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Multicentric tracking of multiple agents by anterior
cingulate cortex during pursuit and evasion

Seng Bum Michael Yoo® 234 Jiaxin Cindy Tu'® & Benjamin Yost Hayden®

Successful pursuit and evasion require rapid and precise coordination of navigation with
adaptive motor control. We hypothesize that the dorsal anterior cingulate cortex (dACC),
which communicates bidirectionally with both the hippocampal complex and premotor/
motor areas, would serve a mapping role in this process. We recorded responses of dACC
ensembles in two macaques performing a joystick-controlled continuous pursuit/evasion
task. We find that dACC carries two sets of signals, (1) world-centric variables that together
form a representation of the position and velocity of all relevant agents (self, prey, and
predator) in the virtual world, and (2) avatar-centric variables, i.e. self-prey distance and
angle. Both sets of variables are multiplexed within an overlapping set of neurons. Our results
suggest that dACC may contribute to pursuit and evasion by computing and continuously
updating a multicentric representation of the unfolding task state, and support the hypothesis
that it plays a high-level abstract role in the control of behavior.
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oragers often encounter mobile prey that are capable of

fleeing them. Not surprisingly, pursuit is a major element of

the behavioral repertoires of many foragers!~>. Likewise,
many foragers must also avoid predators seeking to capture them
(e.g., ref. ©). Recent studies have begun to identify the computa-
tional processes underlying pursuit and evasion behavior (here-
after shortened to pursuit) in several species’-®; nonetheless, the
neural bases of these behaviors remain almost wholly unexplored
(but see ref. ?). Despite this relative paucity of scholarly interest,
pursuit is an important problem in neuroscience because it is
common in mobile animals and because it is highly determinative
of reproductive success, and thus a likely driver of evolution.
Moreover, it represents a mathematically tractable form of con-
tinuous decision-making, which decision neuroscience often
ignores in favor of discrete decisions!0-12,

When foragers move in their environments, neurons in the
hippocampus and adjacent structures track the forager’s own
positions of using a firing rate code!3-15. They do so by means of
an explicit mapl®17. Specifically, each neuron in the hippo-
campus or medial entorhinal cortex exhibits one or more pre-
ferred firing fields!4. That is to say, entry by an animal into a
specific location results in robust spiking activity. The hippo-
campal spatial map is allocentric, meaning that it is organized
relative to external space!®18, To employ this information to
guide actions, however, foragers must use a complementary
egocentric coding system, that is, one that is relative to the
self18-20, Egocentric spatial representations are related to action
planning and are often associated with the premotor cortex/pri-
mary motor cortex?1?2, and sometimes with the parietal and
posteromedial cortex?>23. Even when navigating virtual or
abstract environments, foragers can benefit from multiple refer-
ence frames. That is, they can make an abstract, allocentric or
world-centric representation, but when the time comes to perform
an action, or to navigate the virtual space, they may need to use
an egocentric coordinate system, one that is aligned to the fra-
mework of their response modality. (Note that we will use the
terms world-centric and avatar-centric below because our sub-
jects are not performing a typical navigation task, but our
hypotheses and our analyses are directly motivated by the exis-
tence of allocentric and egocentric mapping, respectively).

In addition to monitoring one’s place in space, pursuit requires
the careful coordination of two distinct processes: (1) the com-
putation and dynamic updating of a representation of the pursuit
environment, including the kinematics of the prey and predator;
(2) the ability to select and quickly adjust behavior in response to
changing demands. In other words, pursuit requires the coordi-
nation of cognitive mapping functions with motor control func-
tions. To understand the cognitive mapping element of this
process, we were especially interested in brain regions that have
strong inputs from, on one hand, the hippocampal complex and,
on the other, the premotor and motor system. The dorsal anterior
cingulate cortex (dACC) fits this description?4-27. Specifically, it
is one of a small number of regions that receive converging
information from reward regions (in this case, orbitofrontal
cortex, amygdala, and insula) and navigational brain regions
(parahippocampal and entorhinal cortices, and the hippocampal
formation), and provides a direct output to motor brain regions,
including the primary and supplementary motor cortices.

Some evidence supports the idea that both rodent and human
dACC may carry place-relevant information, suggesting it may
play a mapping role in pursuit?$-33. We hypothesized dACC
carries a rich and dynamic representation of key variables needed
for pursuit decisions. Note that there is no a priori reason to
assume that pursuit and evasion both rely on the same circuits.
Indeed, it is likely that the neuroanatomy that mediates these two
processes differs at least somewhat. Still, we reasoned that they

may have some overlap and that this overlap, if it exists, is may be
most likely to occur within the dACC.

We recorded responses of neurons in the dACC of two
macaques performing a real-time pursuit task. Subjects used a
joystick to smoothly and rapidly move an avatar around a virtual
pen on a computer screen to pursue fleeing prey and avoid
predators that were chasing them. All agents other than the
subject were controlled by interactive algorithms that used video
game-derived artificial intelligence strategies. We found that
dACC neurons track world-centric kinematic variables (specifi-
cally, position, velocity, and acceleration) for all three agents (self,
prey, and predator). Although the responses of dACC neurons
are spatially selective, they are more complex and multimodal
than a place or grid cells would be (and in this, they resemble
non-grid cells of the medial entorhinal cortex, see ref. 34). Neu-
rons in dACC also track the two key avatar-centric variables:
relative position and angle of the self. Together, these results
highlight the doubly framed role of dACC in monitoring complex
relational positions, and provide a basis for understanding the
neuroscience of pursuit and evasion.

Results

Pursuit and evasion behavior of macaques. We measured
responses from macaque dACC neuronal ensembles collected
during a demanding computerized real-time pursuit task (subject
K: 5594 trials; subject H: 2845 trials, “Methods”). A subset of
these data was analyzed and summarized for a different study; all
results presented here are new33. On each trial, subjects used a
joystick to control the position of an avatar (a yellow or purple
circle) moving smoothly in a rectangular field on a computer
monitor (Fig. 1a-d and Supplementary Movie 1). Capture of prey
(a fleeing colored square) yielded a juice reward delivered to the
subject’s mouth via a metal tube. The prey item on every trial was
drawn randomly from a set of five that differed in maximum
velocity and associated reward size. On 50% of trials (randomly
determined) subjects had the opportunity to pursue either or both
of two different prey items (but could only capture one). On 25%
of trials (randomly determined), subjects also had to avoid one of
five predators (a pursuing colored triangle). Capture by the pre-
dator ended the trial early, imposed a timeout penalty, and
resulted in no reward.

Subjects successfully captured the prey in ~80% of trials
(subject K: 78.95%; subject H: 84.91%). The average time for
capturing a prey item was 3.85 s (subject K: 4.05; subject H: 3.50;
Fig. le). To a first approximation, capture time did not differ
according to the prey value/speed (F=50.98, p=0.3797 for
subject K; F=26.68, p=0.6118 for subject H, two-way
ANOVA). (This likely reflects a deliberate feature of the task
design, which balanced value and speed to result in approximate
equal capture times). On trials in which subjects faced two prey
(50% of all trials), they had to choose which to pursue. On these
trials, subjects chose the higher valued prey more often, even
though those prey were faster and presumably more difficult to
catch (K: 67.10%; H: 86.46%, Fig. 1f). Overall, these patterns
suggest that subjects understood that prey color provided valid
information about the value and/or speed of the prey, and used
this information to guide behavior. This pattern also suggests
that, for the parameters we chose, the marginal increase in reward
value was more effective at influencing choice, on average, than
the marginal increase in capture difficulty.

