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INTRODUCTION: A systematic characterization
of the humoral response to severe acute respi-
ratory system coronavirus 2 (SARS-CoV-2) epi-
topes has yet to be performed. This analysis is
important for understanding the immunogenic-
ity of the viral proteome and the basis for cross-
reactivity with the common-cold coronaviruses.
Coronavirus disease 2019 (COVID-19), caused

by SARS-CoV-2, is notable for its variable course,
with some individuals remaining asymptomatic
whereas others experience fever, respiratory
distress, or even death. A comprehensive inves-
tigation of the antibody response in individuals
with severe versus mild COVID-19—as well as
an examination of past viral exposure history—
is needed.

RATIONALE: An understanding of humoral re-
sponses to SARS-CoV-2 is critical for improving
diagnostics and vaccines and gaining insight
into variable clinical outcomes. To this end,
we used VirScan, a high-throughput method

to analyze epitopes of antiviral antibodies in
human sera. We supplemented the original
VirScan library with additional libraries of
peptides spanning the proteomes of SARS-
CoV-2 andall other human coronaviruses. These
libraries enabled us to precisely map epitope
locations and investigate cross-reactivity be-
tweenSARS-CoV-2andother coronavirusstrains.
The original VirScan library allowed us to
simultaneously investigate antibody responses
to prior infections and viral exposure history.

RESULTS: We screened sera from 232 COVID-
19 patients and 190 pre–COVID-19 era controls
against the original VirScan and supplemen-
tal coronavirus libraries, assaying more than
108 antibody repertoire–peptide interactions.
We identified epitopes ranging from “private”
(recognized by antibodies in only a small num-
ber of individuals) to “public” (recognized by
antibodies in many individuals) and detected
SARS-CoV-2–specific epitopes as well as those

that cross-react with common-cold corona-
viruses. Several of these cross-reacting anti-
bodies are present in pre–COVID-19 era samples.
We developed a machine learning model that
predicted SARS-CoV-2 exposure history with
99%sensitivity and98%specificity fromVirScan
data. We used the most discriminatory SARS-
CoV-2 peptides to produce a Luminex-based
serological assay, which performed similarly to
gold-standard enzyme-linked immunosorbent
assays. We stratified the COVID-19 patient sam-
ples by disease severity and found that patients
who had required hospitalization exhibited
stronger and broader antibody responses to
SARS-CoV-2 but weaker overall responses to
past infections compared with those who did
not need hospitalization. Further, the hospi-
talized group had higher seroprevalence rates
for cytomegalovirus and herpes simplex virus 1.
These findings may be influenced by differ-
ences in demographic compositions between
the two groups, but they raise hypotheses that
may be tested in future studies. Using alanine
scanning mutagenesis, we precisely mapped
823 distinct epitopes across the entire SARS-
CoV-2 proteome, 10 of which are likely targets
of neutralizing antibodies. One cross-reactive
antibody epitope in S2 has been previously
suggested to be neutralizing and, as it exists in
pre–COVID-19 era samples, could affect the
severity of COVID-19.

CONCLUSION:Wepresent a highly detailed view
of the epitope landscape within the SARS-CoV-2
proteome. This knowledge may be used to
produce diagnostics with improved specificity
and canprovide a stepping stone to the isolation
and functional dissection of both neutralizing
antibodies and antibodies thatmight exacerbate
patient outcomes through antibody-dependent
enhancement or immune distraction.
Our study reveals notable correlations be-

tween COVID-19 severity and both viral expo-
sure history and overall strength of the antibody
response to past infections. These findings are
likely influenced by demographic covariates,
but they generate hypotheses that may be
tested with larger patient cohorts matched
for age, gender, race, and other demographic
variables. ▪
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SARS-CoV-2 epitope mapping. VirScan detects antibodies against SARS-CoV-2 in COVID-19 patients with
severe and mild disease. Heatmap color represents the strength of the antibody response in each sample
(columns) to each protein (rows, left) or peptide (rows, right). VirScan reveals the precise positions of
epitopes, which can be mapped onto the structure of the spike protein (S). Examination of SARS-CoV-2 and
seasonal coronavirus sequence conservation explains epitope cross-reactivity. A, Ala; D, Asp; E, Glu; F, Phe;
I, Ile; K, Lys; L, Leu; N, Asn; P, Pro; Q, Gln; R, Arg; S, Ser; T, Thr; V, Val; W, Trp; Y, Tyr.
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Understanding humoral responses to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)
is critical for improving diagnostics, therapeutics, and vaccines. Deep serological profiling of 232
coronavirus disease 2019 (COVID-19) patients and 190 pre–COVID-19 era controls using VirScan
revealed more than 800 epitopes in the SARS-CoV-2 proteome, including 10 epitopes likely recognized
by neutralizing antibodies. Preexisting antibodies in controls recognized SARS-CoV-2 ORF1, whereas
only COVID-19 patient antibodies primarily recognized spike protein and nucleoprotein. A machine
learning model trained on VirScan data predicted SARS-CoV-2 exposure history with 99% sensitivity and
98% specificity; a rapid Luminex-based diagnostic was developed from the most discriminatory SARS-
CoV-2 peptides. Individuals with more severe COVID-19 exhibited stronger and broader SARS-CoV-2
responses, weaker antibody responses to prior infections, and higher incidence of cytomegalovirus and
herpes simplex virus 1, possibly influenced by demographic covariates. Among hospitalized patients,
males produce stronger SARS-CoV-2 antibody responses than females.

C
ornaviruses constitute a large family of
enveloped, positive-sense single-stranded
RNA viruses that cause diseases in birds
andmammals (1). Among the strains that
infect humans are the alphacoronavi-

ruses HCoV-229E and HCoV-NL63 and the
betacoronaviruses HCoV-OC43 and HCoV-
HKU1, which cause common colds (Fig. 1A).
Three additional betacoronavirus species re-
sult in severe infections in humans: severe acute
respiratory syndrome coronavirus (SARS-CoV),
Middle East respiratory syndrome coronavirus
(MERS-CoV), and severe acute respiratory syn-
drome coronavirus 2 (SARS-CoV-2), a novel
coronavirus that emerged in late 2019 in Asia
and quickly spread throughout the world (2).
As of November 2020, SARS-CoV-2 has caused
more than 50million confirmed infections and
nearly 1.3 million deaths (3).

The clinical course of coronavirus disease 19
(COVID-19)—the disease resulting from SARS-
CoV-2 infection—is notable for its extreme
variability: Some individuals remain entirely
asymptomatic, whereas others experience fever,
anosmia, diarrhea, severe respiratory distress,
pneumonia, cardiac arrhythmia, blood clotting
disorders, liver and kidney distress, enhanced
cytokine release and, in a small percentage of
cases, death (4). Therefore, understanding the
factors that influence this spectrum of out-
comes is an intense area of research. Disease
severity is correlated with advanced age, sex,
ethnicity, socioeconomic status, and comor-
bidities such as diabetes, cardiovascular dis-
ease, chronic lung disease, obesity, and reduced
immune function (4). Additional relevant fac-
tors likely include the inoculum of virus at in-
fection and individual genetic background

and viral exposure history. The complex inter-
play of these elements also determines how
individuals respond to therapies aimed at
mitigating disease severity. Detailed knowl-
edge of the immune response to SARS-CoV-2
could improve our understanding of diverse
outcomes and inform the development of im-
proved diagnostics, vaccines, and antibody-
based therapies.
In this study, we used VirScan, a program-

mable phage-display immunoprecipitation and
sequencing (PhIP-Seq) technology that we de-
veloped previously, to explore antiviral anti-
body responses across the human virome (5–8).
Here we describe a detailed analysis of the hu-
moral response in COVID-19 patients.

