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ABSTRACT: Visual process monitoring would provide more directly appreciable
and more easily comprehensible information about the process operating status as
well as clear depictions of the occurrence path of faults; however, as a more
challenging task, it has been sporadically discussed in the research literature on
conventional process monitoring. In this paper, the Data-Dependent Kernel
Discriminant Analysis (D2K-DA) model is proposed. A special data-dependent
kernel function is constructed and learned from the measured data, so that the low-
dimensional visualizations are guaranteed, combined with intraclass compactness,
interclass separability, local geometry preservation, and global geometry preserva-
tion. The new optimization is innovatively designed by exploiting both
discriminative information and t-distributed geometric similarities. On the
construction of novel indexes for visualization, experiments of visual monitoring
tasks on simulated and real-life industrial processes illustrate the merits of the
proposed method.

1. INTRODUCTION
Process monitoring is a kind of technique to ensure process
safety, improve production efficiency, and reduce energy
consumption and pollution.1−3 A large amount of data can
be expediently collected due to the improvement of measure-
ment and information technology. Data-driven methods,
featured by easy implementation, nice generalization, and
less dependence on process mechanisms, are attracting more
and more attention.4−10 For example, the topology-guided
graph learning fault diagnosis framework was developed that
combined the concept of graphs with process physics to focus
on the intrinsic relationships between inputs and outputs,
particularly the physical consistency of model prediction
logic.11 The novel graph convolutional network-based soft
sensor utilizing localized spatial-temporal correlations, aiding
in comprehending the intricate interactions among the
included variables, was proposed with high model trans-
parency.12 The novel dynamic latent variable (DLV)-based
transfer learning approach, called transfer DLV regression
(TDLVR), for quality prediction of multimode processes with
dynamics was developed; this model can overcome data
marginal distribution discrepancy and enrich the information
on the new mode.13

Human is naturally and constantly exposed to a world full of
visual stimuli. Visualization of the actual process status would
provide more directly appreciable and easily comprehensible
information about the process operating status for enhancing
engineers’ and operators’ understanding. What’s more, it would
be able to clearly depict the occurrence path of faults.
However, due to respective technical limits, this kind of

technique has been sporadically reported in conventional
process monitoring, which mainly focuses on fault detection,
fault diagnosis, fault isolation, etc. Note that the “visualization”
in this paper refers to not only the exhibition of mapped
training data in a comprehensible low-dimensional (like two/
three-dimensional) space but also the path of the mapped
novel samples; the former is consensual in the conventional
regime of pattern recognition, but the latter is of more
significance in the regime of process monitoring.

In the past, discriminant analysis was developed to classify
observations and find combinations of features that character-
ize or separate two or more classes of objects or events.14 It is
used as a tool for classification and dimension-reduction, and
can also be employed in the data visualization task to some
extent.15,16 Representative algorithms include linear discrim-
inant analysis (LDA), quadratic discriminant analysis (QDA),
and kernel discriminant analysis (KDA). However, the
conventional discriminant analysis algorithms usually ignore
the geometry structures of data; thus, they may not work well
for visualization where both local geometry structure and
global geometry structure should be simultaneously preserved
in the low-dimensional space. Besides, the traditional kernel
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function for discriminant analysis, implicitly defining the kernel
space, is artificially determined, which only aims at solving the
nonlinearities considering neither the discriminative informa-
tion nor geometry structures. It is desirable to learn the kernel
function from specific data that adapt better to visualization.

Manifold learning is a kind of technique for nonlinear
dimensionality reduction and visualization, aiming at recover-
ing the low-dimensional embeddings from the original data
through exploiting the geometry of data distribution,17−23 that
is, the local linearity of manifolds which locally resembles a
Euclidean space, since each local neighborhood may have its
unique spatial geometric distribution characteristics. Ideally,
given the data with nonlinear and high-dimensional character-
istics, the real manifold structure of the nonlinear data in high
dimensions would be revealed from the geometric information,
and the boundary of the spatial distribution of the samples in
the input space would be preserved by exploiting the intrinsic
local geometry structure indicating the local relationships
among the data samples.24 Stochastic neighbor embedding
(SNE) and t-distributed stochastic neighbor embedding (t-
SNE)25 are two representative algorithms for visualization. In
spite of the advantageous features of manifold learning
techniques, most of them are nonparametric in nature,
resulting in the failure to find explicit mapping functions
from high-dimensional original data to low-dimensional
embeddings, suffering from the generalization problem for
newly collected samples. It is reported that a regression
algorithm can be successively adopted to build the explicit
relationship between the original space and the visualization
space of t-SNE,26 but the separate procedures may be
challenged by reliability and scalability in practice.