World-centric encoding in dACC. We recorded neuronal
activity during performance of the task (#n = 167 neurons; 119 in
subject H and 48 in subject K). We applied a generalized linear
model approach (GLM; refs. 343%) based on a linear-nonlinear
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Fig. 1 Experimental paradigm and behavioral results. a Cartoon of the virtual pursuit task. Subject uses a joystick to control an avatar (circle) to pursue
prey (square) and avoid predators (triangle). b Agent trajectories on example trial. ¢ Illustration of typical session indicating subject’s path (black lines) and
points of capture (orange dots). d lllustration of example session showing subjects’ path (gray lines) and points of spiking (red dots). e Average time to
capture for each subject as a function of value of prey. No significant relationships are observed despite large datasets. This lack of correlation suggests
that subjects generally traded-off effort to maintain roughly constant pursuit duration. f The proportion of trials on which subjects chose the larger value
prey item despite it being faster was >50% for each prey difference (other than matched). Error bars indicate the standard error of the mean. The

total number of trials in each subject was 5002 across 19 experimental sessions for subject K, and 3094 across 5 experimental sessions for subject H.
g Schematic of the macaque brain showing medial surface and coronal sections. We record primarily from the dorsal bank of the anterior cingulate sulcus

at roughly the rostrocaudal position of the genu; we call this region area 24.

(LN) model that does not assume any parametric shape of the
tuning surface (see ref. 34, Fig. 2a, b). This procedure includes a
cross-validation step, meaning that the results are essentially
validated for statistical significance against a randomized version
of the same data. This approach effectively includes a test for
reliability, and also efficiently uses information about spatial
coherence, to detect significant spatial selectivity. Note that,
although we don’t report the data, we confirmed that all results
presented below are observed in both subjects individually.

Our analysis approach is a way of asking whether a neuron
shows significant tuning (for example, whether it has angular
tuning, Fig. 3a) but is agnostic about the shape of the tuning
(for example, whether that place field is localized to a point, as
hippocampal place fields are, or has a more complex shape). To
identify the simplest model that best described neural spiking, we
used a forward search procedure that determined whether adding
variables significantly improved model performance. We used a

tenfold cross-validation to avoid overfitting (Fig. 3b-d). This
cross-validation step ensures that reported effects reflect true
measured patterns in the data.

For neural analyses, we focused on the whole trial epoch, that is,
the period from the time when all agents appear on the screen
(trial start) until the end of the trial, defined as either (i) the time
when the subject captures the prey, (ii) the time when the
predator captures the subject, or (iii) 20 s pass without either
other event occurring. Thus, the tuning maps presented below
indicate the average firing of neurons (using 16.67 ms analysis
bins), during the entire course of active behavior during the trial,
rather than during any specific epoch.

Examining this epoch, we found that 90.4% (n =151/167) of
neurons are task-driven, meaning that neuronal responses
depend on one or more of the variables we tested (Fig. 3a, b, e,
f). Note that the structure of our analysis, which forward searches
for tuning for each variable automatically corrects for multiple
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Fig. 2 Examples of multi-agent world-centric mapping functions in dACC. a Schematic of the analysis approach we took, see “Methods” and ref. 34,
b Maps of the responses of three example neurons with significant spatial selectivity, chosen to illustrate the typical types of responses we see. X- and
Y-dimensions in each subplot correspond to X- and Y-dimensions of the computer monitor; the Z-dimension corresponds to the firing rate of that cell.
Yellower areas indicate spots in which entry tended to result in spiking. Top row: responses to self position. Middle row: responses to prey position. Bottom
row: responses to predator position. Rightmost column: responses of the model (see “Methods") for the same neuron whose observed responses are

shown in the adjacent column.

comparisons (i.e., equivalent to using a cutoff of p = 0.05 for all
variables).

The majority of neurons showed sensitivity to the spatial
position of the avatar (64.5%, n=108/167). Roughly similar
proportions of cells showed sensitivity to the position of the prey
(65.5%, n =112/167), and to the position of the predator (59.3%,
n=89/150). We found that responses of 22.0% (n = 33/150) of
neurons are selective for the positions of all three agents. Note the
predator fits were done separately because they only occurred on
25% of trials, and for that analysis, we removed 17 cells that had
trial counts below our a priori threshold (a number for predator
trial <50). Note also that there is no certainty that subjects are
engaging in pursuit and evasion simultaneously; indeed, it may
well be the case that they alternate between these two modes, or
blend them in different proportions at different times (see below).

We next tested whether overlapping populations of neurons
encode self and prey position by examining log-likelihood
increase (LLi) associated with adding the relevant variables
(Fig. 3g). For each variable pair, we found a positive LLi
relationship, indicating that neurons encoding one variable are
more likely to encode the other, and therefore, evidence against
specialized subpopulations of neurons for these variables. In
other words, we found that populations overlap more than
expected by chance (self/prey r=0.7882; self/predator: r=
0.7092; prey/predator: r = 0.6548; p < 0.001 for all cases, Pearson
correlation). This finding indicates that coding strength is
positively correlated for each pair, and that the coding comes
from a highly overlapping set of populations rather than from
distinct subpopulations (see ref. 3¢ for motivation for this
analysis approach). Thus, the two populations of neurons
overlap more than might be expected by chance if these effects
were distributed at random in the population. This result thus
allows us to reject the hypothesis that the two groups of world-
centric and self-centric neurons come from distinct sets—or
even from overlapping sets that diverge more than might be
expected by chance. Nonetheless, while these results are
consistent with the idea that the neurons come from a single
population, they are also consistent with the idea that they come
from populations that overlap more than chance, but are still
partially distinct (cf. ref. 37).

We next used a previously published method to assess how the
spatial kernels for the three agents compare (SPAtial Efficiency or
SPAEF, see ref. 38). For each pair of agents, we focused on neurons
that show significant tuning for both agents individually. These
groups consisted of, respectively, subject and prey 24.0%, n = 36/
150; subject and predator: 26.0%, n = 39/150; prey and predator:
39.3%, n = 59/150). Incidentally, the largest of these three variables,
perhaps surprisingly, was for the prey-predator. It’s not clear why
this is. One possibility is that this variable was encoded most
strongly because of the special difficulty subject face in coordinating
between pursuit and evasion strategies, and the need to attend to
both other elements when doing so.

SPAEF is more robust than simple pairwise correlation because
it combines three measures into a single value. Specifically, it
combines pairwise correlation, coefficient of variation of spatial
variability, and intersection between observed histogram and
simulated histogram, see “Methods”). Across all neurons, we
found that the SPAEF value between the subject and prey was
—0.3282. This negative value indicates that the kernels are
anticorrelated—locations that led to enhanced firing when the
subject entered led to reduced firing at times when the prey
entered it. This SPAEF value is significantly less than zero (p <
0.001, Wilcoxon sign-rank test). The value for the subject and
predator was —0.2463. The analogous value for the prey and the
predator was —0.2927. Both of these are also less than zero as well
(p <0.001, Wilcoxon sign-rank test). These findings indicate that
neurons use distinct and anticorrelated spatial codes for tracking
the positions of the three agents. These results suggest that dACC
carries sufficient information for decoders to estimate path
variables for all three agents.