Results
Development of a VirScan library targeting
human coronaviruses

Our existing VirScan phage-display platform
is based on an oligonucleotide library encoding
56–amino acid (56-mer) peptides tiling every
28 amino acids across the proteomes of all
known pathogenic human viruses (~400 species
and strains) plus many bacterial proteins (8). To
investigate the serological response to SARS-
CoV-2 and other human coronaviruses (HCoVs),
we supplemented this library with three ad-
ditional sublibraries: Sublibrary 1 encodes a
56-mer peptide library tiling every 28 amino
acids through each of the open reading frames
(ORFs) expressed by the six HCoVs and three
bat coronaviruses closely related to SARS-CoV-
2; sublibrary 2 encodes 20-mer peptides tiling
every 5 amino acids across the SARS-CoV-2
proteome, enabling more precise localization
of epitopes; and sublibrary 3 encodes triple-
alanine scanning mutants of the 56-mer pep-
tides tiling across the SARS-CoV-2 proteome,
enabling the mapping of epitope boundaries
at amino acid resolution (Fig. 1, A to C, and
table S1) (9, 10).
We used VirScan (Fig. 1C) to profile the anti-

body repertoires of nine cohorts of individuals
from multiple locations, including Baltimore,
MD, Boston, MA, and Seattle, WA (tables S2
to S8). These cohorts comprised longitudinal
samples from individuals enrolled in pro-
spective studies of COVID-19 infection, cross-
sectional samples from patients with active
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Fig. 1. VirScan detects the humoral response to SARS-CoV-2 in sera from
COVID-19 patients. (A) Phylogeny tree of 50 coronavirus sequences (32)
constructed using MEGA X (33, 34). The scale bar indicates the estimated number of
base substitutions per site (35). Coronaviruses included in the updated VirScan
library are indicated in red. (B) Schematic representation of the ORFs encoded by the
SARS-CoV-2 genome (10, 36). (C) Overview of the VirScan procedure (5–8). The
coronavirus oligonucleotide library includes 56-mer peptides tiling every 28 amino
acids (aa) across the proteomes of 10 coronavirus strains and 20-mer peptides tiling
every 5 amino acids across the SARS-CoV-2 proteome. Oligonucleotides were
cloned into a T7 bacteriophage display vector and packaged into phage particles
displaying the encoded peptides on their surface. The phage library was mixed with
sera containing antibodies that bind to their cognate epitopes on the phage surface;

bound phage were isolated by IP with either anti-IgG– or anti-IgA–coated
magnetic beads. Lastly, PCR amplification and Illumina sequencing from the DNA
of the bound phage revealed the peptides targeted by the serum antibodies.
(D) Detection of antibodies targeting coronavirus epitopes by VirScan. Heatmaps
depict the humoral response from COVID-19 patients (n = 232) and pre–COVID-19
era control samples (n = 190). Each column represents a sample from a distinct
individual. The color intensity indicates the number of 56-mer peptides from the
indicated coronaviruses significantly enriched by IgG antibodies in the serum
sample. (E) Box plots illustrate the number of peptide hits from the indicated
coronaviruses in COVID-19 patients and pre–COVID-19 era controls. The box
indicates the interquartile range, with a line at the median. The whiskers span
1.5 times the interquartile range.
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COVID-19 who were receiving treatment in
either hospital or outpatient settings, and cross-
sectional samples from convalescent indi-
viduals with a past history of COVID-19. Our
cohorts also included a diverse set of control
sera collected before the COVID-19 outbreak.
We profiled the targets of IgG and IgA (im-
munoglobulins G and A) antibodies separately:
IgG and IgA are the most abundant isotypes
in blood, whereas IgA is the principal isotype
secreted on mucosal surfaces, including the
respiratory tract. Collectively, we analyzed
~550 samples in duplicate, in total assessing
~100 million potential antibody repertoire–
peptide interactions.

Detection of SARS-CoV-2 seropositivity
with VirScan

Tomeasure immune responses to SARS-CoV-2,
we compared VirScan profiles of serum sam-
ples fromCOVID-19 patients to those of controls
obtained before the emergence of SARS-CoV-2
in 2019. These pre–COVID-19 era controls fa-
cilitate identification of (i) SARS-CoV-2 pep-
tides encoding epitopes specific to COVID-19
patients and (ii) SARS-CoV-2 peptides encod-
ing epitopes that are cross-reactive with anti-
bodies developed in response to the ubiquitous
common-cold HCoVs. Sera from COVID-19
patients exhibited much more SARS-CoV-2
reactivity than did sera from pre–COVID-19 era
controls (Fig. 1, D and E). Some cross-reactivity
toward SARS-CoV-2 peptides was observed in
the pre–COVID-19 era samples, but this was
expected because nearly all people have been
exposed to one or more HCoVs (11).
COVID-19 patient sera also showed signif-

icant levels of cross-reactivity with the other
highly pathogenic HCoVs, SARS-CoV andMERS-
CoV, although less was observed against the
more distantly related MERS-CoV. Extensive
cross-reactivity was also observed against pep-
tides derived from the three bat coronaviruses
that share the greatest proportion of sequence
identity with SARS-CoV-2 (Fig. 1, A, D, and
E) (9). We know that these represent cross-
reactivities because, given the low prevalence
and circumscribed geographical location of
SARS-CoV and MERS-CoV, none of the indi-
viduals in this study are likely to have en-
countered these viruses.
COVID-19 patient sera also exhibited a sig-

nificantly higher level of reactivity to sea-
sonal HCoV peptides than did sera from pre–
COVID-19 era controls (Fig. 1, D and E). This
could be due to the elicitation of novel anti-
bodies that cross-react or to an anamnestic
response that boosts B cell memory against
HCoVs. The converse is not always true: Many
pre–COVID-19 era samples exhibit strong recog-
nition of seasonal HCoV peptides but little or
no recognition of SARS-CoV-2 peptides (Fig. 1D).
In some cases, the concentrations of antibodies
against seasonal HCoVs may be below the

threshold of detection in the pre–COVID-19
era samples.

Coronavirus proteins targeted by antibodies
in COVID-19 patients

Analysis of SARS-CoV-2 proteins targeted by
COVID-19 patient antibodies revealed that the
primary responses to SARS-CoV-2 are reactive
with peptides derived from spike protein (S)
and nucleoprotein (N) (Fig. 2, A and B). Com-
pared with sera from pre–COVID-19 era con-
trols, COVID-19 patient sera exhibit significant
differential recognition of these two proteins,
indicating that this recognition is a result of anti-
body responses to SARS-CoV-2. Third-most
frequently recognized is the replicase poly-
protein ORF1, but unlike S and N, ORF1 is
recognized to a similar extent by sera from
COVID-19 patients and pre–COVID-19 era con-
trols. This suggests that recognition of SARS-
CoV-2 ORF1 is a result of cross-reactions from
antibodies elicited by exposure to other path-
ogens, possibly HCoVs. Antibody responses to
peptides from membrane glycoprotein (M),
ORF3, and ORF9b were occasionally detected
in COVID-19 patients.
We also analyzed longitudinal samples from

23 COVID-19 patients.Most patients displayed
an antibody response to peptides derived from
S or N in the second week after symptom on-
set, withmany displaying an antibody response
by the end of the firstweek (Fig. 2C). The relative
strength and onset of the antibody response to
S andNdifferedmarkedly between individuals,
and the initial immune response showed no
preference for S or N. The signal intensity of
antibodies recognizing SARS-CoV-2 ORF1 epi-
topes did not increase over time, further sug-
gesting that ORF1 antibodies likely represent
a preexisting cross-reactive response.

Identification of immunogenic regions
of SARS-CoV-2 proteins

To more precisely define the immunogenic re-
gions of the SARS-CoV-2 proteome, we exam-
ined the specific 56-mer and 20-mer peptides
detected by VirScan in COVID-19 patients com-
paredwith those in pre–COVID-19 era controls.
An example IgG response from a single patient
to SARS-CoV-2 S andN is shown in Fig. 3A.We
observed strong concordance between the viral
regions enriched by the 56-mer and 20-mer
fragments, demonstrating the robustness of
VirScan. In many cases, we observed recog-
nition of overlapping 56-mer peptides, indi-
cating an epitope in the common region.
Next, we compared the protein regions recog-

nized by IgG and IgA across COVID-19 patients
(Fig. 3B). We identified four regions each in
S and N that are recurrently targeted by anti-
bodies from >15% of COVID-19 patients, with
additional regions recognized less frequently.
Overall, IgG and IgA recognize the same protein
regions with similar frequencies across the pop-

ulation. However, when IgG and IgA responses
were compared within individuals, we observed
considerable divergence (Fig. 3C):Many epitopes
were recognized by only IgG, only IgA, or both
IgG and IgA within an individual patient. To-
gether, these data suggest that patients gener-
ate distinct IgG and IgA antibody responses
to SARS-CoV-2, but the targeted regions are
largely shared at the population level.