Based on the above-mentioned aspects, it is an obvious
choice to make a compact cooperative between discriminant
analysis (classification) and manifold learning (dimension-
reduction) to learn from each other, which is however not an
easy task. In this study, the D2K-DA model is proposed as a
consistent framework for visual monitoring. Instead of an
artificially determined kernel function, a unique data-depend-
ent kernel (DDK) function is constructed and directly learned
from specific data through one compact step of optimization
with a scalable quantity of parameters, so that the low-
dimensional visualizations can be pursued. The objective
function is integrated into two parts: one stands for class
discrimination by exploiting discriminative information and the
other stands for dimension-reduction by manifold learning
solely derived from the process variables, as they contain the
manifold structure of data. The pairwise similarities between
samples to quantify the manifold structure of data are
measured with the heavy-tailed Student’s t distribution,
which can be seen as an infinite mixture of Gaussians and
helps to solve the crowding problem of local techniques for
multidimensional scaling. From the view of discriminant
analysis, the proposed D2K-DA exploits discriminative
information to pursue both intraclass compactness and
interclass separability to group samples from the same class
and separate samples from different classes. From the view of
manifold learning, local geometry structure and global
geometry structure would be faithfully and synchronously
preserved in the low-dimensional visualizations, to compress
significant information to the leading two-/three-dimensional
visualization space and avoid the destruction of geometry
structure. All of the above aspects are further described. Table
1 lists the important variables and notations of this article.

2. PRELIMINARY STUDY
In spite of the advantageous features of the kernel learning
methods in aspects of theory, application performance, and
flexibility, conventional kernel learning techniques construct a
kernel matrix that is effective for training samples only; they
cannot deal with new samples.22 In this paper, to tackle this
problem without repeating the whole training procedures and
additional extrapolating extensions, the flexible DDK is
creatively adopted for good generalization.22,23

In general, the data-dependent kernel function is defined as

=x x x x x xr r( , ) ( ) ( ) ( , )i j i j i j0 (1)
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where αh is to be optimized. The empirical cores e1,···,eH are
specifically selected from the training data.

For easy derivations, the inner product matrix (Gram
matrix) is defined as ×K N N , where the ijth element Kij =
κ(xi, xj) = f(xi) ·f(xj) = f(xi)T f(xj). It is easy to get
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where (K1)i. denotes the ith row of K1.

3. D2K-DA MODEL
It is both theoretically and practically significant to focus on
visual monitoring to obtain more directly appreciable and
more easily comprehensible information about the process
operating status and clear depictions of the occurrence path of

Table 1. Nomenclature of Important Variables and
Notations

symbol description

X X = {(xi, ci)} i = 1
N , a set of N-labeled samples.

ci the class information on xi; ci ∈{1,···,T}.
Y Y = {yi} i = 1

N , a set of N low-dimensional visualizations.
yi the low-dimensional visualization of xi, yi = f(xi).
κ(·,·) the data-dependent kernel.
κ0(·,·) the basic kernel of the data-dependent kernel.
r(·,·) the factor function.
eh the empirical cores.
K the kernel matrix of training samples with κ(·,·).
K0 the kernel matrix of training samples with κ0(·,·).
R the diagonal matrix with elements r(x1), ···, r(xN).
k the number of nearest neighbors.
LDis the subobjective function for class discrimination.
LGeo the subobjective function for dimension-reduction.
SW the measurement of intraclass compactness.
SB the measurement of interclass separability.
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faults. However, the existing approaches would not be
competent due to the neglect of discriminative information
or geometry structures. Taking advantage of both discriminant
analysis and manifold learning, this paper proposes the D2K-
DA model as a consistent framework to learn a unique DDK
function for visual monitoring. The compact optimization is
formulated in terms of the combination coefficient α of DDK
to facilitate calculation. The objective function is integrated
into two parts: (1) Dis represents class discrimination
(classification) by exploiting discriminative information to
guarantee intraclass compactness and interclass separability;
(2) Geo represents dimension-reduction by manifold learning
to guarantee local and global structure preservation, where
pairwise similarities between samples are measured with the
heavy-tailed Student’s t distribution.
3.1. Construction of Dis. In the proposed D2K-DA

model, samples from the same class should be grouped and
samples from different classes should be separated in the low-
dimensional space. To realize this, the measurements of
intraclass compactness and interclass separability, respectively
expressed as SW and SB, are constructed.

