning techniques to 

reveal natural structure within the feature data in a bottom-up fashion.

Our first study with unsupervised methods investigated patient clustering of GBMs into 

morphologically defined subtypes (35, 36). Using nuclear features, we sought to determine 

if there are clear and distinct groups of tumors that emerge from clustering analysis, similar 

to gene expression studies where transcriptional profiles are clustered to reveal molecular 

tumor subtypes. Taking the nuclear features from the TCGA cohort, a morphologic 

signature was calculated for each tumor to represent the morphologic properties of its 

average nuclei. These signatures were analyzed using a consensus-clustering algorithm to 

find natural groups within the data and to measure their robustness. Three clear clusters 

emerged from this analysis and we named them for themes observed in their molecular 

correlates: cell cycle (CC), protein biosynthesis (PB) and chromatin modification (CM). We 

observed that these clusters had significant differences in patient survival (logrank 

p=1.4e-3), with the PB cluster containing patients with relatively better outcomes and the 

CM cluster relatively worse. These clusters were also observed in an independent dataset of 

84 GBMs where the relative differences in outcomes between the clusters were also 

confirmed. To explore the meaning of these clusters we used the various genomic platforms 

made available by TCGA including gene expression, DNA methylation, copy number and 

DNA sequencing. A pathway analysis found that the clusters varied in the extent of TP53 

WNT, and NFKB signaling, and had variations in the extent of total DNA methylation. An 

analysis of the pathologic features using categorical human annotations (0,1+,2+) found that 

tumors in the CM cluster had enriched presence of lymphocytes, and that PB cluster tumors 

exhibited a conspicuous lack of inflammation.
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To further explore model-free associations of nuclear morphometry in GBM and clinical and 

genomic endpoints, we took a more direct approach of correlating raw nuclear features with 

genomic and clinical endpoints (37). For each patient, we calculated the mean and standard 

deviation of each feature as metrics and correlating them directly with patient survival using 

Cox proportional hazards analysis using SAM. Notably, the mean circularity was 

significantly associated with longer patient survival, an observation consistent with 

prolonged clinical outcomes in gliomas with oligodendroglial differentiation. Other features 

that were significantly associated with outcome include major axis length, with longer nuclei 

associated with a shorter survival, and min nuclear pixel intensity, with higher values 

associated with longer survival. The fact that these features emerged from a more data-

driven approach provides some level of confidence in our analysis workflow. To correlate 

these features with genomic measurements we performed a one-way ANOVA for each 

feature metric across transcriptional classifications, somatic mutations and DNA copy 

number alterations. Features distinguishing transcriptional classes include nuclear 

eccentricity (p = 3.81e-4), minor axis length (p = 8.87e-3) and nuclear extent (p = 3.2e-2). 

The greatest morphology differences were observed between the proneural and 

mesenchymal tumors. Those hypermethylated (GCIMP) tumors within the proneural group 

had greater variation of pixel intensities within their nuclei (nuclear energy, p = 2.28e-5), 

and greater variation in nuclear size. Genetic events having significant differences in nuclear 

morphometry included PTEN and TP53 mutations, and PDG-FRA amplification. PTEN and 

TP53 mutant tumors were both associated with less circular nuclei (p = 9.68e-3, 3.77e-2 

respectively). PDGFRA amplified tumors were associated with greater circularity (p = 

2.31e-2), consistent with PDGFRA amplifications being associated with oligodendroglial 

differentiation. Other genetic alterations with significant associations included EGFR 

amplification, which was associated with greater nuclear eccentricity and canny, and MDM2 

amplifications, which were associated with greater minor axis length, area and circularity.

DISCUSSION

Emerging Challenges and Opportunities

Advances in whole-slide imaging and computing hardware have made it possible to 

approach increasingly difficult image analysis problems in pathology. At the same time, the 

increasing availability of rich genomic data have made pathology image analysis studies 

more interesting by allowing linkage of histologic features with comprehensive molecular 

measurements. Within the last decade, the goals of pathology image analysis have shifted 

from attempts to implement computer-aided diagnostic procedures, to more creative 

analyses that explore complex genotype-phenotype associations and define novel 

prognostication methods. The emerging goal is to go beyond computational replication of 

pathologists and to develop novel techniques to unmask latent content within image sets that 

has as yet unrecognized clinical and scientific value. This convergence of image analysis 

and bioinformatics has produced some exciting results in several different areas. In 

glioblastoma, morphometry-driven tumor subtypes were identified on the basis of nuclear 

morphometry and cellularity and found to be predictive of clinical outcomes and pathway 

activation (6, 38). In breast cancer, morphologic features describing stromal/tumor interface 

were found to be predictive of overall survival independent of other clinical, pathological 
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and molecular features in two independent cohorts (39). Features of cellularity derived from 

images were found to improve the estimation of copy number variations, and a prognostic 

model that combines image measurements with gene expression features was developed and 

validated in independent cohorts (40). Focusing specifically on triple-negative breast cancer, 

a prognostic model based on morphologic features was also developed and validated in an 

independent dataset of triple negative breast cancers containing histology images (41). A 

gene-expression signature derived from this prognostic model was then developed and used 

to further validate the prognostic value of this model in gene expression datasets where 

histology images were not available.