Machine learning guides the design of a Luminex
assay for rapid COVID-19 diagnosis

To predict SARS-CoV-2 exposure history from
VirScandata, we developed a gradient-boosting
algorithm (XGBoost) that integrates both
IgG and IgA data and predicts current or past
COVID-19 with 99.1% sensitivity and 98.4% spe-
cificity (Fig. 4, A and B). We used Shapley Addi-
tive exPlanations (SHAP)—amethod to compute
the contribution of each feature of the data to
the predictive model (12)—to identify peptides
from SARS-CoV-2 S and N plus homologous
peptides from SARS-CoV and BatCoV-HKU-3
and BatCoV-279 that were highly predictive
of SARS-CoV-2 exposure (Fig. 4, C and D).
We leveraged these insights to develop a

simple, rapid Luminex-based diagnostic for
COVID-19. We chose 12 SARS-CoV-2 peptides
predicted by VirScan data and the machine
learning model to be highly indicative of SARS-
CoV-2 exposure history (table S9). These SARS-
CoV-2 peptides, two positive control peptides
from rhinovirus A and Epstein-Barr virus (EBV)
that are recognized in >80% of seropositive
individuals by VirScan (7), and a negative
control peptide from HIV-1 were coupled to
Luminex beads (13). We tested 163 COVID-19
patient samples and 165 pre–COVID-19 era
controls for IgG reactivity to the Luminex panel.
We detected clear responses to SARS-CoV-2
peptides in COVID-19 patient samples but rarely
in the pre–COVID-19 era controls (Fig. 4E). Using
the Luminex data, we developed a logistic re-
gression model that predicts COVID-19 in-
fection history with 89.6% sensitivity and 95.2%
specificity [area under the curve (AUC) = 0.97]
(Fig. 4, F and G). A subset of COVID-19–positive
samples (n = 107) was also examined with an
in-house enzyme-linked immunosorbent assay
(ELISA) using three SARS-CoV-2 antigens: N,
S, and the S receptor-binding domain (RBD).
Considering a sample to be positive if it scored
above the 99% specificity threshold on any one
of the three ELISA antigens, we determined
that the sensitivity of the Luminex assay for
this subset (88.8%) was similar to that of the
ELISA (90.7%) (fig. S1). Among samples run
on all three assays, VirScan significantly out-
performed both the Luminex and ELISAs (fig.
S1, A and C). Notably, our optimal model in-
tegrated only three SARS-CoV-2 peptides—
residues 386 to 406 of N (N 386-406), residues
810 to 830 of S (S 810-830), and residues 1146
to 1166 of S (S 1146-1166)—which were also the
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most discriminatory 20-mers in the VirScan
data. IgG responses in COVID-19 patients were
highly correlated between the Luminex and
VirScan assays, providing orthogonal valida-
tion of the VirScan data and supporting the
prevalence of SARS-CoV-2–induced humoral
responses to these regions of S and N (fig. S1D).

Differential antibody responses to common
viruses in hospitalized versus nonhospitalized
COVID-19 patients

Wenext consideredwhether differences in the
antibody response to SARS-CoV-2 or to other

viruses might be associated with the severity
of COVID-19. We grouped the COVID-19 pa-
tients into two subsets: those who required
hospitalization (n = 101) and those who did
not (n = 131). We compared the responses to
peptides derived from the SARS-CoV-2 S and
N proteins between the hospitalized (H) and
nonhospitalized (NH) groups and found that
the H group exhibited stronger and broader
antibody responses to S and N peptides that
might be due to epitope spreading (Fig. 5A).
We then analyzed 32 NH COVID-19 samples,
32 H COVID-19 samples, and 32 pre–COVID-19

era negative controls with the Luminex assay
and similarly observed that the H group had
stronger and broader antibody responses to
SARS-CoV-2–specific peptides than did the
NH group (Fig. 5B).
VirScan also offers the opportunity to ex-

amine the history of previous viral infections
and to determine correlates of COVID-19 out-
comes. For example, prior viral exposure could
provide some protection if cross-reactive neu-
tralizing antibodies or T cell responses are
stimulated upon exposure to SARS-CoV-2 (14, 15).
Alternatively, cross-reactive antibodies to viral
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Fig. 2. SARS-CoV-2 protein recognition in COVID-19 patient versus control
sera. (A) Antibodies targeting SARS-CoV-2 proteins. Each column represents a distinct
patient sample, and each row represents a SARS-CoV-2 protein. The color intensity
in each cell of the heatmap indicates the number of 56-mer peptides, as in Fig. 1D.
(B) Box plots (as in Fig. 1E) illustrate the number of peptide hits from each of the

indicated SARS-CoV-2 proteins detected in the IgG antibody response of COVID-19
patients and controls. (C) Longitudinal analysis of the antibody response to SARS-
CoV-2 for 23 patients with confirmed COVID-19. Black lines indicate days when a
sample was available for analysis. Each point represents the maximum antibody fold-
change score per SARS-CoV-2 peptide in each sample, colored by protein target.
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Fig. 3. IgG and IgA recognition of immunodominant regions in SARS-CoV-2
spike and nucleoprotein. (A) Example response to S and N proteins from a
single COVID-19 patient. The y axis indicates the strength of enrichment (z-score;
see Materials and methods) of each 56-mer (blue) or 20-mer (red) peptide
recognized by the IgG antibodies present in the serum sample. (B) Common
responses to S and N proteins across COVID-19 patients. The y axis indicates the

fraction of COVID-19 patient samples (n = 348) enriching each 20-mer peptide
with either IgG (top) or IgA (bottom) antibodies. (C) Comparison of the IgA and
IgG responses in individual COVID-19 patients. Each set of two rows represents
the IgG and IgA antibody specificities of a single patient, with data displayed
for 10 representative COVID-19 patients. Numeric values indicate the degree of
enrichment (z-score) of each peptide tiling across the S and N proteins.
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Fig. 4. Machine learning models trained on VirScan data discriminate COVID-19–
positive and –negative individuals with very high sensitivity and specificity.
(A) Gradient-boosting machine learning models were trained on IgG and IgA VirScan
data from 232 COVID-19 patients and 190 pre–COVID-19 era controls. Separate
models were created for the IgG and IgA data, and then a third model (Ensemble)
was trained to combine the outputs of the first two. (B) The plot shows the
predicted probability that each sample is positive for COVID-19. True COVID-19–
positive samples are shown as red dots; true COVID-19–negative samples are shown
as gray dots. The corresponding confusion matrix for each model is shown on the
right. (C and D) SHAP analysis to identify the most discriminatory peptides
informing the models in (B). The chart in (C) summarizes the relative importance
of the most discriminatory peptides increased among COVID-19 patients identified
by the IgG and IgA gradient-boosting models. The enrichment [log2(fold change)
of the normalized read counts in the sample IP versus in no-serum control

reactions] of each of these peptides across all samples is shown in (D). (E) Luminex
assay using highly discriminatory SARS-CoV-2 peptides identifies IgG antibody
responses in COVID-19 patients but rarely in pre–COVID-19 era controls. Each
column represents a COVID-19 patient (n = 163) or pre–COVID-19 era control
(n = 165); each row is a SARS-CoV-2–specific peptide. Peptides containing public
epitopes from rhinovirus A, EBV, and HIV-1 served as positive and negative controls.
The color scale indicates the median fluorescence intensity (MFI) signals after
background subtraction. (F) Receiver operating characteristic (ROC) curve for the
Luminex assay predicting SARS-CoV-2 infection history, evaluated by 10× cross-
validation. The light red lines indicate the ROC curve for each test set, the dark line
indicates the average, and the gray region represents ±1 SD. The average area
under the curve (AUC) is shown. (G) (Left) Predicted probability that each
sample is positive for COVID-19, using the Luminex model, as in (B). The dashed
line indicates the model threshold. (Right) Confusion matrix for the Luminex model.
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Fig. 5. Correlates of
COVID-19 severity. (A)
Differential recognition of
peptides from SARS-CoV-2
N and S between
COVID-19 nonhospitalized
patients (n = 131), hospi-
talized patients (n = 101),
and pre–COVID-19 era
negative controls (n =
190). Each column repre-
sents a specific patient
and each row represents
a peptide tile; tiles are
labeled by amino acid
start and end position
and may be duplicated
for intervals for which
amino acid sequence
diversity is represented in
the library. Color intensity
represents the degree of
enrichment (z-score) of
each peptide in IgG
samples. Asterisks indi-
cate peptides that exhibit
a significant increase in
recognition by sera from
hospitalized versus non-
hospitalized patients
(Kolmogorov-Smirnov
test, Bonferroni-corrected
P value thresholds of
0.001 for S and 0.0025
for N). (B) SARS-CoV-2
Luminex assay identifies
stronger IgG responses in
hospitalized COVID-19
patients than in non-
hospitalized COVID-19
patients. Each column
represents either a non-
hospitalized (n = 32) or
hospitalized (n = 32)
COVID-19+ patient or a
pre–COVID-19 era control
(n = 32); each row repre-
sents a peptide in the
Luminex assay. The color
scale indicates the MFI
signals after background
subtraction. (C) All pep-
tides in the VirScan
library are plotted by the
fraction of nonhospital-
ized (x axis) and hospi-
talized COVID-19 patient
IgG samples (y axis) in which they are recognized. A z-score threshold of 3.5
was used as an enrichment cutoff to count a peptide as positive. Peptides
that exhibit statistically significant associations with hospitalization status are
colored by virus of origin (Fisher’s exact test, Bonferroni-corrected P value
threshold of 8.52 × 10−7). All peptides that do not exhibit significant association
with hospitalization status are shown in gray. The significant peptides shown
are collapsed for high sequence identity. (D) All peptides derived from CMV