We next asked whether a substantial number of neurons
encode “self vs. other”. To do this, we examined the set of
neurons with significant selectivity for self position and for prey
and/or predator position, and that showed a high positive
predator-prey SPAEF value (that is, did not distinguish prey
from predator). We found that six neurons meet these criteria
(mean SPAEF value among those neurons is 0.2501). This
proportion (3.6% of cells) is not significantly different from
chance, suggesting that self vs. other encoding is not a major
factor driving dACC responses.
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corresponds to one neuron. Positive correlation indicates selectivity is a shared property of selective cells. The significance is obtained from Pearson

correlation between LLi of specific variables.

Our results reveal spatial maps but do not indicate their raw
size in terms of firing rate, and thus risk overstating extremely
minor influences on firing that are nonetheless significant. We
thus next sought to characterize the size of these effects. To do
so0, we first selected neurons that showed significant selectivity
for the position of each agent. Then, for each neuron in each
set, we selected the peak firing rate and lowest firing rate in the
two-dimensional (2D) space. This measure is analogous to
peak-to-trough measures. We then computed the median
within each set. (Median is more conservative than mean
because it more effectively excludes outlier measurements,
which visual inspection revealed to be a modest risk). We find
substantial effects for each category; self-tuned neurons:
13.34 spike/s (95% confidence interval: 9.44-17.24 spike/s);
prey-tuned neurons: 11.77 spike/s (95% confidence interval:
7.65-15.89 spike/s); predator-tuned neurons: 12.55 spike/s
(95% confidence interval: 7.21-17.09 spike/s). These effects
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are quite large, and are comparable to modulations associated
other factors in more conventional laboratory tasks.

Speed information is also processed in dorsal anterior cingu-
late cortex. We hypothesized that dACC would encode agent
speed. To test that idea, we added speed filters in our GLM and fit
against the neural data. We found that 22.7% (n = 34/150) neu-
rons are selective for the speed of the self, 10.0% (n = 15/150) of
neurons for the speed of the prey, and 10.0% (n = 15/150) for the
speed of the predator (Fig. 3a). Naturalistic tasks such as ours
provide the opportunity to understand higher-dimensional tun-
ing than other methods. To gain insight into the diversity of
speed tuning profiles, we performed an unsupervised k-means
clustering on speed filters across the agents (Fig. 4). Initially, we
performed principal component analysis (PCA) on the filter
coefficients. Then, we obtained eigenvector of top two dimension,
in which explained >70% of variance of the data. We find both
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Fig. 4 Diversity in responses of neurons to speed. \We examined whether speed tuning reflects a single response profile, as would be expected if, for
example, speed effects were simply an artifact of arousal. We performed a PCA procedure on all tuning curves and plot the results as a function of each PC.
We then cluster the resulting patterns and show all tuning curves within each cluster. The diversity of responses, and especially the existence of clearly

ditonic clusters (clusters 1 and 3), argues against an arousal confound.

monotonically and ditonic speed filters (11 neurons for cluster 1,
16 neurons for cluster 3). Previous literature suggested that better
perceptual discrimination for lower speed. Interestingly, our
result shows that neurons in ACC, at least, is not biased toward
representing low speed.

Avatar-centric encoding. We next examined avatar-centric
coding, that is, coding of the position of the prey relative to the
agent. According to our GLM, 37.7% of neurons (n = 63/167) in
our sample encode the distance between self and prey, and 25.1%
of neurons (n =42/167) encode the angle between self and prey
(Fig. 5a). Together, these two variables define the entire basis set
of avatar-centric spatial variables relevant to the pursuit of the
prey. That is, other avatar-centric variable can be expressed as a
linear combination of them, and thus are available to decoders
that have access to the responses of these neurons. A smaller
proportion of neurons signal these variables relative to the pre-
dator (n=14/150, 9.3% for relative distance to predator, n =8/
150, 5.3% for relative angle to predator). Note that the value for
relative distance to predator is significant, while the value for
angle is not (distance: p =0.0220; angle: p = 0.8496; one-way
binomial test; Fig. 5b, c). Nonetheless, in toto, these results
indicate that dACC neurons carry a rich representation of the
avatar-centric world in this task.

We were concerned that distance tuning, as determined by this
analysis, may be artifactual—it may reflect proximity to reward,
which is known to consistently enhance activity in dACC*041. To
test this alternative hypothesis, we performed an analysis of the
diversity of responding. Specifically, we reasoned that if neurons
encode distance, they will show a heterogeneity in response
patterns but if they encode proximity to reward, they will show a
more homogeneous and positive-going pattern. To examine our
hypothesis, we clustered the shape of subject-prey distance filters
(Fig. 5d). These figures use the following radial plot conventions.

6

The angle on the plot relative to 0 (ie., horizontal and to the
right) reflects the angle between the subject’s own avatar and the
prey. Thus, a neuron selective for the subject bearing directly
toward the avatar will have lighter colors on the right-hand side
of the radial plot. The radial dimension on the plot indicates the
distance—thus, a neuron selective for distant prey will have
lighter colors on the outer ring of the plot.

We observed a heterogeneity of curves, including a substantial
fraction of neurons with decreasing and even ditonic curves
(48.3%, n=29/60, p<0.001, two-way binomial tests). The
ditonicity (i.e., positive and negative slopes within a single curve)
of some neurons is important—it indicates that these neurons do
not simply exhibit ramping behavior. This result thus argues
against the possibility of avatar-centric distance simply being an
artifact of the proximity of reward, and/or arousal or other low-
level features that scale with distance to reward (Fig. 5d).

By identifying avatar-centric-coding neurons, we were able to
ascertain whether avatar- and world-centric-coding neurons
arose from different or similar populations. We used the same
log-likelihood correlation approach described above. We find that
they are not distinct; instead, they overlapped considerably more
than would be expected by chance (that is, the correlation of log-
likelihoods was greater than zero, r = 0.295, p < 0.001; Fig. 5e, f).
This result is consistent with the possibility that these neurons
come from a single task-selective population, as well as with the
possibility that they come from highly overlapping, but partly
distinct sets.

Mixed selectivity. Encoded variables interacting nonlinearly
(mixed selectivity) is potentially diagnostic of control processes
and can be harnessed for flexible responding3442:43. We used two
methods to test for mixed selectivity (“Methods“ and Fig. S3).
First, we computed direction and speed tuning separately in high
and low firing rate conditions (a method found in ref. 44, Fig. 6a).
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Fig. 5 Avatar-centric tuning in dACC. a Three example neurons and model fit for self-prey avatar-centric variables (angle and distance). Each radial plot
shows the responses of a single neuron to prey located at several distances (radial dimension) and angles (angular dimension) relative to the agent's
avatar. Horizontal right direction (0°) reflects distance in front of the direction the avatar is currently traveling; horizontal left (180°) indicates travel away
from the prey. b Example neuron tuned for self-predator avatar-centric variables using same conventions as in a. ¢ Proportion of neurons tuned for each of
four avatar-centric variables. d Clusters of relative distance tuning functions (conventions as in Fig. 4). Scattergram reflects results of principal components
analysis (PCA). Clusters 3 and 4 are ditonic; their existence argues against low-level explanation in terms of arousal or reward proximity. e, f Correlation
between log-likelihood increase (LLi) for self position vs. self/prey distance (e) and angle (f). Each dot corresponds to one neuron. Positive correlation
indicates that neurons selective for one variable tend to be more selective for another one. That in turn implies that tuning for the two variables comes from
a single larger population of cells (or from highly overlapping populations) rather than distinct populations.