Specifically, let us suppose the set of k-nearest neighbors of
each sample xi to be knn(xi), and knnW(xi) = {xj |xj ∈knn(xi)
and ci = cj} knnB (xi) = {xj | xj ∈ knn(xi) and ci ≠ cj}. Then the
two weight matrices are respectively defined as
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The measurements of intraclass compactness and interclass
separability are, respectively, calculated as
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With the introduction of DDK, the optimization should be
formulated in terms of α. SW in (eq 7) can be reformulated as
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where Ψij= (K1)i.T (K1)j. (K0)ij.
Similarly

=SB BT (9)

The objective to minimize SW and maximize SB is given as

i
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2 2

. η ∈[0,1] is the parameter to
regulate the relative significance.
3.2. Construction of Geo. Geo aims to preserve as much

of both the local geometry and global geometry structure of
the original data (high-dimensional) as possible in the low-
dimensional space.

Inspired by the classical algorithm t-SNE,25 the similarity
between pairwise data points xi and xj in the original space is
measured by pij = (pi|j + pj|i)/2N, where pi|j is the conditional
probability. Mathematically, pi|j is given as
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that xi would pick xj as its neighbor; neighbors were
proportionally picked to the probability density under a
Gaussian centered at xi; pi|i ≡ 0. σi is the variance of the
Gaussian centered to xi, controlling the perplexity of pi|j.
Besides, in the low-dimensional space, the similarity qij
between pairwise data points f(xi) and f(xj) is measured by
probability with the heavy-tailed Student’s t distribution to
solve the crowding problem
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Define qii ≡ 0. Note that the variance of the Gaussian is set to
1
2

in (12); other values only result in a rescaled version.

For dimension-reduction, the construction of Geo is based
on the Kullback−Leibler divergence between P and Q

= =KL P Q p
p

q
( ) log

i j
ij

ij

ij

Geo

(13)

3.3. Consistent Framework. Note that both Dis and
Geo should take minimum, such that the compact objective

function is calculated as

= +Dis Geo (14)

where ξ is a supplement to adjust the order of magnitudes. In
eq 14, the objective for class discrimination Dis by exploiting
discriminative information to guarantee intraclass compactness
and interclass separability and the objective for dimension-
reduction Geo by manifold learning to guarantee local and
global structure preservation are combined to construct the
whole objective function by additive operation with a weight
factor; a consistent framework for visual monitoring would be
obtained, containing the concept of contribution of the
proposed method. Note that the proposed construction of
the objective function in eq 14 realizes the main contribution
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of the proposed D2K-DA method to make compact
cooperatives between discriminant analysis (classification)
and manifold learning (dimension-reduction) to learn from
each other. Strictly speaking, the optimization here should be a
bi-objective optimization; however, to be convenient to
calculate in practice, the two objectives, both taking the
minimum, are simply added. Besides, ξ should be supple-
mented for a desired optimization as there may be an order of
magnitude difference between Dis and . Through
optimization with a proper ξ, both objectives would take the
balance, such that both intraclass compactness and interclass
separability to group samples from the same class and separate
samples from different classes would be pursued, while at the
same time, significant information would be compressed to the
leading two/three dimensions for visualization without obvious
destruction of the geometry structure.

The solution of (eq 14) may not be globally optimal. To find
a refined solution with both time and space efficiency, interior-
point methods and sequential quadratic programming are
successively employed, while the former rapidly converges to a
rough range around the optimum and the latter helps to find
the precise solution; it empirically works well for repeated
simulations.