that are present in the VirScan library are plotted by median z-score for the
nonhospitalized (x axis) and hospitalized COVID-19 patients (y axis). The line
y = x is shown as a dashed line. (E) Reduced recognition of mild disease–
associated antigens with age. The histogram shows the relative recognition in
healthy donors at age 58 compared with age 42 for each distinct antigen
that was more strongly recognized by antibodies in nonhospitalized than
hospitalized COVID-19 patients.
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surface proteins could increase the risk of se-
vere disease due to antibody-dependent en-
hancement (ADE), as has been observed for
SARS-CoV (16, 17). Furthermore, exposure to
certain viruses could affect the response to
SARS-CoV-2 by altering the immune system.
To examine these possibilities, we analyzed
the virome-wide VirScan data and found that
overall, the NH patients exhibited greater re-
sponses to individual peptides from common
viruses such as rhinoviruses, influenza viruses,
and enteroviruses, whereas the H patients
displayed more robust responses to peptides
from cytomegalovirus (CMV) and herpes sim-
plex virus 1 (HSV-1) (Fig. 5C). These observations
may be influenced by demographic differences
in the NH and H cohorts, as described below.
We sought to understand whether the dif-

ferential reactivity to CMV andHSV-1 between
the H and NH patients was due to differences
in the strength of antibody responses or the
prevalence of infection (these viruses are com-
mon, but not ubiquitous like rhinoviruses,
enteroviruses, and influenza viruses). Using
VirScan data, we found that the H group had
a higher incidence of both CMV and HSV-1
infection: 82.2% (83 of 101) of the H group
were positive for CMV versus 37.4% (49 of
131) of the NH group, whereas 92.1% (93 of
101) of the H group were positive for HSV-1
versus 45.8% (60/131) of the NH group. To ex-
amine the relative strength of the antibody
responses, we considered only CMV- or HSV-
1–seropositive individuals from the NH and
H groups: The antibody response to both CMV
(Fig. 5D) and HSV-1 (fig. S2) was stronger
among the NH individuals. Thus, the differing
seroprevalence of CMV and HSV-1 in the NH
versus H groups likely explains the results
shown in Fig. 5C. We conclude that antibody
responses to nearly all viruses, except SARS-
CoV-2, were weaker in the H patients than in
the NH patients.
These notable differences led us to examine

potential demographic covariates between
the NH and H groups. We found that age,
sex, and race were all significantly associated
with COVID-19 severity (fig. S3), as has been
reported (18, 19). Older age, male sex, and non-
white racial groups were significantly over-
represented in the H group compared with
the NH group (fig. S3 and table S3). Further-
more, hospitalized males exhibited stronger
responses to N than hospitalized females,
whereas nonhospitalized males and females
did not exhibit differential responses to any
SARS-CoV-2 proteins (fig. S3E). Advanced age
is a dominant risk factor for severe COVID-19
and is correlated with reduced immune func-
tion (20). In light of the age difference between
the H (median age: 58) and NH (median age:
42) patients in our cohort, we reasoned that
the antigens recognized more strongly in the
NH group might reflect more general age-

associated changes in humoral immunity. To
test this hypothesis, we examined VirScan
data for a cohort of 648 healthy, pre-pandemic
donors. We characterized the recognition of
eachNH-associatedpeptide in subsets of healthy
donors representing different age groups and
observed a general decline in recognition with
age, including amedian 19% reduction in recog-
nition from age 42 to 58 (Fig. 5E). These data
suggest that age-related changes to the immune
system may partially explain the observation
of weaker antibody responses to most viruses
in the H group. Although it is correlative and
potentially influenced by other demographic
differences between the NH and H cohorts,
the broad age-related diminution in immune
system activity that we observed could be an
important aspect of the increased severity in
the H group.

Cross reactivity of SARS-CoV-2 epitopes

We returned to the question of epitope cross-
reactivity, this time examining antibody re-
sponses to the triple-alanine scanning library.
For each 56-mer peptide spanning the SARS-
CoV-2 proteome, this library contained a col-
lection of scanning mutants: The first mutant
peptide encoded three alanines instead of the
first three residues, the second mutant pep-
tide contained the three alanines moved
one residue downstream, and so on (fig. S4).
Antibodies that recognize the wild-type 56-mer
peptide will not recognize mutant versions
of the peptide containing alanine substitutions
at critical residues. Thus, the location of the
linear epitope can be deduced by looking for
“antibody footprints,” indicated by stretches
of alanine mutants missing from the pool
of immunoprecipitated phage. The first and
last triple-alanine mutations to interfere with
binding are expected to start two amino acids
before the first residue that is essential for
antibody binding and end two amino acids
after the last.
With respect to cross-reactivity, IgG from

COVID-19 patients recognized more 56-mer
peptides from the common HCoVs HKU1, OC43,
299E, and NL63 than IgG from pre–COVID-19
era controls. This difference is primarily driven
by a pronounced increase in recognition of S
peptides from the HCoVs and is likely a result
of cross-reactivity of antibodies developed dur-
ing SARS-CoV-2 infection (Fig. 6A).
We mapped the position of all HCoV S pep-

tides that display increased recognition in
COVID-19 patient samples onto the SARS-
CoV-2 S protein. This revealed four immuno-
dominant regions recognized by >25% of
COVID-19 patients (Fig. 6B). Comparing the
frequency of peptide recognition between
the COVID-19 patients and pre–COVID-19 era
controls showed that two of these immuno-
genic regions in SARS-CoV-2 S are likely to
cross-react strongly with homologous regions

of other HCoVs, as the frequency of recognition
of the HCoV peptides at these regions rises
in COVID-19 patients. For instance, peptides
from all four seasonal HCoVs that span the
region corresponding to residues 811 to 830
of SARS-CoV-2 S are frequently recognized by
COVID-19 patients but much less so by pre–
COVID-19 era controls, suggesting that this
recognition is a result of antibodies developed
or boosted in response to SARS-CoV-2 infec-
tion. Using triple-alanine scanning mutagene-
sis (fig. S4), wemapped the antibody footprints
in this region to an 11–amino acid stretch that
is highly conserved between SARS-CoV-2 and
all four common HCoVs, which explains the
cross-reactivity (Fig. 6, C and D). Similarly,
both SARS-CoV-2 and HCoV-OC43 peptides
corresponding to S 1144-1163 are recognized
much more frequently by COVID-19 patients
than pre–COVID-19 era controls, and triple-
alanine-scanning mutagenesis confirmed that
the antibody footprints are located within a
10–amino acid stretch conservedbetweenSARS-
CoV-2 andHCoV-OC43 but not the otherHCoVs.
By contrast, the epitope sequences around S
551-570 and S 766-785 are not conserved be-
tween SARS-CoV-2 and the seasonal HCoVs,
and indeed these epitopes are not cross-reactive.
One HCoV-HKU1 peptide spanning S 551-570
scores in both COVID-19 patients and pre–
COVID-19 era control samples; however, its fre-
quency of detection is not further boosted in
COVID-19 patients, suggesting that the anti-
body that recognizes the SARS-CoV-2 S 551-570
peptide is distinct from the antibody recogniz-
ing the HCoV-HKU1 peptide, consistent with
sequence differences at this location (Fig. 6C).
Notably, we detect antibody responses to