Then we performed regressions for the two conditions separately.
A slope different from 1 indicates a multiplicative shift; an offset
different from 0 indicates an additive shift. In our data, the
median of the slope was significantly <1 (median slope = 0.8533,
p <0.022, rank-sum test) with little evidence for additive mod-
ulation (position: median bias = 0.4909, p < 0.001, rank-sum test;
speed: median multiplicative factor (MF)=0.7692, p = 0.048;
median additive factor (AF) = 0.4661, p < 0.001; Fig. 6b, c). This
result indicates that dACC ensembles have the capacity to
represent information in high-dimensional space by encoding
multiple variables nonlinearly#24°.

We confirmed this mixed-selectivity result with an additional
method that is less sensitive to the shape of the tuning curve34.
Specifically, we characterized the range (max firing rate-min
firing rate) of each tuning curve, as a function of the mean firing
rate for the position (three bins; method from ref. 34). As expected
under mixed selectivity, the range increased with mean position
segment firing rate (median r = 0.2305, p < 0.001, rank-sum test;
Fig. S3). Together these two results indicate that dACC neurons
use nonlinearly mixed selectivity (and not just multiplexing) to
encode various movement-related variables.

Spatial coding is distributed across neurons. Although responses
of a large number of neurons are selective for spatial information
about the three agents, it is not clear to what extent a broad
population drives behavior*®. Thus, we examined how much each
neuron in the population contributes to behavior using population
decoding with an additive method®”. If only small sets of neurons
contribute to behavior, the decoding performance with respect to
number of neurons will soon reach a plateau. We randomly
assigned neurons to the decoder regardless of whether they were
significantly tuned to the variable of interest. We found that as the
number of neurons included for decoding analysis increases, the
accuracy of decoding positional variable (both self and prey)
increases without evidence of saturation (Fig. 7a).

We next applied this serial decoding procedure to examine
relative strength of different formats of spatial coding. For this
analysis, we focused on coding of world-centric angle (self and
prey direction) and avatar-centric angle, which share common
units (specifically, degrees; Fig. 7b). We find that the strength of
information within the neural population is mixed between
world-centric and avatar-centric information. Self-direction
information is strongest and prey direction information is
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Fig. 7 Decoding performance of the model. a Population decoding accuracy (distance between model and empirical data) for self (blue) position, prey
(green), and predator (red) position improves (i.e., gets lower) as number of neurons analyzed rises. This analysis indicates that these variables are encoded in a
distributed manner, and that all three agents can be readily decoded. b Population decoding accuracy for self (dark green) direction, prey (purple) direction,
predator (red) direction, prey relative angle (dark blue), and predator relative angle (maroon). All curves decrease modestly, indicative of distributed decoding.
¢ Time-to-time decoding performance when either prey is closer or predator is closer. Then, the decoding performance for either prey position or predator
position was estimated. Decoding accuracy was estimated as a function of number of cells, in groups corresponding to 40, 80, 120, and 150 cells. Statistical
significance and error bar widths (i.e., SD) are obtained from bootstrapping the neural population for 30 times (total N =167 neurons).

weakest (and their difference is significant, decoding error by
using all neurons are 8.496 + 0.603°, 34.364 +3.795°, 84.455 +
3.712°, p<0.001, ANOVA). This result showing distributed
information contrasts with previous findings in a similar

paradigm that show positional variables are encoded by only a
handful of neurons*®. We speculate that difference may due to the
complexity of our task, which may require a high-dimensional
neural space to maximize the information?s.
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Fig. 8 Tuning for task variables change with prospective reward. These data support the idea of mixed selectivity. a The number of tuned neurons for self
variables (self position, self direction, and self speed) when splitting data randomly (gray bar) or according to value of pursued prey (purple bar). Splitting
by value increases proportion of tuned neurons, indicating that value modulates responding in a systematic way. b The number of significantly tuned

neurons for prey variables (prey position, prey direction, and prey speed) when splitting data randomly (gray bar) or according to value of pursued prey
(purple bar). The difference of value split was significant (p = 0.0221 for prey speed, and p < 0.001 for other prey variables), but not for random split. For
the prey analysis, only single prey trial is included to reduce confounding (i.e., pursuing targets, transition of pursuit-avoidance behavior). ¢ The number of
significantly tuned neurons for egocentric (self position, self direction, and self speed) when splitting data randomly (gray bar) or according to value of
pursued prey (purple bar). The difference of value split was significant (p < 0.001). We observed a difference in numbers of significantly tuned neurons
between split data. This process was repeated for 50 times by bootstrapping. Significance was calculated by two-sided sign-rank test. n.s means it is not

significant, and *** indicates p <0.001.

Reward encoding. Research based on conventional choice tasks
indicates that dACC neurons track values of potential rewards®.
We next asked how dACC encodes anticipated rewards in our
more complex task. Initially, we regressed reward variable against
the neural activity 1 s before the trial end for all types of trial. We
found that, averaging over all other variables, the value of the
pursued reward modulates activity of 9.3% of neurons (n = 14/
150, p =0.0227, one-way binomial test). Note that this analysis
ignores the potential encoding of prey speed, which is perfectly
correlated with static reward in our task design. We then explored
possibility of reward being modulatory variable, which means
that reward increase the other variables’ selectivity. We find that
tuning for all variables increases with increasing reward (p < 0.05
in each case, sign-rank test, Fig. 8). Compare to the random split
of data, which yielded insignificance difference in tuning, splitting
data according to the value of prey did yield a significant dif-
ference in tuning proportions for the variables (Fig. 8). Impor-
tantly, the percent of neurons tuned for each variable is
maintained in the random split, indicate reliability of tuning.
Instead, the proportion of neurons whose responses were selective
for self position was not different, when the data were split
randomly into half (28.0% vs. 27.4%, p = 0.2783, sign-rank test,
50 times bootstrapping).

Gaze does not change selectivity of spatial tuning. Activity in
dACC is selective for saccadic direction and may therefore also
correlate with gaze direction®®. Consequently, it is possible that
our spatial kernels may reflect not task state but gaze information.
In the dynamic pursuit task, the position of the eyes is not fixed.
Indeed, subjects continually scan the scene and follow specific
items on screen. This leads to the possibility of a novel confound
—specifically, our “world-centric” representations may come
from simple gaze direction tuning. This would not necessarily
invalidate our claims because gaze-centrism may be a mechanism,
by which world-centric coding is enacted within the context of
our task. However, the data we have suggests that the world-
centric encoding we see is largely independent of gaze coding.
The strongest evidence that the mapping functions we observe
are unlikely to reflect a gaze confound is that we observe
anticorrelated tuning surfaces for the self and prey and for the self
and predator (see the section showing SPAEF results). If
selectivity was derived from gaze selectivity, these surfaces would
necessarily be identical. Moreover, we repeated our GLM

—— without gaze position
— with gaze position

% neurons
w
o

self
position

predator
position

prey
position
Fig. 9 Analysis to detect potential gaze confounds. Red bars: proportion of
neurons tuned for three key world-centric variables using the standard
GLM described above. Blue bars: same results, but this time from a version
of the GLM that included eye position as a regressor. That version is
constructed so that all variance possible associated with eye position is
assigned to eye position first and only residual encoding of task variables is
counted toward those variables. All three variables are still significantly
observed in the population when including gaze position. Significance was
tested by two-way binomial test (n=10/37, p < 0.007).

analyses, but included eye position (only for the one subject
from which we collected gaze data). We found that neurons are
selective for gaze position (confirming past research on the issue),
but that this selectivity was largely independent of the selectivity
for the self, prey, and predator. Specifically, we found that that
after including gaze, the proportion of tuned neurons for the
position of any agent did not substantially change (Fig. 9).