4. D2K-DA-BASED VISUAL PROCESS MONITORING
4.1. Parameter Optimization. After constructing the

consistent framework of D2K-DA, there are several parameters
and hyper-parameters to be tuned.
4.1.1. Construction of the DDK.
• The value of H and the selection criterion of empirical

cores eh: As recommended by ref 23, one-third of the
training data are chosen as the empirical core in this
paper, according to the spatial distribution of the data.
Specifically, the empirical cores are chosen step by step:
First, one training sample is randomly chosen as a new
empirical core from the training data. Second, two
training samples nearest to the chosen sample are
selected. Third, the training sample in the first procedure
is chosen and its two neighbors are removed from the
training data. The three procedures are repeated until
there are no samples left in the training data. In this way,
the selected empirical cores would roughly depict the
spatial structure of the data.

• The kernel width τ0 of kernel function κ0(·,·) and the
kernel width τ1 of kernel function κ1(·,·): In practice, τ0
is empirically set to τ0 = 10ζι2 according to ref 23, where
ζ and ι2 are, respectively, the dimension of process
variables and the variance of the data. τ1 is set to τ1 = τ0
/5, recommended by ref 23.

4.1.2. Construction of Dis.
• The number of nearest neighbors k: As recommended

by ref 27, the initial value would be roughly determined
according to an empirical equation, and then the final
value would be thoroughly adjusted around the initial
value.

• The parameter η regulates the relative significance
between SW and SB: Generally, η is larger than 0.5
because the information on two similar samples is more
important than that of two dissimilar samples. The
specific value would be chosen by grid search from small
to large. Because the labeled data are usually quite

precious and scarce, it is recommended to employ k-fold
cross-validation to avoid splitting an independent
validation data set.

4.1.3. Construction of Geo.

• σi for each xi to calculate pi|j: In practice, the value of σi is
usually determined by a binary search with a fixed
perplexity recommended by a highly cited paper.25 The
perplexity Perp(Pi) is defined as

=Perp P( ) 2i
E P( )i (15)

• where E(Pi) = −∑jpj|i log2 pj|i is the Shannon entropy of
Pi. According to ref 25, the performance would be fairly
robust to changes in the perplexity, and typical values are
between 5 and 50.

4.1.4. Construction of .

• The parameter ξ adjusts the order of magnitudes
between Dis and Geo. Too small ξ implies insufficient
geometry structure information is preserved which leads
to the destruction of the geometry structure in low-
dimensional visualization space, whereas too large ξ
results in inadequate intraclass compactness and
interclass separability by losing the role of discriminative
information. Practically, ξ is roughly chosen from the
exponential candidate set {10e|e = −8, −7,···, 7, 8} by
seriate search, and then the final value would be adjusted
around the rough value.

4.2. Visualization Based on D2K-DA. Once the
combination coefficient vector α is obtained, the low-
dimensional visualizations can be obtained where as much
information as possible has been compressed to the leading
dimensions. Given the eigenvalue decomposition of K,

= K
N
1

(16)

Solving (eq 16) yields the orthonormal eigenvectors β1, ···, βN
and the associated corresponding eigenvalues λ1 ≥ ··· ≥ λN.

To make a visualization ynew at a new observation xnew, the
visualization system can be expressed as

=
=

y x x
1

( , )l
l n

N

n
l

nnew,
1

new
(17)

where l is the serial of dimension. The status and occurrence
path of ynew would provide more directly appreciable and more
easily comprehensible information about the process operating
status and can be used to forecast the tendency of the process.
4.3. D2K-DA-Based Visual Process Monitoring. A good

visualization for multiclasses usually means there are as few
overlaps as possible between different classes. To quantify the
performance of visualization, this work introduces the
Delaunay triangulation-based correct visualization rate (DT-
CVR). Specifically, the boundary for each operation status,
actually the convex envelope line, would be obtained by the
Delaunay triangulation28 based on low-dimensional visual-
izations of training samples of each class; the low-dimensional
visualization ynew of the query sample is checked if it locates
inside of the polygonal region defined by the boundary; only if
ynew locates in the correct region and it does not locate in any
other region is the query sample determined as correctly
visualized. Finally, DT-CVR is obtained. A higher DT-CVR
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denotes fewer overlaps among different classes. The decision
regions usually do not fill up the whole space.