SARS-CoV-2 S 811-830 in 79.9% of COVID-19
patients. However, we also see responses to the
corresponding peptides from OC43 and 229E
in ~20% of the pre–COVID-19 era controls,
and these responses seem to cross-react with
SARS-CoV-2. It is possible that some patients
have preexisting antibodies to this region that
cross-react and are expanded during SARS-
CoV-2 infection. This might explain the very
high prevalence of antibody responses to this
epitope and suggests that anamnestic responses
to seasonal coronaviruses may influence the
antibody response to SARS-CoV-2. Of note, this
region is located directly after the predicted
S2′ cleavage site for SARS-CoV-2 and overlaps
the fusion peptide. A recent study showed that
adding an excess of the fusion peptide reduced
neutralization, implying that an antibody that
binds the fusion peptide might contribute to
neutralization by interfering with membrane
fusion (21, 22). Given the frequency of sero-
reactivity toward this epitope in COVID-19 pa-
tients, it will be important to determinewhether
the antibodies that recognize this epitope
are neutralizing in future studies. If so, the
prior presence of antibodies recognizing this
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Fig. 6. Cross-reactive
epitopes among
human corona-
viruses. (A) Bar
graphs depict the
average number of
56-mer peptides
derived from SARS-
CoV-2, SARS-CoV,
and each of the four
common HCoVs that
are significantly
enriched per sample
(IgG IP). Error bars
represent 95% con-
fidence intervals.
(B) Analysis of
cross-reactive epi-
topes for HCoV S
proteins. The upper
plot shows the sim-
ilarity of each region
of the SARS-CoV-2
S protein to the
corresponding region
in the four common
HCoVs (see Materials
and methods). The
frequency of peptide
recognition is shown
in the bottom two
plots. Peptides from
each virus are indi-
cated by colored
lines: The length of
each line along the
x axis indicates the
corresponding region
of the SARS-CoV-2 S
protein covered by
each peptide
according to a pair-
wise protein align-
ment; the height of
each line corre-
sponds to the frac-
tion of samples in
which that peptide
scored in either the
IgG or IgA IPs. The
epitopes mapped in
(C) and (D) are
highlighted in pink.
(C and D) Mapping of
recurrently recognized SARS-CoV-2 S IgG (C) and IgA (D) epitopes by triple-
alanine scanning mutagenesis. Each plot represents a 20–amino acid
region of the SARS-CoV-2 S protein within the regions highlighted in (B).
Each column of the heatmap corresponds to an amino acid position, and
each row represents a sample. The color intensity indicates the average
enrichment of 56-mer peptides containing an alanine mutation at that site
relative to the median enrichment of all mutants of that 56-mer in each

sample. COVID-19 patients with a minimum relative enrichment below
0.6 in the specified window are shown. The amino acid sequence across each
region of SARS-CoV-2 S, as well as an alignment of the corresponding
sequences in the common HCoVs, is shown below each heatmap. Single-
letter abbreviations for the amino acid residues are as follows: A, Ala; C, Cys;
D, Asp; E, Glu; F, Phe; G, Gly; H, His; I, Ile; K, Lys; L, Leu; M, Met; N, Asn;
P, Pro; Q, Gln; R, Arg; S, Ser; T, Thr; V, Val; W, Trp; and Y, Tyr.
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epitope may affect the course of COVID-19
and mitigate severity.

Epitope mapping reveals hundreds of distinct
SARS-CoV-2 epitopes, including likely epitopes
of neutralizing antibodies

We also used the triple-alanine scanning mu-
tagenesis library to map antibody footprints
across the entire SARS-CoV-2 proteome (Fig. 7,
fig. S5, and tables S10 to S19). We used a hidden
Markov model (HMM) to analyze the mutage-
nesis data and detect antibody footprints. By
integrating signals across stretches of consecu-
tive residues, the HMM successfully distin-
guished antibody footprints from random noise
and thus detected regions containing epitopes
with improved sensitivity and far greater reso-
lution than was possible with the 56-mer pep-
tide data alone (see Materials and methods)
(figs. S6 and S7 and tables S15 to S18). We per-
formed hierarchical clustering on the antibody
footprints identified by the HMM to determine
the number of distinct epitopes (here defined
as distinct antibody footprints) that we de-
tected across the SARS-CoV-2 proteome (fig. S8
and table S10). Overall, we identified 3103 anti-
body footprints across 169 COVID-19 patient
samples and mapped 823 distinct epitopes
(table S19). These epitopes are not evenly dis-
tributed along the proteins but rather fall into
303 epitope clusters, each of which contains
multiple overlapping epitopes (fig. S8). For ex-
ample, across the 89 IgA samples that recog-
nized the epitope cluster from S 1135-1165,
we identified nine epitopes that overlap but
have distinct triple-alanine scanning profiles
that indicate distinct antibody-epitope interac-
tions (fig. S8C). Individual epitopes are recog-
nized at a wide range of frequencies in the
COVID-19 patients. The average COVID-19 pa-
tient sample contained antibodies to ~18 dis-
tinct linear epitopes (fig. S9), although this is
likely an underestimate of the total epitope
count per person, as VirScan does not effici-
ently detect antibodies recognizing discon-
tinuous (conformational) epitopes (although
such antibodies may retain some affinity to
linear peptides that constitute the epitope).
The SARS-CoV-2 epitope landscape includes

regions recognized by antibodies in a large
fraction of COVID-19 patients (“public” epi-
topes) and regions recognized by antibodies in
only one or a few individuals (“private” epitopes).
For example, we mapped six distinct epitopes
in the region spanning N 151-175 (fig. S5C).
One of these epitopes was recognized by nearly
one-third of the COVID-19 patients, whereas
the rest were detected by <2%of the COVID-19
patients. Similarly, the region spanning S 766-
835 contained more than 20 distinct epitopes,
including the highly public epitope cluster
near S815 and the public epitope cluster near
S770 that is preferentially recognized by IgA
(Fig. 7B). The public epitope cluster near S770

was recognized in 43% of COVID-19 patient
IgA samples but only 4% of COVID-19 patient
IgG samples. In another example, we detected
at least 20 distinct epitopes within a stretch
of just 46 residues in N 363-408, 10 of which
were specific to IgA and 2 of whichwere specific
to IgG (fig. S5D). The positions of several public
epitope clusters are shown mapped onto the
structure of SARS-CoV-2 in fig. S10.
We also mapped at least 12 distinct epitopes

in the SARS-CoV-2 RBD, including 5 in the re-
ceptor binding motif that binds ACE2, the hu-
man receptor for SARS-CoV-2, and6 that overlap
ACE2 binding sites (Fig. 7, C and D, and fig.
S6A). For example, S 414-427 (labeled E2 in Fig.
7) spans residueK417 in the RBD; K417makes a
direct contact with the human ACE2 protein
in structures of ACE2 bound to the RBD. Thus,
antibodies that recognize E2 are likely to block
ACE2 binding and have neutralizing activity
(Fig. 7E). Epitope S 454-463 (labeled E6 in Fig. 7)
also overlaps ACE2 contact residues and par-
tially overlaps the binding site of the neutralizing
antibody CB6, which suggests that antibodies
recognizing this epitope also have neutralizing
potential (23–25) (Fig. 7G). Several other epi-
topes also span or are adjacent to critical resi-
dues contacted by ACE2 (Fig. 7, F and H). Thus,
our data reveal some of the likely binding sites
for neutralizing antibodies.

Discussion

In this study, we used VirScan to analyze sera
from COVID-19 patients and pre–COVID-19
era controls to provide an in-depth serological
description of antibody responses to SARS-
CoV-2. We mapped the landscape of linear
epitopes in the SARS-CoV-2 proteome, char-
acterized their specificity or cross-reactivity,
and investigated serological and viral expo-
sure history correlates of COVID-19 severity.

Identification of SARS-CoV-2 epitopes
recognized by COVID-19 patients

VirScan detected robust antibody responses to
SARS-CoV-2 in COVID-19 patients. These were
primarily directed against the S and N proteins,
with substantial cross-reactivity to SARS-CoV
and milder cross-reactivity with the distantly
related MERS-CoV and seasonal HCoVs. Cross-
reactive responses to SARS-CoV-2 ORF1 were
frequently detected in pre–COVID-19 era con-
trols, suggesting that these result from anti-
bodies induced by other pathogens.
At the population level, most SARS-CoV-2

epitopes were recognized by both IgA and IgG
antibodies. We found that individuals often
exhibited a “checkerboard” pattern, using either
IgG or IgA antibodies against a given epi-
tope. This suggests that a given IgM clone often
evolves into either an IgG or IgA antibody,
potentially influenced by local signals, and
that, within an individual, theremay often be
a largelymonoclonal response to a given epitope.