To shed further light on these issues, we also offer some
characterization of saccade behavior in this task. One question
related to its free eye movement is in what proportion of the time
subjects foveate each agent (self, prey, and predator). To gain the
broadest view, we analyzed one-prey and one-predator trials,
wherein all types (subject, prey, and predator) of agent exist (7008
trials in two subjects). Our criterion for defining foveation was a
range of four-degree visual angle, which corresponded to 134
pixels (for reference, each agent was 60 pixel for width and
height). We found that the foveation time is highest for the prey
(31.85% and 19.05% for subjects K and P, respectively), and
lowest for the predator (19.09% and 5.11%, respectively), with a
small proportion for foveating both prey and predator (2.82% for
subject K, 0.07% for subject P). Foveation on the avatar occurs
24.34% of the time (subject K) and 9.71% for subject P.

NATURE COMMUNICATIONS | (2021)12:1985 | https://doi.org/10.1038/s41467-021-22195-z | www.nature.com/naturecommunications 9


www.nature.com/naturecommunications
www.nature.com/naturecommunications

ARTICLE

A second question is how eye movements relate to target
pursuit. One possibility is that they maximally use fixations/
saccades. In other words, they may position their fovea around
the predicted position of the target and fixate until the tracking
target moves beyond some angle. An alternative possibility is to
follow the target with smooth pursuit. (These two strategies have
some heuristic relationship with discrete and continuous
sampling, respectively). We found that the latter hypothesis
corresponds to our data. Specifically, 90.88% (subject K) and
94.70% (subject P) of time bins have eye movements that are
smooth pursuit, 4.03%/3.11% are saccadic fixation, and 5.10%/
2.18% are movement.

We hypothesized that the appearance of the saccade may be
related to the complexity of the pursuit trajectory (Fig. S4). We
used the curvature of the agent movement as a proxy for the
complexity of trajectory, and measured cross-correlation between
curvature value and magnitude of eye movement. By this analysis,
we wanted to answer two questions: (1) what is the nature of the
saccade pattern? (Does large eye movement correlate with large
curvature/) and (2) is there any systematic time lag between the
saccade and the start of complex movement pattern? Indeed, we
found that there is a systematic relationship between the
complexity of the prey (i.e, moment-to-moment curvature of
the trajectory) and the saccadic eye movements (magnitude of the
eye movement pixelwise). About 50% of the trials showed a
significant cross-correlation between those two values (median
correlation: p=0.5020, n =2052/3954 trial for subject K; p=
0.5334, n = 1395/3054 trials for subject P; p <0.001 by two-way
binomial test for both subjects). The median time lag was —66.7
ms for subject K and —116.7 ms for subject P. The large eye
movement as leading the high curvature, which indicates the
saccade (global scanning of the environment) happens before the
pursuit becomes complex.

Finally, we asked whether eye position information influences
the tuning of other variables. Specifically, we asked two questions:
(1) whether the tuning for other non-gaze-related variables is
decreased when the gaze-related variables are added, (2) whether
the gaze variables are not significantly tuned when they are added
to the fits because the correlated variables already captured
variance. We found neither is the case: the tuning of other
neurons remains significant even after adding gaze position
information (Fig. 9). If the correlation really influences the
tuning, the tuning of prey position should be decreased for the
largest amount as the foveation time is highest at the prey.
However, tuning for the prey did not decrease significantly. In
addition, a significant number of neurons are tuned to the gaze
position (n=10/37, p <0.001 by two-way binomial test), which
means there is variance still well captured by the gaze position
information.

Classification of behavioral strategies. To more fully understand
our subjects’ behavior, we created multiple artificial agents that
pursue prey and avoid predators. We used these agents to esti-
mate the efficiency of the monkeys’ observed algorithm (Fig. S5).
There are two components that vary across our five models: (1)
the predictive parameter tau, which indicates how much extra-
polation from previous Newtonian physics that an agent can
make toward the future (Yoo et al.12:33), and (2) the distance-
dependent influence of the predator. If the distance-dependent
function for the predator is large, it influences the subject even if
the predator is far from it. All of these algorithms are bound to
the same physical constraints, especially to a maximum speed and
physical inertia. We divided the tau parameter into two categories
(tau was either predictive or reactive) and the influence parameter
into two categories (low distance/narrow or high distance/broad

influence of predator). We then crosses these to make four
categories and added a final degenerate random walk model.

These models give a range of performances. The random walk
model gives 0% capture of prey within 20s (not surprisingly;
Fig. S5). One trials with predators, actual subjects catch prey on
54.05% (subject K), and 38.97% (subject H) of trials. For this
analysis, we also include data from a new subject whose data did
not appear in our earlier submission (subject P), whose
performance was between the other two (45.55%). Other agents
that always predictively pursue (fixed tau value = 30) the prey
yields a higher catch rate compared (86.54% for narrow attention
for predator vs. 75.03% for broad attention for predator).
However, if the agent is always reactive (fixed tau value of —30,
which differs from subject’s average trajectory), then though the
agent is faster than the prey, it rarely catches the prey. Instead, the
probability of being captured by a predator increases (10.15% for
narrow attention for predator, 0.13% for broad attention for
predator). In conclusion, the predictive model with narrow
attention is the most accurate descriptor.

Moment-by-moment chase and avoidance behavior. We esti-
mated the avoid and chase moments by basic statistics given each
moment-by-moment (Fig. S6). Included variables are change of
the distance (delta distance: “getting close or far?”) and the dot
product between the vectors of each agent (“how similar the
movements are”) and its change (‘are the agents moving similarly
over time?’). For example, if the delta distance, dot product, and
delta dot product is positive between subject and predator
(example in figure), it will be more likely for the mode of
avoidance. According to this method, clear avoidance times were
10.48% (subject K), 9.09% (subject H), and 12.99% (subject P)
from the whole session.

Discussion

We examined the neural foundations of pursuit and evasion by
recording single unit activity in the dACC, while rhesus macaques
performed a joystick-controlled pursuit task (Fig. 1). We find that
dACC carries a dynamic (i.e., continuously updated) multicentric
(i.e, both world-centric and avatar-centric) multi-agent (self,
prey, and predator) representation of the state of the task. These
results indicate a clear role of the dACC in mapping functions
that are intrinsic to pursuit. One limitation of the present study is
that we did not record activity in other regions that may also be
involved. Therefore, we cannot conclude that dACC plays a
unique role in this process. Future studies will be needed to
functionally differentiate dACC from other regions.