DT-CVR can also help to quantify the performance of fault
detection and classification. Note that this kind of metrics is
more rigorous and conservative than traditional ones. A high
DT-CVR denotes a good performance of detection and
classification; however, a low DT-CVR may not denote a poor
performance of detection and classification. (1) If the mapped
query sample still locates near but outside the boundary, it is
not determined as being correctly visualized; however, it would
be correctly classified by common classifiers, like k-nearest
neighbors. (2) If the mapped query sample locates in the
overlaps, it is also not determined as correctly visualized;
however, it may be correctly classified by common classifiers;
some traditional classifiers are able to perform well with
interlaced boundaries, which would not be desired in
visualization tasks. To quantify the performance of detection
and classification as conventional, the k-nearest-neighbor-based
correct classification rate (KNN-CCR) is introduced. To
illustrate the difference between DT-CVR and KNN-CCR,
Figure 1 gives a sketch map.

In a nutshell, Figure 2 presents the flowchart of D2K-DA-
based visual process monitoring.

5. RESULTS AND DISCUSSION
In this section, two industrial processes, the Tennessee
Eastman (TE) process and a real-world polyethylene process,
are employed to evaluate the feasibility and efficiency of the
proposed D2K-DA model, respectively, for generalization and
pragmaticism.

To better show the performance of the proposed method,
several state-of-the-art data-driven classification and visual-
ization methods are employed: (1) Fisher linear discriminant
analysis (FDA); (2) self-organizing map (SOM), the classical
method for visual monitoring29; (3) supervised maximum
variance unfolding (SMVU),30 a kernel-learning-based classi-
fication method; (4) supervised autoencoder (SAE)31 as a
representative of supervised neural network; specifically, a
multilayer form is adopted to enhance the ability to extract
information; (5) t-SNE-BP, where t-SNE helps to find the
visualization of data, and successively back-propagation (BP)
helps to build the explicit relationship between the original
space and the visualization space.25

5.1. Tennessee Eastman Process. TE process has been a
widely adopted benchmark in the research fields of process
system engineering to evaluate the performance of various
models on fault detection, fault classification, etc.

The process is designed with several operating states; among
them, the normal operating state and three faulty operating
states (conventionally denoted as faults 1, 4, and 7) are chosen
to evaluate the monitoring performance of the proposed
method and other related methods. Besides, a total of 16 easily
measured process variables are chosen for modeling, including
A feed, D feed, E feed, A and C feed, recycle flow, reactor feed
rate, reactor temperature, purge rate, product separator
temperature, product separator pressure, product separator
underflow, stripper pressure, stripper temperature, stripper
steam flow, reactor cooling water outlet temperature, and
separator cooling water outlet temperature. For offline training,
each operating state is simulated for 48 h while the fault is
introduced at the beginning; the sampling interval is set to 3
min, such that 480 samples are collected for each operating
state. For online testing, 480 samples are collected for each
operating state, while the fault is introduced at the beginning of
the ninth hour (161st sample).
5.1.1. Quantified Result of Visualization and Classifica-

tion. For D2K-DA, the kernel widths of κ0(·,·) and κ1(·,·) are,
respectively, set to τ0 = 160 and τ1 = 32;23 the number of
nearest neighbors is set to k = 3;27 the parameter to regulate
the relative significance between SW and SB is set to η = 0.6; the
perplexity Perp(Pi) = 34;25 the supplement between Dis and

Geo is set to ξ = 10. For the SOM, the structure is set to 9-13.
For SMVU, the number of nearest neighbors is also set to k = 3
as D2K-DA, while ρ = 10. For SAE, the structure is set to 16-5-
2-5-16, while other hyper-parameters are set to 0.001, 128, and
100. For t-SNE-BP, the perplexity is set to 34, the same as
D2K-DA; the hidden layer of BP is set to 50. For KNN-CCR,
the number of nearest neighbors is set to 3.

Detailed DT-CVRs and KNN-CCRs are listed in Tables 2
and 3. The results show that the proposed D2K-DA performs

Figure 1. Sketch map of DT-CVR and KNN-CCR. Legends:
Imaginary lines: decision boundaries of DT-CVR; solid dots: training
samples; hollow dots: query samples, marked as the correct class.
Results: (1) Hollow dot “1”: DT-CVR (×), KNN-CCR (√); (2)
Hollow dot “2”: DT-CVR (×), KNN-CCR (√); (3) Hollow dot “3”:
DT-CVR (×), KNN-CCR (×); (4) Hollow dot “4”: DT-CVR (√),
KNN-CCR (√).