Examination of the humoral response to
SARS-CoV-2 at the epitope level using the triple-
alanine scanningmutagenesis library revealed
145 epitopes in S, 116 in N, and 562 across the
remainder of the SARS-CoV-2 proteome (table
S10).Most S epitopeswere located on the surface
of the protein or within unstructured regions
that often abut, but seldom overlap, glycosyl-
ation sites (fig. S11). These epitopes ranged
from private to highly public, with one region
of S (S 811-830) being recognized by 79.9% of
COVID-19 patients. Triple-alanine scanning
mutagenesis showed highly conserved antibody
footprints for some epitope clusters and diverse
antibody footprints for others, indicating vary-
ing levels of conservation at the antibody-
epitope interface among individuals (fig. S8).
Peptides containing public epitopes could be
used to isolate and clone antibodies from B
cells bearing antigen-specific receptors. If these
antibodies are found to lack protective effects
or have deleterious effects, these regions could
be mutated in future vaccines to divert the im-
munological response to other regions of S that
might have more protective effects. Epitopes
also varied in cross-reactivity, which can be ex-
plained by the presence or absence of sequence
conservation between seasonal HCoVs and
SARS-CoV-2 at these regions. Antibodies against
several conserved epitopes in HCoVs seemed
to be anamnestically boosted in COVID-19 pa-
tients. Antibodies recognizing one of these
epitopes in the fusion peptide of S2 have been
implicated in neutralization, and their pres-
ence prior to SARS-CoV-2 infection couldmiti-
gate the severity of COVID-19. Collectively, these
data help explain why many serological assays
for SARS-CoV-2 produce false positives due to
preexisting cross-reactive antibodies, some of
whichmay potentially affect the consequences
of future SARS-CoV-2 infections.

Development of SARS-CoV-2 signature peptides
for detecting seroconversion by Luminex

Using machine learning models trained on
VirScan data, we developed a classifier that
predicts SARS-CoV-2 exposure history with
99% sensitivity and 98% specificity. We iden-
tified peptides frequently and specifically recog-
nized by COVID-19 patients and used these
to create a Luminex assay that predicts SARS-
CoV-2 exposure with 90% sensitivity and 95%
specificity. Notably, the Luminex assay requires
only three peptides to perform comparably
to full-antigen ELISAs and could be further
optimized in the future. This highlights the
utility of VirScan-based serological profiling
in the development of rapid and efficient diag-
nostic assays based on public epitopes.

Correlates of severity in COVID-19 patients

An important goal is to uncover serological
correlates of COVID-19 severity. To this end,
we compared cohorts of COVID-19 patients
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Fig. 7. High-resolution
mapping of SARS-
CoV-2 epitopes.
(A) Mapping of anti-
body epitopes in
the SARS-CoV-2 S
protein using triple-
alanine scanning
mutagenesis. Each
column of the heat-
map corresponds
to an amino acid posi-
tion, and each row
represents a COVID-19
patient. The color
intensity indicates
the average enrich-
ment of three triple-
alanine mutant
56-mer peptides
containing an alanine
mutation at that site,
relative to the median
enrichment of all
mutants of that
56-mer. The upper
panel shows the frac-
tion of samples that
recognized each
region of S as mapped
by the IgA 56-mer
(gray) versus the IgA
and IgG triple-alanine
scanning data (blue
and red, respectively).
(B and C) Detailed
plot of the triple-
alanine scanning
mutagenesis in (A) to
show the epitope
complexity within two
regions: S 766-835 (B)
and S 406-520 (C).
The amino acid
sequence at each
position is shown on
the x axis. In (B), the fusion peptide and predicted S2′ cleavage site are
indicated below the sequence (21, 22). In (C) the distinct IgA epitopes
identified by the HMM and clustering algorithms are depicted by colored bars.
Black dots correspond to ACE2 contact residues in the crystal structure of
the RBD receptor complex (6M0J) (23). Epitopes in regions E9 and E10 were
not picked up by the HMM classifier because of their short length; however,
these regions score in multiple samples and correspond to accessible
regions in the crystal structure, which suggests that they may represent true
epitopes. (D) Cryo–electron microscopy (cryo-EM) structure of the partially
open SARS-CoV-2 S trimer (6VSB) (24), highlighting the locations of the
antibody epitopes mapped by triple-alanine scanning mutagenesis. The
three S monomers are depicted in tan, green, and gray for the two closed
and single open-conformation monomers, respectively. The RBD of the open
monomer is show in light gray. Three of the RBD epitopes from (C) that

overlap ACE2 contact residues and are resolved in the cryo-EM structure
(E2, E5, and E6) are highlighted in red, purple, and blue, respectively. The
locations of additional public epitopes that were mapped in at least 10 samples
across the IgG and IgA experiments are depicted in yellow, pink, and cyan.
(E to H) The locations of four of the epitope footprints mapped in (C) are
shown in relation to the RBD-ACE2 binding interface. The upper image for each
panel shows the structure (6M0J) of SARS-CoV-2 RBD (green) in complex
with ACE2 (cyan). The E2, E5, E6, and E8 epitopes are highlighted in red,
purple, blue, and orange, respectively. Below each structure image is
the sequence alignment of the regions of the SARS-CoV-2 and the SARS-CoV
S proteins encompassing each epitope. The colored bars indicate each
epitope, the black dots indicate residues that directly interact with ACE2 in the
crystal structure, and the shaded residues indicate conservation between
SARS-CoV-2 and SARS-CoV.
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who did (H) or did not (NH) require hospital-
ization. Using both VirScan and the COVID-19
Luminex assay, we noticed a pronounced
and somewhat counterintuitive increase in
recognition of peptides derived from the
SARS-CoV-2 S and N proteins among the H
group, withmore extensive epitope spreading.
Whether this is a cause or a consequence of
severe disease is not clear. Individuals whose
innate and adaptive immune responses are
not able to quell the infection early may ex-
perience a higher viral antigen load, a pro-
longedperiodof antibody evolution, andepitope
spreading. Consequently, these patients might
develop stronger and broader antibody re-
sponses to SARS-CoV-2 and could be more
likely to have hyperinflammatory reactions
such as cytokine storms that increase the prob-
ability of hospitalization. We noticed that
hospitalized males had more robust antibody
responses to SARS-CoV-2 than hospitalized
females. This finding may indicate that males
in this group are less able to control the virus
soon after infection, and it is consistent with
reported differences in disease outcomes for
males and females (18, 19).
VirScan allowed us to examine viral expo-

sure history, which revealed two notable cor-
relations. First, the seroprevalence of CMV
and HSV-1 was much greater in the H group
than the NH group. The demographic differ-
ences in our relatively small cohort of H versus
NH COVID-19 patients make it impossible for
us to conclusively determine whether CMV or
HSV-1 infection affects disease outcome or is
simply associated with other covariates such
as age, race, and socioeconomic status. Although
CMV prevalence slightly increases with age
after 40, it also differs greatly among ethnic
and socioeconomic groups (26, 27). CMV is
a chronic herpesvirus that is known to have
a profound impact on the immune system:
It can skew the naïve T-cell repertoire (28)
and decrease T and B cell function (29) and
is associated with higher systemic levels of
inflammatory mediators (30) and increased
mortality of people >65 years of age (31). The
effects of CMV on the immune system could
potentially influence COVID-19 outcomes.
The second notable correlation we observed

was a substantial decrease in the levels of
antibodies that target ubiquitous viruses such
as rhinoviruses, enteroviruses, and influenza
viruses in COVID-19 H patients compared
with NH patients. When we examined only
the CMV+ or HSV-1+ individuals in the two
groups, we found that the strength of the
antibody response to CMVandHSV-1 peptides
was also reduced in the H group. We exam-
ined the effects of age on viral antibody levels
in a pre–COVID-19 era cohort and found a
diminution with age in the antibody response
against viral peptides differentially recognized
between the H and NH groups, consistent

with previous studies on the effects of aging on
the immune system (20). This inferred re-
duced immunity during aging could affect the
severity of COVID-19 outcomes.
In correlative analyses such as these, it is

difficult to draw strong conclusions about
causality, given the demographic differences
in the NH versus H groups. The NH group is
younger and has a higher percentage of white
and female individuals (average age 42, 66%
female) than the H group (average age: 58;
42% female) (fig. S2), consistent with well-
documented demographic skews in severely
affected COVID-19 patients (18, 19). However,
even if age and other demographic factors are
covariates, CMV seropositivity and age-related
reduction in antibody titers against viral anti-
gens, as described here, could still influence the
severity of infection. To test these hypotheses,
a much larger cohort of COVID-19 patients with
severe and mild disease that could be matched
for age, race, and sex is required. Such future
studies have the potential to enhance our un-
derstanding of the biological mechanisms un-
derlying variable outcomes of COVID-19.
Deep serological profiling can provide a

window into the breadth of viral responses,
how they differ in patients with diverse out-
comes, and how past infections may influence
present responses to viral infections. Under-
standing the epitope landscape of SARS-CoV-2,
particularly within S, provides a stepping stone
to the isolation and functional dissection of
both neutralizing antibodies and antibodies
thatmight exacerbate patient outcomes through
ADE and could inform the production of im-
proved diagnostics and vaccines for SARS-CoV-2.