One barrier to progress in this area is the dissemination of algorithms and image features 

beyond image analysis experts to the broader research community. Making software and 

feature data publicly accessible will facilitate advances in this field by more fully engaging 

the pathology community and providing opportunities for comparative studies. Establishing 

the computational resources needed to execute image analysis algorithms on the primary 

images is difficult, and the sharing of derived feature data is limited by a lack of 

standardization. To begin to address these issues, we have developed web-based interfaces 

and data standards to support the visualization, federation and analysis of pathology image 

data. The Cancer Digital Slide Archive (CDSA, http://cancer.digitalslidearchive.net/) is a 

web-based resource that was originally developed to facilitate the visualization and analysis 

of pathology imaging and clinical data from TCGA (42). The CDSA currently hosts over 

22,000 images and associated clinical data from over 22 different cancers represented in 

TCGA. This interface provides access to pathology and clinical data through a simple web-

browser interface. Although currently focused on serving primary images for visualization, 

the CDSA and other similar resources could naturally serve as clearinghouses that allow a 

broader set of users to interact with image analysis algorithms and feature sets. Cloud-based 

services could be established that enable primary image data, derived features and 

computational tools to reside in a common computing environment, avoiding the need for 

costly transfer of massive amounts of image and feature data. Users could then perform end-

to-end integrated analyses of pathology imaging online without the need to establish local 

computing resources or shepherding primary image or feature data between systems across 

the Internet. In cases where feature data and algorithms are exchanged, we have also 

developed the Pathology Analytic Imaging Standards (PAIS) to support the standardization 

of image analysis algorithms and image features (43, 44). PAIS provides data standards that 

enable users to capture software and algorithm parameter provenance, and a common file 

format that enables results to be stored in a database for search and exchange.

The validation of findings remains another significant problem in pathology imaging 

studies. This issue is particularly important in studies identifying image biomarkers of 

clinical outcomes or genomic features. One of the risks in using image features to predict 

outcome or genomic measurements is overfitting – are we are learning meaningful 

relationships that will generalize to new unseen datasets, or simply generating predictions 

that are specific to the noise and artifacts of the dataset that were analyzed? Validating 

findings in external datasets, when available, or by proper cross-validation of a single 

dataset is important for distinguishing true findings from artifacts. Sometimes the 
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morphologic features that are predictive can be visualized, while other times their predictive 

power is clearly measurable but not apparent to the human eye. Some features are calculated 

(e.g. standard deviation of canny) are difficult to correlate with concrete histologic findings 

that can be visualized. In the cases where visualization is not possible or does not produce 

any obvious visible distinction, it is difficult to interpret the meaning of predictive features 

or to link them to existing knowledge about the histology of that disease. Greater availability 

of benchmark datasets containing whole-slide images, and genomic and clinical data could 

help to establish reproducibility and improve confidence in the relationships defined through 

computational analysis.

Another area for growth is the integration of radiology imaging with pathology, genomics 

and clinical data. Image analysis methods for radiology data are more mature than for 

pathology, and are able to extract meaningful features from MR, PET, CT and other medical 

imaging modalities. The global perspective of tumor provided by medical imaging is 

complementary to the tissue and molecular scale measurements provided by pathology and 

genomics, and a number of studies have already explored the relationships between 

quantitative radiology imaging features, genomic profiles and clinical outcomes (45–48). 

Integrating complementary features across biological scales into prognostic models is a 

promising avenue to improve the precision of clinical predictions and risk stratification of 

patients.
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Figure 1. 
Integration of quantitative histology with multifaceted clinical and genomic data. Image 

analysis algorithms can extract features that describe the histology in digital whole-slide 

image datasets. This information can be combined with genomic, clinical and radiology data 

to identify image biomarkers of genetic alterations, to build predictive models of clinical 

outcomes, and to better understand tumor biology. Public data provided by The Cancer 

Genome Atlas (TCGA) makes it possible to explore these topics in large cohorts of more 

than 22 types of cancers. Discoveries made in analysis of public TCGA data can be 

validated in smaller institutional datasets.
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Figure 2. 
Tumor microenvironment study integrating histology and genomics from TCGA. (A) TCGA 

specimens are sections from the top and bottom to produce slides, and the middle portion is 

submitted for genomic analysis. (B) Digitized images from top/bottom sections were 

annotated to calculate the percentage of necrosis and angiogenesis for each tumor. (C) 

Tumors from the mesenchymal expression class are significantly enriched with necrosis. (D) 

As the amount of necrosis increases in non-mesenchymal GBMs, gene expressions patterns 

shift towards a mesenchymal expression signature.
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Figure 3. 
Quantitative nuclear morphometry. (A) Image analysis algorithms are used to delineate 

nuclei in whole-slide images. A set of features is calculated to describe the appearance of 

each nucleus. This system is capable of processing thousands of slides and hundreds of 

millions of nuclei. (B) We developed a model-based system to score nuclei based on 

oligodendroglial differentiation. This model was validated by correlation of nuclear scores 

and gene expression data. (C) Model-free approaches were used to explore the clinical and 

genomic associations of nuclear features. Clustering of patient morphological signatures 

revealed three distinct patient clusters. Unsupervised analysis of features shows that 

proneural tumors are associated with more round, regular nuclei.
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