Figure 2. Flowchart of D2K-DA-based visual process monitoring.
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the best in both visualization and classification. FDA cannot
handle the nonlinearity of data, which is quite common in real
practice. The structure of SOM would not be capable of
describing complex characteristics with shallow layers and
limited nodes. SMVU learns a data-dependent kernel from
specific data with sectional discriminative information;
however, separate training procedures may not guarantee a
good generalization performance, while the between-class
structure is factitiously determined. SAE has a deeper
multilayer structure to extract much information from the
original space to the leading dimensionalities. It still gives
unsatisfactory results without explicit consideration of
geometry structure. t-SNE-BP enjoys the advantages of t-
SNE to capture much of the local structure of the high-
dimensional data and geometry preservation to promote
visualization and classification performance, as well as the
generalization by BP. However, the neglect of discriminative
information and separate modeling procedures may be
challenged by reliability and scalability in practice. The
proposed consistent framework, D2K-DA, integrates discrim-
inative information (classification) and geometry information
(dimension-reduction by manifold learning) together to
directly learn a unique DDK function from specific data. It
compresses significant information to the leading dimensions
for visualization with both intraclass compactness and
interclass separability with the restraint of crowding problem
to guarantee visualization performance.

Note that the results show that DT-CVR is usually smaller
than KNN-CCR because the former is more rigorous and
conservative than the latter. The decision boundary of DT-
CVR is the convex envelope of mapped samples, and the
decision regions usually do not fill up the whole space. A high
DT-CVR denotes few overlaps between classes, but KNN-
CCR may still work when the mapped query sample locates
outside the convex boundary of DT-CVR or in the overlaps.
5.1.2. Visualized Result of Operating Status. To visualize

process monitoring, Figure 3a−f gives the two-dimensional
visualizations of each testing data set as well as the boundaries
of DT-CVR (imaginary lines), where dots are colored in the
corresponding correct class. Only 161−480 samples are
included because the fault is introduced in the 161st sample.
It is obvious that low-dimensional mapped samples are mixed
in Figure 3a−e but are separated for different classes and
grouped for the same class in Figure 3f. The results further
show that D2K-DA outperforms the other models.

To better analyze the operating status, Figure 4a−d
illustrates the trajectories under D2K-DA, where dots are
colored in the corresponding class and the black lines denote
the sampling order. In the beginning, the trajectories show the
TE process operates in the normal status in the first 8 h. Then
as the fault is introduced, the trajectories directly move to the
corresponding region, almost without delay, meaning a specific
fault has happened. Finally, the process operates in the fault
status. Engineers and operators visually perceive and access
this information with D2K-DA.
5.1.3. Sensitivity Test of Parameter Values and Random

Starts. To test the sensitivity of the parameter ξ, various
experiments are conducted to show the effects of different
values of ξ. According to eq 14, ξ adjusts the order of
magnitudes between Dis and Geo. Too small ξ implies
insufficient geometry structure information is preserved which
leads to the destruction of the geometry structure in low-
dimensional visualization space, whereas too large ξ results in
inadequate intraclass compactness and interclass separability
by losing the role of discriminative information. Means of CVR
and CCR are shown in Figure 5a,b under different values of ξ;
20 repeated experiments are conducted. It can be seen from
Figure 5 that model performances are basically robust to the
fluctuation of ξ. These experiments demonstrate that the
performance of the proposed D2K-DA will be a certain
improvement when the parameter ξ varies in a wide range. In
practice, this parameter is optimized by Section 4.1.4.

The proposed D2K-DA is partially derived from t-SNE,
which is stochastic. Different random starts would lead to
different results. To test the robustness for random starts, the
proposed model is repeatedly trained and tested 20 times
under the same (hyper)parameters. The averages of DT-CVR
and KNN-CCR are 0.9472 and 0.9816, respectively, while the
standard deviations are 0.0066 and 0.0025, repetitively. This
result shows that the proposed method is robust despite the
randomness of starts. Additionally, experiment results on
different starts are presented in Part I of the Supporting
Information (Figures S1−S8), where detailed DT-CVRs and
KNN-CCRs are synchronously given.