Materials and methods
Sources of serum used in this study
Cohort 1

Plasma samples were from volunteers recruited
at Brigham and Women’s Hospital who had
recovered from a confirmed case of COVID-19.
All volunteers had a polymerase chain reac-
tion (PCR)–confirmed diagnosis of COVID-19
before being admitted to the study. Volunteers
were invited to donate specimens after recov-
ering from their illness and were required to be
symptom free for a minimum of 7 days. Partic-
ipants provided verbal and/or written informed
consent andprovided blood specimens for anal-
ysis. Clinical data, including date of initial symp-
tomonset, symptom type, date of diagnosis, date
of symptom cessation, and severity of symp-
toms, were recorded for all participants, as were
results of COVID-19 molecular testing. Partic-
ipation in these studies was voluntary, and the
study protocols have been approved by the
respective institutional review boards (IRBs).

Cohort 2

Serumsamples frompatientswithPCR-confirmed
COVID-19 cases while admitted to the hospital

and from patients who were actively enrolled
into a prospective study of COVID-19 infection
were provided by collaborators from the Uni-
versity of Washington. Residual clinical blood
specimens were used. Clinical data, including
symptom duration and comorbidities, were
extracted frommedical records and participant-
completed questionnaires. All study proce-
dures have been approved by the University
of Washington Institutional Review Board.

Cohort 3

Plasma samples were provided by collabora-
tors from Ragon Institute of MGH, MIT and
Harvard and Massachusetts General Hospital
from study participants in three categories: (i)
PCR-confirmedCOVID-19 caseswhile admitted
to the hospital; (ii) PCR-confirmed SARS-CoV-
2–infected cases seen in an ambulatory setting;
and (iii) PCR-confirmed COVID-19 cases in
their convalescent stage. All study participants
provided verbal and/or written informed con-
sent. Basic data on days since symptom onset
were recorded for all participants, as were re-
sults of COVID-19 molecular testing. Partici-
pation in these studies was voluntary, and the
study protocols have been approved by the
Partners Institutional Review Board.

Cohort 4

Patients were enrolled in the emergency de-
partment (ED) at Massachusetts General Hos-
pital in Boston from 15March to 15 April 2020
during the peak of the COVID-19 surge, with
an IRB-approved waiver of informed consent.
These included patients 18 years or older with
a clinical concern for COVID-19 upon ED ar-
rival and acute respiratory distress with at
least one of the following: (i) tachypnea ≥22
breaths per minute, (ii) oxygen saturation
≤92% on room air, (iii) a requirement for
supplemental oxygen, or (iv) positive-pressure
ventilation. A blood sample was obtained in a
10-ml EDTA tube concurrent with the initial
clinical blood draw in the ED. Blood was also
drawn on days 3 and 7 if the patient was still
hospitalized on those dates. Clinical course
was followed to 28 days post-enrollment or
until hospital discharge if that occurred after
28 days.
Enrolled individuals who were positive for

SARS-CoV-2were categorized into four outcome
groups: (i) requiring mechanical ventilation,
with subsequent death; (ii) requiring mechan-
ical ventilation and subsequently recovered;
(iii) requiring hospitalization on supplemen-
tal oxygen but not mechanical ventilation; and
(iv) discharged from ED and not subsequently
readmitted with supplemental oxygen. Demo-
graphic, past medical, and clinical data were
collected and summarized for each outcome
group, using medians with interquartile ranges
and proportions with 95% confidence intervals,
where appropriate.
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Cohorts 5 and 6
Longitudinal Hopkins cohort: Remnant serum
specimens were collected longitudinally from
PCR-confirmed COVID-19 patients seen at Johns
Hopkins Hospital. Samples were de-identified
before analysis, with linked time since onset
of symptom information. Specimens were ob-
tained and used in accordance with an ap-
proved IRB protocol.

Cohorts 7 and 8

Cohorts 7 and 8 were from previous studies
(7, 8).

Cohort 9

Plasma samples were collected from con-
senting participants (37 female and 51 male
individuals; 18 to 85 years old) of the Partner’s
Biobank program at Brigham and Women’s
Hospital during the period from July to August
2016. Plasma was harvested after a 10-min
1200xg ficoll density centrifugation from blood
that was diluted 1:1 in phosphate buffered sa-
line. Samples were frozen at −30°C in 1-ml ali-
quots. All samples were collected with Partners
Institutional Review Board approval.

Blood sample collection methods

For cohorts 1 to 3: Blood samples were collected
into EDTA (ethylenediamine tetraacetic acid)
tubes and spun for 15 min at 2600 rpm accord-
ing to standard protocol. Plasma was aliquoted
into 1.5-ml cryovials and stored at −80°C until
analyzed. Only de-identified plasma aliquots in-
cludingmetadata (e.g., days since symptom on-
set, severity of illness, hospitalization, ICU status,
survival) were shared for this study. When ap-
propriate for nonconvalescent samples, plasma
or serum was also heat-inactivated at 56°C for
60 min and stored at ≤20°C until analyzed.
For cohort 4: Blood samples were collected

in EDTA tubes and processed no more than
3 hours post–blood draw in a biosafety level
2+ laboratory on site. Whole blood was diluted
with room temperature RPMI medium in a
1:2 ratio to facilitate cell separation for other
analyses using the SepMate PBMC isolation
tubes (STEMCELL) containing 16 ml of Ficoll
(GE Healthcare). Diluted whole blood was cen-
trifuged at 1200 rcf for 20 min at 20°C. After
centrifugation, plasma (5 ml) was pipetted into
15-ml conical tubes and placed on ice during
PBMC separation procedures. Plasma was then
centrifuged at 1000 rcf for 5 min at 4°C, pipetted
in 1.5-ml aliquots into three cryovials (4.5 ml
total), and stored at −80°C. For the current study,
samples (200 ml) were first randomly allocated
onto a 96-well plate on the basis of disease out-
come grouping.

Design and cloning of the SARS-CoV-2 tiling and
triple-alanine scanning library

Multiple VirScan libraries were constructed as
described below. We created ~200-nt oligos

encoding peptide sequences 56 amino acids
in length, tiled with 28–amino acid overlap
through the proteomes of all coronaviruses
known to infect humans, includingHCoV-NL63,
HCoV-229E, HCoV-OC43, HCoV- HKU1, SARS-
CoV, MERS-CoV, and SARS-CoV-2, as well as
three closely related bat viruses (BatCoV-Rp3,
BatCoV-HKU3, and BatCoV-279). For SARS-
CoV-2, we included a number of coding variants
available in early sequencing of the viruses. For
SARS-CoV-2, we additionally made a 20–amino
acid peptide library tiling every five amino acids.
Additionally, for SARS-CoV-2 we made triple-
alanine mutant sequences scanning through
all 56-mer peptides. Non-alanine amino acids
were mutated to alanine, and alanines were
mutated to glycine. Each peptide in all three
libraries was encoded in two distinct ways
such that there were duplicate peptides that
could be distinguished by DNA sequencing.
We reverse-translated the peptide sequences
into DNA sequences that were codon-optimized
for expression in Escherichia coli, that lacked
restriction sites used in downstream cloning
steps (EcoRI and XhoI), and that were dis-
tinct in the 50 nt at the 5′ end to allow for
unambiguous mapping of the sequencing
results. Then we added adapter sequences to
the 5′ and 3′ ends to form the final oligonu-
cleotide sequences (table S1): These adapter
sequences facilitated downstream PCR and
cloning steps. Different adapters were added
to each sublibrary so that they could be ampli-
fied separately. The resulting sequences were
synthesized on a releasable DNA microarray
(Agilent). We PCR-amplified the DNA oligo
library with the primers shown below, di-
gested the product with EcoRI and XhoI, and
cloned it into the EcoRI/SalI site of the T7FNS2
vector (5). We packaged the resultant library
into T7 bacteriophage using the T7 Select
Packaging Kit (EMD Millipore) and ampli-
fied the library according to themanufacturer’s
protocol.
Primers used for analysis of the different

libraries employed:
CoV 56-mer library:
5′ adapter: 5′-GAATTCGGAGCGGT-3′
3′ adapter: 5′-CACTGCACTCGAGA-3′
Forward primer: 5′-AATGATACGGCGTGAA-

