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A B S T R A C T   

The composition of volatile compounds in beer is crucial to the quality of beer. Herein, we identified 23 volatile 
compounds, namely, 12 esters, 4 alcohols, 5 acids, and 2 phenols, in nine different beer types using GC–MS. By 
performing PCA of the data of the flavor compounds, the different beer types were well discriminated. Ethyl 
caproate, ethyl caprylate, and phenylethyl alcohol were identified as the crucial volatile compounds to 
discriminate different beers. PLS regression analysis was performed to model and predict the contents of six 
crucial volatile compounds in the beer samples based on the characteristic wavelength of the FTIR spectrum. The 
R2 value of each sample in the prediction model was 0.9398–0.9994, and RMSEP was 0.0122–0.7011. The 
method proposed in this paper has been applied to determine flavor compounds in beer samples with good 
consistency compared with GC–MS.   

1. Introduction 

Beer is one of the most popular beverages worldwide; its widespread 
consumption increases its commercial value every year (Alves et al., 
2020). In 2020, approximately 1.88 billion liters of beer were consumed 
globally (Statista, 2022). China is the world's largest beer consumer, 
accounting for 22.7% of global beer sales (SINDICERV, 2021), which is 
nearly double the sales of the second largest seller, the United States 
(Han et al., 2023). People worldwide love beer owing to its various 
tastes, physicochemical properties, and flavor (Almeida, Aparecida, 
Lima, Suarez, & Andrade, 2018; Alves et al., 2020; Betancur, Motoki, 
Spence, & Velasco, 2020). The flavor of beer is characterized by the 
presence of dozens of volatile organic compounds, including alcohols, 
esters, fatty acids, carbonyl compounds, sulfur compounds, furanic 
compounds, monoterpenols, and volatile phenols, constituting the 
unique flavor of each beer at different concentrations (Gagula et al., 
2020; Ncube, Dube, & Nindi, 2020). Some of these compounds are 
pleasant, and their concentrations should be kept stable; however, some 
have undesirable properties that should be reduced to a minimum (Dong 
et al., 2014; Liu et al., 2023). Providing consumers with stable-quality 
beer is extremely essential, and regular beer analysis is warranted to 

track, minimize, and correct the concentrations of volatile organic 
compounds in beer (Betancur et al., 2020; Gagula et al., 2020; Ncube 
et al., 2020). 

At present, beer flavor analysis is achieved via electronic nose 
(Ghasemi-Varnamkhasti et al., 2011), electronic tongue (Mutz et al., 
2021), high-performance liquid chromatography (Scioli et al., 2022), 
and gas chromatography–mass spectrometry (GC–MS) (Attchelouwa 
et al., 2020). Furthermore, static headspace technology, solid-phase 
microextraction (SPME), and headspace solid-phase microextraction 
(HS-SPME) combined with GC–MS have been effectively used to analyze 
volatile compounds in beer. For example, these methods have been used 
to analyze volatile compounds in sorghum beer during storage (Attch
elouwa et al., 2020), model and analyze flavor compounds in beer 
(Giannetti, Mariani, Torrelli, & Marini, 2019), and determine volatile 
carbonyl compounds in beer (Moreira, Meireles, Brandão, & Pinho, 
2013). However, most of these traditional methods have limitations as 
they are laborious, time-consuming, and destructive; require lengthy 
sample processing; and lack online tracking and monitoring. Therefore, 
food researchers are increasing their focus on searching for accurate, 
rapid, and economical analytical methods to quickly quantify volatile 
organic compounds in beer. 
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Fourier-transform infrared (FTIR) spectroscopy, an advanced 
chemical analysis technology, has several advantages, including the 
requirement of a small amount of sample, simple sample pretreatment, 
good reproducibility, and rapid analysis time at a high spectral resolu
tion. Food researchers have widely used FTIR combined with chemo
metric models for qualitative and quantitative analyses of volatiles in 
foods, especially in the application of food classification and adultera
tion. For example, different brands of Chinese spirits can be discrimi
nated (Dong et al., 2014), the degree of beef spoilage can be analyzed 
(Zhang, Ye, Xiao, & Dong, 2015), and artificial fragrant rice can be 
identified from high-quality rice (Liu et al., 2023). In research related to 
beer, FTIR was employed to monitor sugars in the beer mashing process 
(Almeida et al., 2018), determine the quality parameters of different 
beers (Polshin, Aernouts, Saeys, Lammertyn, et al., 2011), and classify 
beer samples based on differences in alcohol content and sugars (Gordon 
et al., 2018). However, the above studies focused on the sugar content, 
alcohol weight, and degree of surface fermentation in beer to classify 
and evaluate the quality of the samples. To the best of our knowledge, no 
studies have classified beer based on volatile compounds or rapidly 
quantified volatile compounds in beer. As a result, the present study 
aimed to develop and validate a rapid and simple method for directly 
quantifying flavor compounds in beer by combining FTIR and chemo
metric methods. For this purpose, nine beers obtained from Tsingtao 
Brewery Co. Ltd. (China) were analyzed using SPME–GC–MS and prin
cipal component analysis (PCA) to identify and classify the essential 
odorants dominating the characteristic flavors of different beer samples. 
Furthermore, a partial least squares (PLS) quantitative analysis model of 
typical flavor data based on the characteristic wavelength of the FTIR 
spectrum was successfully established and verified. Our study provides a 
new and feasible method for evaluating beer flavor and has important 
and practical significance in the study of beer flavor compounds. 