What is the benefit of encoding both absolute (world-centric)
and relative (avatar-centric) maps? One possibility is that dACC
participates in the process of mediating between the two repre-
sentations. Another (not mutually exclusive) possibility is that
both representations are important for behavior. Consider, for
example, that avatar-centric codes may allow for rapid on-the-fly
changes in trajectory, while world-centric ones may allow for
more abstract planning, for example, allowing the subject to trap
the prey in corners. Having both in the same place may allow for
their coordination to make optimal decisions. Indeed, this idea is
consistent with the idea that a major function of dACC is to use
multiple sources of information to set and drive a strategy from a
high vantage point24-2640,41,

Neuroscientists are just beginning to understand the neural
basis of tracking of other agents. Traditionally, neurons in pri-
mate dACC and its putative rodent homologues are not expected
to encode place fields. For example, a putative rodent homologue
is reported to utilize positional information, but not signal
place per se?8. However, at least one notable recent study has
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demonstrated that place field information can be decoded from
rodent ACC*®, Our results build on this finding and extend our
understanding of the spatial selectivity of this region further to
tracking of other agents. Two recent studies demonstrate the
existence of coding for positions of conspecifics in the CA1 region
of the hippocampus in rats and bats®1>2, Our results here extend
on them in three ways. First, they confirm speculation that
positional tracking extends to at least one hippocampal target
region in the prefrontal cortex. Second, they demonstrate that
positional tracking extends to multiple agents, including different
types (prey and predators), and that it is multicentric. Most
intriguingly, and most speculatively, our results directly link
tracking of others to personal goal selection processes.

Although the responses we observe have some similarity to
hippocampal place cell firing, dACC responses are less narrowly
localized than place cells, are less patterned than grid cells, and
can only be detected using a newly developed statistical
approach®*. While the medial entorhinal cortex is commonly
associated with grid cells®3>~3°, one recent study demonstrated
that it carries a much richer set of spatial representations34. Our
study indicates that such noncanonical spatially mapped neurons
are not limited to entorhinal cortex, or to rodents, and can be
observed in virtual/computerized environments, and extend to
other agents in the environment. These results confirm the highly
embodied role of dACC in economic choice and highlight the
central role of spatial information in economic decision-
making!0:11:56-58,

Our data are limited to a single region and do not imply a
unique role for this region. Most notably, several other ostensibly
neuroeconomic brain regions carry rich spatial repertoires,
including OFC®® and vmPFC®%:1. These regions also have con-
nectivity that includes, directly or indirectly, medial temporal
navigation regions, and motor and premotor regions. Therefore,
we predict that the patterns we observe here would also be
observed, albeit perhaps more weakly, in these other regions.
Unlike these regions, the dACC has been linked to motor func-
tions, albeit much less directly than, for example, motor cortex?.
What is new here, then, is the observation that dACC tracks the
kinematics of self, prey, and predator, uses multicentric tuning for
these multiple agents. In addition to what it tells us about dACC,
the multicentric multi-agent tuning also serves as a control for
possible motor effects explaining the results.

Most studies of the neural basis of decision-making focus on
simple and abstract choices, but natural decisions take place in a
richer and more complex world. In our task, decisions are con-
tinuous—they take place in an extended time domain and the
effects of decisions are manifest immediately. Moreover, our task,
and monkeys’ ability to perform it well, illustrate the complexity
of the word decision—it has a simple and clear definition in
economic choice tasks. But in a more naturalistic context, like this
one, it can refer either to the specific direction the subject is
moving at a point in time, or to the higher level goal of the
subject. Ultimately, we anticipate that consideration of more
complex tasks may lead to a refinement of the concept of
decision.

More broadly, given the critical role of foraging in shaping our
behavioral repertoires overall®2-%4, we and others have proposed
that spatial representations are likely to be a ubiquitous feature
of our reward and decision-making systems”:%>. This idea is
supported, at the most basic level, by studies showing clear spatial
selectivity in the reward system in both rodents and
primates%00:66-69 In other words, spatial information is not
abstracted away even in ostensibly value-specialized regions®”-70.
By utilizing ever more complex paradigms, we can place the brain
into natural states not probed by conventional tasks and uncover
unanticipated complexities in neuronal responses.

Methods

All animal procedures were approved by the University Committee on Animal
Resources at the University of Rochester or the Institutional Animal Care and Use
Committee at the University of Minnesota. All experiments were designed and
conducted in compliance with the Public Health Service’s Guide for the Care and
Use of Animals.

Subjects. Two male rhesus macaques (Macaca mulatta) served as subjects. Note
that the inclusion of only two subjects (as is standard in primate physiology) does
reduce our ability to draw inferences about group effects. Previous training history
for these subjects included a variant of a Wisconsin card-sorting task (subject H,
ref. 71), basic decision-making tasks (subject H, ref. 72), and two foraging tasks
(both subjects, refs. 7374),

Experimental apparatus. The joystick was a modified version of a commercially
available joystick with a built-in potentiometer (Logitech Extreme Pro 3D). The
control bar was removed and replaced with a control stick (15 cm, plastic dowel)
topped with a 2 plastic sphere, which was custom designed through trial and error
to be ergonomically easy for macaques to manipulate. The joystick position was
read out in MATLAB running on the stimulus control computer.

Eyetracking methods. Subjects were rigidly head-fixed using a cranial implant that
was located far from the eyes. Subjects were facing directly forward with the eyes
centered on the center of the computer monitor. Gaze position was measured with
an Eyelink 1000 system at 1000 Hz. Calibration was performed daily for each
subject using a 20-point calibration procedure, in which they fixated briefly on a
point displayed at random on a computer screen. Calibration quality was mon-
itored throughout the recording session, and was checked periodically during
recording by pausing the task and running a calibration routine again. Careful post
hoc checks reveal little systematic error in tracking; subjects were found to be
placing gaze on the targets. These tests concorded with casual observations made
during and throughout testing by a trainee monitoring the subject and gaze at all
times. For resulting analyses, the gaze x and y position were included in analyses.

Task design. At the beginning of each trial, two or three shapes appeared on a gray
computer monitor placed directly in front of the macaque subject (1920 x 1080
resolution). The yellow (subject K) or purple (subject H) circle (15-pixel diameter)
was an avatar for the subject and moved with joystick position. A square shape
(30-pixel length) represented the prey. The movement of the prey determined by a
simple algorithm (see below). Successful capture is defined as any overlap between
the avatar circle and the prey square. Each trial ends with either successful capture
of the prey or after 20 s, whichever comes first. Capture results in immediate juice
reward; juice amount corresponds to prey color: orange (0.3 mL), blue (0.4 mL),
green (0.5 mL), violet (0.6 mL), and cyan (0.7 mL). Failure to capture results in
timeout and a new trial. (Failures were rare).