To test the proposed D2K-DA upon more faults in the TE
process, more experiments are further conducted while
visualizations and trajectories are presented in Part II of the
Supporting Information (Figures S9−S14). The results show
that the low-dimensional visualizations of a fraction of faults
are more or less overlapped by the low-dimensional visual-

Table 2. DT-CVRs of Different Methods in the TE Process

type FDA SOM SMVU SAE t-SNE-BP D2K-DA

normal 0.0000 0.0000 0.0000 0.0000 0.0000 0.9313
fault 1 0.9625 0.5313 0.0000 0.1688 0.8219 0.9469
fault 4 0.0250 0.0000 0.1719 0.0000 0.0031 0.9406
fault 7 0.2875 0.4125 0.1000 0.1875 0.0969 0.9844
average 0.3125 0.2359 0.0680 0.0891 0.2305 0.9508

Table 3. KNN-CCRs of Different Methods in the TE Process

type FDA SOM SMVU SAE t-SNE-BP D2K-DA

normal 0.5156 0.9969 0.4313 0.5406 0.5469 0.9406
fault 1 0.9844 0.9656 0.0094 0.6844 0.9344 0.9969
fault 4 0.3094 0.0000 0.3406 0.2781 0.3312 1.0000
fault 7 0.5000 0.6781 0.9563 0.4406 0.4594 0.9969
average 0.5773 0.6602 0.4344 0.4859 0.5680 0.9836
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Figure 3. Visualizations of the 161−480 samples of each testing data set and the boundaries of DT-CVR in the TE process. Methods: (a) FDA, (b)
SOM, (c) SMVU, (d) SAE, (e) t-SNE-BP, and (f) D2K-DA.
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izations of the normal operating state. The reason would be
that some pieces of operating data after faults have occurred
may not be obviously discriminative with normal operating
state, and even may not be obviously discriminative with other
faults. This situation is common in random faults and ramp
faults. Besides, the visualization system forces the dimensions
of data to be reduced to two for human cognition. For complex
faults, more dimensions would be needed to discriminate
differences between faults and normal operating state, even
though significative information has been compressed to the
leading two dimensions; complex faults are not two-dimen-
sional divisible.
5.2. Polyethylene Process. The proposed method is

further validated by the monitoring and visualization task of
the melting index of a real-life industrial polyethylene process.
All of the data sets are collected from the routine process
records and the corresponding laboratory analysis. As the
product quality of polyethylene production cannot be directly
measured online, the operating variables have to be maintained
the same until the analysis result is obtained; the product

quality is analyzed and recorded in the laboratory once per day.
For confidential reasons, the other details of this process will
be concealed.

According to the operating experience, 11 process variables
that are closely correlated with the product quality are selected
for modeling. Four working conditions are concerned,
including a normal working condition and three faulty
conditions (denoted as faults 1, 2, and 3). In this paper, 480
samples of four working conditions in a product line are
collected. The number of training samples for each working
condition is 50 (a total of 200 samples). The number of testing
samples for each working condition is 70 (a total of 280
samples), while the fault is introduced in the 21st sample for
faulty working conditions.
5.2.1. Quantified Result of Visualization and Classifica-

tion. For D2K-DA, τ0 = 110 and τ1 = 22;23 nearest neighbors k
= 3;27 η = 0.7; Perp(Pi) = 30;25 ξ = 1. For the SOM, the
structure is 8-10. For SMVU, nearest neighbors are also set to
k = 3 as D2K-DA, while ρ = 5. For SAE, the structure is set to
11-4-2-4-11, and other hyper-parameters are set to 0.001, 128,

Figure 4. Trajectories of the operating status in the TE process under D2K-DA. Testing data sets: (a) Normal, (b) Fault 1, (c) Fault 4, and (d)
Fault 7.
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and 100. For t-SNE-BP, the perplexity is set to 30; the hidden
layer of BP is set to 50. For KNN-CCR, the number of nearest
neighbors is set to 3.