TTCGGAGCGGT-3′
Reverse primer: 5′-CAAGCAGAAGACGTCTC-

GAGTGCAGTG-3′
SARS CoV-2 triple-alanine scanning library:
5′ adapter: 5′-GAATTCCGCTGCGT-3′
3′ adapter: 5′-CAGGGAAGAGCTCG-3′
Forward primer: 5′-AATGATACGGCGGGAA-

TTCCGCTGCGT-3′
Reverse primer: 5′-CAAGCAGAAGACTCGAG-

CTCTTCCCTG-3′
SARS-CoV-2 20-mer library:
5′ adapter: 5′-GAATTCCGCTGCGT-3′
3′ adapter: 5′-GTACTATACCTACGGAAGG-

CTCG-3′

Forward primer: 5′-AATGATACGGCGGGAA-
TTCCGCTGCGT-3′
Reverse primer: 5′-TATCTCGCATAGCGCA-

TATACTCGAGCCTTCCGTAGGTATAGTAC-3′

Phage immunoprecipitation and sequencing

We performed phage IP and sequencing as
described previously or with slight modifica-
tions (5–8). For the IgA and IgG chain isotype-
specific IPs, we substitutedmagnetic protein A
and protein G Dynabeads (Invitrogen) with
6 mg ofMouseAnti-Human IgGFc-BIOT (South-
ern Biotech) or 4 mg of Goat Anti-Human IgA-
BIOT (Southern Biotech) antibodies. We added
these antibodies to the phage and serum mix-
ture and incubated the reactions overnight
a 4°C. Next, we added 25 or 20 ml of Pierce
Streptavidin Magnetic Beads (Thermo-Fisher)
to the IgG or IgA reactions, respectively, and
incubated the reactions for 4 hours at room
temperature, then continued with the wash-
ing steps and the remainder of the protocol, as
previously described (5–8).

Machine learning classifiers

Gradient-boosting classifier models for the
VirScan data were generated using the XGBoost
algorithm (version 1.0.2). Classifier models were
trained to discriminate either COVID-19+ and
COVID-19− patients (n = 232 and 190, respec-
tively) or severe disease and mild disease (n =
101 hospitalized patients and n = 131 nonhospi-
talized patients). Two models were generated
in each case, one using the z-scores for each
VirScan peptide from the IgG IP as input fea-
tures, and the other using the z-scores for each
VirScan peptide from the IgA IP as input fea-
tures. Additionally, a third logistic regression
classifier was trained on the output probabil-
ities from the IgG and IgA models to generate
a combined prediction. The performance of
each of the three model was assessed using a
20-fold cross-validation procedure, whereby
predictions for each 5% of the data points
were generated from a model trained on the
remaining 95%. The SHAP packagewas used to
identify the top discriminatory peptide fea-
tures from each of the XGBoost models. The
logistic regressionmodels for the Luminex data
were generated using the scikit-learn python
package. The raw median fluorescence inten-
sity (MFI) values were preprocessed using the
RobustScalar function, then a logistic regres-
sion model was trained using the three most
discriminate SARS-CoV-2 peptides. Themodel
performance was quantified by 10-fold cross-
validation.

High-resolution epitope identification
and clustering

For each position in the 56-mer, the relative
enrichment for each amino acid was calcu-
lated as the mean fold change of the three
mutant peptides containing an alanine mutation
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at that location relative to the median fold
change of all alanine mutants for the 56-
mer. Overlapping 56-mers were combined by
taking the minimum value at each shared
position to account for the possibility that an
epitope is interrupted in one of the tiles by
the peptide junction. To map the boundaries
of antibody footprints from the triple-alanine
scanning data for each sample we used the
hmmlearn python package to develop a three-
state HMM assuming a Gaussian distribution
of relative enrichment emissions for each state.
Mapped antibody footprints smaller than five
amino acids in length were removed from
the subsequent analysis. Next, we performed
a two-step hierarchical clustering procedure
to identify the number of distinct epitopes.
First, for each protein all antibody footprints
identified across the 169 COVID-19+ patient
samples were clustered based on the start and
stop locations predicted by the HMM classifier
to generate epitope clusters. Next, to identify
distinct epitopes, we performed an additional
step of hierarchical clustering on the sam-
ples with epitopes within each epitope cluster
based on the relative enrichment values of
the triple-alanine mutants spanning the epi-
tope (fig. S8).

Similarity-score calculation

Pairwise alignments were generated for the S
proteins of SARS-CoV-2 and each of the four
common HCoVs. Similarity scores were calcu-
lated separately for a 21–amino acid window
centered at each position of the SARS-CoV-2 S
protein. The mean similarity score between
SARS-CoV-2 and the corresponding sequence
of the other HCoV was calculated for each win-
dow using the BLOSUM62 substitution matrix
with a gap opening and extending penalty
of −10 and −1, respectively. The maximum sim-
ilarity was score was calculated as the max-
imum value among the pairwise similarity
scores between SARS-CoV-2 and each of the
four common HCoVs for the sliding window
centered at each position.

Luminex multiplex peptide epitope
serology assays

Multiplexed SARS-CoV-2 peptide epitope assays
were built using the peptides listed in table
S9. Peptides were synthesized by the Ragon/
MGH Peptide Core Facility with a Propargly-
glycine (Pra, X) moiety in the N terminus to
facilitate cross-linking to Luminex beads using
a “click” chemistry strategy as described pre-
viously (13). In brief, Luminex beads were first
functionalized with amine-PEG4-azide and
then reacted with the peptides to generate
20 different Luminex beads with attached pep-
tides. Luminex bead–based serology assays
were performed in 96-well U-bottom polypro-
pylene plates using PBS + 0.1% bovine serum
albumin as the assay buffer. Bead washes were

done using PBS + 0.05% Triton X-100 by in-
cubation for 1 min on a strong magnetic plate
(Millipore-Sigma, Burlington, MA). All assay
incubation timeswere 20min. In the first step,
beads were incubated with 20 ml of plasma
samples. Samples used for the classifier were
diluted 1:100, samples used to compare dis-
ease severity were diluted 1:300. After a wash
step, bound IgA or IgGwas detected by adding
40 ml of biotin-labeled anti-IgA or IgG anti-
bodies at 0.1 mg/ml (Southern Biotechnology,
Birmingham, AL). Next, 40 ml of phycoerythrin
(PE)–labeled streptavidin (0.2 mg/ml) (Biolegend,
San Diego, CA) and assay plates were ana-
lyzed on a Luminex FLEXMAP 3D instrument
(Luminex Corporation, Austin, Texas) to gen-
erate MFI values to quantify peptide-specific
IgA or IgG levels.

ELISA serology assays

ELISAs were performed separately using
the SARS-CoV-2 N protein, S protein, or the S
receptor-binding domain (RBD). 96-well plates
were coated with antigen overnight. The plates
were then blocked in PBS + 3% BSA. After
washing with PBS + 0.05% Tween-20, the plas-
ma sample were diluted 1:100, added to the
plates and incubated overnight at 4°C. After
incubation, the plates were washed three times
with PBS + 0.05% Tween-20. The bound IgG was
detected by adding anti-human IgG-alkaline
phosphatase (Southern Biotech, Birmingham,
AL) and incubating for 90 min at room tem-
perature. The plates were washed an additional
three times, after which p-nitrophenyl phos-
phate solution (1.6 mg/ml in 0.1 M glycine,
1 mM ZnCl2, 1 mM MgCl2, pH 10.4) was added
to each well and allowed to develop for 2 hours.
Bound IgG was quantified by measuring the
OD405, and the reported values were calcu-
lated as the fold change over the pre–COVID-19
controls.
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