The path of the prey was computed interactively using A-star pathfinding
methods, which are commonly used in video gaming’°. For every frame (16.67 ms),
we computed the cost of 15 possible future positions the prey could move to in the
next time step. These 15 positions were spaced equally on the circumference of a circle
centered on the prey’s current position, with radius equal to the maximum distance
the prey could travel within one time step. The cost in turn is computed based on two
factors: the position in the field and the position of the subject’s avatar. The field that
the prey moves in has a built-in bias for cost, which makes the prey more likely to
move toward the center (Fig. 1a). The cost due to distance from the subject’s avatar is
transformed using a sigmoidal function: the cost becomes zero beyond a certain
distance so that the prey does not move, and the cost becomes greater as distance
from the subject’s avatar decreases. The position with the lowest cost is selected for the
next movement. If the next movement is beyond the screen range, then the position
with the second lowest cost is selected, and so on.

The maximum speed of the subject was set to be 23 pixels per frame (i.e., 16.67
ms). The maximum and minimum speeds of the prey varied across subjects and
were set by the experimenter to obtain a large number of trials (Fig. 1). Specifically,
speeds were selected so that subjects could capture prey on >85% of trials; these
values were modified using a staircase method. If subjects missed the prey three
times consecutively, then the speed of the all prey was reduced temporarily. The
minimum initial distance between the subject avatar and prey was 400 pixels. The
strict correlation between speed and value means that value cannot be directly
deconfounded in this study.

A predator (triangle shape) appeared on 25% of trials. Capture by the predator
led to a timeout. Predators came in five different types (indicated by color)
indicating different level of punishment, ranging from 2 to 10s. The algorithm of
the predator is to minimize the distance between itself and player. Unlike the prey,
the predator algorithm is governed by this single rule.

The design of the task reflects primarily the desire to have a rich and variegated
virtual world with opportunities for choices at multiple levels that is neither
trivially simple nor overly complex. The decision to include a condition with
multiple prey was added specifically for these reasons and for the additional reason
that we wanted to verify that subjects distinguished the differently valued prey by
pursuing them with differential preference.

| (2021)12:1985 | https://doi.org/10.1038/541467-021-22195-z | www.nature.com/naturecommunications 1


www.nature.com/naturecommunications
www.nature.com/naturecommunications

ARTICLE

The reason we deliberately confounded reward and speed was to make sure the
task neither too difficult nor too easy, and to ensure that the results of the animals’
choices between prey were interesting and meaningful. We also wanted to keep the
effort/interest level roughly the same on each trial.

Trajectory-based trial sorting. In 50% of trials, subjects saw two prey items
instead of one. We developed the TBTS (trajectory-based trial sorting) method to
determine which prey the subject was pursuing at any given time. This method
requires to calculate (1) the angle differences between subject’s and each prey’s
trajectory from time #-1 to t, (2) change of distance between subject and each prey
(estimate whether prey is getting closer to subject or floating), and (3) dynamic
time warping outcome (to calculate the distance between the signal) between the
trajectory of the subject and each prey. Then we multiply them to obtain a single
scalar for each agent at every time point, and then smoothed with a boxcar of five
frames to make secure autocorrelation between the data points. The prey being
pursued will have smaller angle difference with the subject, the distance between
the subject and pursued prey will be decreasing (due to avoiding algorithm, non-
chased prey will tend to increase its distance with the subject), and dynamic time
wrapping outcome will be smaller. Thus, when one prey is pursued continuously,
then this value will stay always smaller than the other. From there, we excluded
trials with switches to avoid any confounds that arose from not knowing what prey
the subjects are pursuing (~5% of trials overall).

Electrophysiological recording. One subject was implanted with multiple floating
microelectrode arrays (FMAs, Microprobes for Life Sciences, Gaithersburg, MD) in
the dACC. Each FMA had 32 electrodes (impedance 0.5 MOhm, 70% Pt, 30% Ir) of
various lengths to reach different dACC. Neurons from another subject were
recorded with laminar V-probe (Plexon, Inc, Dallas, TX) that had 24 contact points
with 150 um inter-contact distance. Continuous, wideband neural signals were
amplified, digitized at 40 kHz and stored using the Grapevine Data Acquisition
System (Ripple, Inc., Salt Lake City, UT). Spike sorting was done manually offline
(Plexon Offline Sorter). Spike sorting was performed blind to any experimental
conditions to avoid bias.

Tracking neurons over multiple days. We used an open-source MATLAB
package “Tracking neurons over multiple days”7. Briefly, pairwise cross-correlo-
grams, the autocorrelogram, waveform shape, and mean firing rate were used
together as identifying features of a neuron. For classifying the identical neurons
across the session, we calculated four values that characterize individual neuron:
mean firing rate, autocorrelation, pairwise correlation with other neurons, and
shape of the waveform. Then, we applied a quadratic classifier that computes an
optimal decision boundary under the assumption that the underlying data can be
modeled as a mixture of multivariate Gaussians’®.

Details of LN model. To test the selectivity of neurons for various experimental
variables, we adapted LN Poisson models (LN models). The LN models estimated
the spike rate (r;) of one neuron during time bin # as an exponential function of the
sum of the relevant value of each variable at time ¢ projected onto a corresponding
set of parameters (w;). The LN models can be expressed as:

r= exp(ZX;rw,)/dt 1)

Where r denotes a vector of firing rates for one neuron over T time points, i
indexes the variables of interest, e.g., position of avatar on screen. X; is a matrix
where each column represents an “state” of the animal (e.g., 1 of 12 speeds,
determined by post hoc binning) obtained from binning the continuous variable
so that all the columns for a particular row is 0 except for one column (one-hot
encoding).

Unlike conventional tuning curve analysis, GLM analysis does not assume the
parametric shape of the tuning curve a priori. Instead, the parameter weights,
which defines the shape of tuning for each neuron, were optimized by maximizing
the Poisson log-likelihood of the observed spike train given the model expected
spike number (n), with additional regularization for the smoothness for parameters
in a continuous variable and a lasso regularization for parameters in a discrete
variable. Position parameters are smoothed across rows and columns separately.
The regularization hyperparameter was chosen with maximizing cross-validation
log-likelihood based on several randomly selected neurons. The optimization was
performed with a MATLAB built-in function (fminunc). Model performance of
each neuron is quantified by the log-likelihood of held-out data under the model.
This cross-validation procedure was repeated ten times and overfitting was
penalized. Thus, we can compare performance of models with varying complexity.

Forward model selection. Model selection was based on the cross-validated log-
likelihood value for each model. We first fitted n models with a single variable,
where 7 is the total number of variables. The best single model was determined by
the largest increase in spike-normalized log-likelihood from the null model (i.e., the
model with a single parameter representing the mean firing rate: r). Then, addi-
tional variables (#-1 in total) were added to the best single model. The best double
model was preferred over the single model only if it significantly improves the

cross-validation log-likelihood (Wilcoxon signed-rank test, « = 0.05). Likewise, the
procedure was continued for the three-variable model and beyond if adding more
variables significantly improved model performance, and the best simplest model
was selected. The cell was determined to be not tuned to any of the variables
considered if the LLi was not significantly higher than baseline.

Response profile. We derive response profiles from filter of model for a given
variable j to be analogous to a tuning curve of given variable. These were computed
as, which a =TIi ; is al other variables than jj €N(eXp(w;)) is a scaling factor that
marginalizes out the effect of the other variables. The df transforms the units from
bins to seconds. Thus, for each experimental variable, the exponential of the
parameter vector that converts animal state vectors into firing rate contributions is
proportional to a response profile; it is a function across all bins for that variable
and is analogous to a tuning curve.