Tables 4 and 5, respectively, tabulate detailed DT-CVRs and
KNN-CCRs. Similar to the first case, D2K-DA performs the
best in both visualization and classification tasks. It is
emphasized that this is a result of a compact cooperative
between discriminative information and geometry information
to reveal ideal low-dimensional visualizations.
5.2.2. Visualized Result of Operating Status. Figure 6a−f

presents the visualizations of 21−70 samples of each testing
data set. The results of D2K-DA (Figure 6f) clearly show that
the mapped query samples are well-separated for different
classes and well-grouped for the same class. Other methods
have obviously worse performance. Figure 7a−d illustrates the
trajectories of the operating status under D2K-DA. When the
process operates in the normal status and in the fault status,
the trajectories are mainly located in the corresponding convex
boundaries (envelop lines); when a fault just happens, the
trajectories directly move to the corresponding region with
little delay. This low-dimensional visual information helps
engineers and operators to timely and accurately monitor the

process operating status and acquire depictions of the
occurrence path of faults.

All of the results have shown the superiority of D2K-DA.

6. CONCLUSIONS
Visual monitoring helps engineers and operators to perceive
and access visualized information about process operating
status, depictions of the occurrence path of faults, etc. In this
study, the D2K-DA framework is proposed. The features of the
proposed method are summarized as follows.

• The proposed D2K-DA novelly integrates discriminative
information and geometry information as a consistent
framework. In virtue of kernel learning, a unique DDK
kernel is directly learned from specific data through one
compact step of optimization, of which the flexible
kernel space has enough discriminant and fewer leading
degrees.

• Inheriting the class discrimination scenario, both
intraclass compactness and interclass separability are
guaranteed by exploiting label information to group
samples from the same class and separate samples from
different classes.

Figure 5. Sensitivity test about the parameter ξ: (a) Means of CVR versus the value of ξ, and (b) Means of CCR versus the value of ξ.

Table 4. DT-CVRs of Different Methods in the Polyethylene Process

type FDA SOM SMVU SAE t-SNE-BP D2K-DA

normal 0.0600 0.1000 0.0000 0.4600 0.2000 0.9400
fault 1 0.0200 0.0000 0.0000 0.0000 0.2000 0.9800
fault 4 1.0000 0.7800 0.7600 0.9200 0.7400 0.8000
fault 7 0.1000 0.0400 0.0800 0.0000 0.0200 1.0000
average 0.2950 0.2300 0.2100 0.3450 0.2900 0.9300

Table 5. KNN-CCRs of Different Methods in the Polyethylene Process

type FDA SOM SMVU SAE t-SNE-BP D2K-DA

normal 0.6800 0.8800 0.6000 0.9200 0.8200 1.0000
fault 1 0.4400 0.8400 0.3000 0.0000 0.8200 1.0000
fault 4 1.0000 0.9000 0.9000 0.9800 0.9800 1.0000
fault 7 0.2800 0.4200 0.3200 0.0200 0.5200 1.0000
average 0.6000 0.7600 0.5300 0.4800 0.7850 1.0000
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Figure 6. Visualizations of the 21−70 samples of each testing data set and the boundaries of DT-CVR in the polyethylene process. Methods: (a)
FDA, (b) SOM, (c) SMVU, (d) SAE, (e) t-SNE-BP, and (f) D2K-DA.
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• Inheriting the manifold learning scenario, both local
structure and global structure preservation are con-
ducted upon Student’s t distribution-based similarities to
compress as much significative information as possible
to the leading degrees of kernel space to pursue low-
dimensional visualizations.

This article mainly focuses on the model construction of the
proposed method and provides some preliminary analysis and
application of the low-dimensional visualizations. The future
work will focus on further exploiting the low-dimensional
visualizations, i.e., trajectories of operating status, occurrence
paths of faults, etc., and exploring potential applications on
fault forecast, fault recovery, and process optimization. It is
noted that the proposed D2K-DA framework is currently
designed in a fully supervised form in this paper, but can be
easily extended to a more generalized form for partially labeled
data. Also note that some regularization terms can be

integrated into the proposed framework, which would extend
the scope of application and future study.
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Figure 7. Trajectories of the operating status in the polyethylene process under D2K-DA. Testing data sets: (a) Normal, (b) Fault 1, (c) Fault 2,
and (d) Fault 3.
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