Principal component analysis and clustering relative distance tuning. We
reasoned that relative distance between subject and prey is encoded and is not
simply an artifact of proximity to reward acquisition. This variable is encoded in
dACC, although generally with robustly positive and monotonic code”7477.
Instead, complex shape of tuning may indicate distance is encoded. To examine
this, we clustered the tuning curves according to shape to show whether there
might be some functional clusters. First, we selected out 60 neurons that are
individually significantly tuned to relative distance of prey. Then, we performed
dimensionality reduction via PCA and found two PCs explain 70% of variance in
the data. Thus, we projected data into first two PCs and performed k-nearest
neighbor and found elbow with K =4 (Fig. 5d). Identical method was used for
profiling the filters that are tuned for speed (Fig. 4).

Multiplicative vs. additive shift of tuning. We report that neurons exhibit
“multiplicative” tuning, defined as r(x, y) = r(x)* r(y), which means the tunings for
each variable interact nonlinearly, and thus have mixed selectivity*>. However,
there is possibility that the neurons might show additive tuning, defined as r(x, y)
= r(x) + r(y). Strictly, linear addition would be multiplexed but not mixed
selectivity*2.

Differentiating between these two has important implications as multiplicative
coding may point to a fundamental transformation of information, while additive
coding suggests signals simply linearly combine®445.To quantify the nature of
conjunctive coding and verify our assumption that tuning curves multiply, we
examined neurons that significantly encoded both position of two agents (self and
prey) and direction of two agents based on model performance (e.g., both the
position and other models had to perform significantly better than a mean firing
rate model). We examined differences in how the tuning curve for specific variables
r(x, y), or the tuning curve across y for a fixed value x*, will change as a function of
r(x*) to estimate whether neurons exhibit multiplicative or additive. In the
multiplicative model, a variation of r(x*) will modify the shape of tuning curve
(either stretch or compress) r(x*, y), whereas in the additive model it will shift r(x*,
y) simply up or down. To quantify these differences, we took x to be position and y
to be either direction or speed of agent, and binned position into 15 x 15 bins. We
then calculated the firing rate for each position bin (i.e., computed r(x*) for every
x*), sorted the position bins according to firing rate values, and divided the bins
into two (high vs. low, for analysis 1, see below) or three (for analysis 2, Fig. S3)
segments. Each segment, thus, corresponded to a location of the environment with
approximately the same firing rate. We then generated a series of tuning curves
(either direction or speed) based on the spikes and directions visited during each
segment.

Once we obtained tuning curves for each segment, for each single neuron, we
characterized its multiplicative, additive, or displacement modulation with
population activity by performing linear regression on the average response to each
state bins, when population activity was high compared with when it was low. The
slope of the linear fit indicates how tuning scales multiplicatively with population
activity (so called, MF). The slope deviating from 1 shows either multiplicative or
displacement interaction. The intercept of the fit describes the additive shift to
tuning with population activity. To obtain a relative measure of the additive shift,
like the MF, we defined the AF as the ratio between this intercept and the mean
firing rate of the neuron averaged.

We additionally confirmed the multiplicative tuning shift by computing the
range (maximum firing rate-minimum firing rate) of tuning curve as a function of
the mean firing rate for position segment i. If each neuron shows multiplicative
tuning shift, the range should increase with position segment. Whereas the additive
model result in constant range. The range of the tuning curve and mean position
segment firing rate exhibited a positive slope in pool of significantly tuned neurons
for self direction, self speed, prey direction and prey speed (134/165 pooled
neurons; median slope >0 with p <0.001, two-way binomial test).

Downsampling for reward modulation analysis. Each session was split into low
vs. high reward of pursued target. To match the coverage of experimental variable
for each condition, we first binned position, direction, speed into 225 bins, 12 bins,
and 12 bins, respectively, and computed the occupancy time for each bin. The
coverage of experimental variables across conditions was matched by
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downsampling data points from either condition so that occupancy time was
matched for each bin, with points removed based on the difference in direction
occupancy. For this analysis, we wanted to have the total number of spikes match
in the compared conditions. We did this because spikes convey information and we
did not want to introduce spurious differences in information content that reflected
only random variation in number of spikes. We then repeated this procedure 50
times and took the average result. We did this because the decimation procedure is
stochastic and there susceptible to random effects. We can reduce these effects and
obtain a more precise estimate of the true effect, through repetition and averaging.

Decoding analysis. Decoding accuracy was assessed by simulating spike trains,
which were based on Poisson statistics and a time-varying rate parameter. In each
group, spikes (n,) for neuron c were generated by drawing from a Poisson process
with rate r; where (w;, are the learned filter parameters from the selected model for
neuron ¢, X; is the behavioral state vector, and i denotes the experimental variables). If
the model selection procedure determined that a neuron did not significantly encode
variable #, then w;. = 0. Next, the simulated spikes were used to estimate the most
likely variable that is being decoded. To decode experimental variables at each time
point ¢ under each decoder, we estimated the animal state that maximized the
summed log-likelihood of the observed simulated spikes from #-L to t:

X0 = argma, T T egp (e (50 w) @
where C is the number of cells in that population. Decoding was performed on 50
randomly selected 2000 ms (L =121 time bins) of session. The average position
decoding error (pixel distance error), direction (error in degree), and speed (error in
pixel per second) were recorded. For examining the coding scheme of the population
(whether sparse or distributed code), we increased number of neurons being included
in this analysis from 40 to 167 by 40 neurons. The random shuffling of neurons was
performed 30 times.

Adaptive smoothing method. An adaptive smoothing method is used for pre-
sentation purposes although not for quantified data analysis’3. Briefly, the data
were first binned into 100 x 1 vector of angle bins covering the whole 360° of the
field, and then the firing rate at each point in this vector was calculated by
expanding a circle around the point until the following criteria was met:
a
Nspikes = W (3)

where N, is the number of occupancy samples, Nyyikes is the number of spikes
emitted within the circle, r is the radius of the circle in bins, and alpha is a scaling
parameter set to be 10,000 as previous studies.

Spatial efficiency metric. To compare the similarity between two positional filters,
we used the SPAEF metric. This is a mathematical technique that is derived from
the geology literature, but has a much broader application. Formally, it allows for
the quantification of the similarity of two 2D filters with univariate scalars as
entries. Prior literature suggests to be more robust than the 2D spatial correlation
(Koch et al.38). It quantifies the similarity between two maps:

SPAEF = 1—/(A— 1) + (B— 17 + (C— 1)? (4)

Here, A is the Pearson correlation between two maps, B is the ratio between the

coefficients of variation for each map, and C is the activity similarity measured by
histogram profiles. A zero SPAEF indicates orthogonal filters, whereas a positive
SPAEF indicates similar filters and a negative SPAEF indicates anticorrelated filters.

Statistics and reproducibility. The data of subject K are obtained from 19
repeated experiments, and the data of subject H are obtained from 5 repeated
experiments. The data of subject P are obtained from 20 sessions to characterize the
eye movement specifically.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability

The data will be available once manuscript is accepted. The full data will be shared upon
the request to the corresponding author. The partial data to replicate figures will be
uploaded at the GitHub. Source data are provided with this paper.

Code availability
A portion of the data is available on Github (https://github.com/sbyoo/multicentric/).
Full data are available from the corresponding author upon reasonable request.
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