2. Materials and methods 

2.1. Sample preparation 

Nine beers were obtained from Tsingtao Brewery Co. Ltd. (China) 
and stored at 4 ◦C until GC–MS analysis. The beer samples were as fol
lows: No.1 Tsingtao stout black beer, No.2 Tsingtao premium beer, No.3 
Tsingtao Craft Beer IPA, No.4 Tsingtao Classical, No.5 Tsingtao pilsner 
beer, No.6 Tsingtao pure draft beer (batch on May 22), No.7 Tsingtao 
pure draft beer (batch on May 24), No.8 Tsingtao pure draft beer (batch 
on May 25), and No.9 Tsingtao pure draft beer (batch on May 27). 

The six flavor compounds phenylethyl alcohol (C8H10O), isopentyl 
alcohol (C5H12O), ethyl caprylate (C10H20O2), isopentyl acetate 
(C7H14O2), ethyl caproate (C8H16O2), and ethyl acetate (C4H8O2) were 
purchased from Shanghai McLean Biochemical Technology Co. Ltd. 
(Shanghai, China). Each flavor compound was dissolved in 5% ethanol 
and prepared as samples with 20 different concentration gradients at 
0.5% intervals. The concentration range of each compound was as fol
lows: phenylethyl alcohol (3–60 mg L− 1), isopentyl alcohol (5–100 mg 
L− 1), ethyl caprylate (0.1–2 mg L− 1), isopentyl acetate (0.15–3 mg L− 1), 
ethyl caproate (0.1–2 mg L− 1), and ethyl acetate (2.5–50 mg L− 1). These 
solutions were prepared for FTIR analysis. 

2.2. Determination of the flavor compounds using GC–MS analysis 

GC–MS analysis was performed using the Shimadzu Nexis gc2030 GC 
and Shimadzu QP2020NX MS. The chromatographic column was TR- 
WaxMS column (30 mL × 0.25 mm × 0.25 μm; Shimadzu Enterprise 
Management, China). The SPME extraction head divinylbenzene/car
boxy/polydimethylsiloxane (DVB/CAR/PDMS) 50/30UM was obtained 
from Supelco. 

Beer samples (5 mL) and 0.6 μL of 2-methyl-3 heptanone solution 
(0.1632 mg mL− 1; internal standard) were added into a 15-mL head
space vial. The headspace vial was placed on an oscillator at a rotation 

speed of 500 r min− 1 for 15 min under a constant temperature of 30 ◦C. 
Then, the DVB/CAR/PDMS 50/30UM extraction head was used for 
extraction. Before extracting the beer sample, the fiber was aged at 
270 ◦C for 1 h, and then the extraction head was inserted into the 
headspace of the sample headspace vial. The extraction was performed 
for 30 min at 60 ◦C. 

GC conditions were as follows: start at 60 ◦C for 2 min, at 10 ◦C min− 1 

to 90 ◦C, and then at 2 ◦C min− 1 to 130 ◦C for 5 min. No split injection 
was applied, and the carrier gas was helium. The flow rate was main
tained at 1 mL min− 1. The MS conditions were as follows: ionization 
mode, EI; electron energy, 70 eV, ion source temperature, 230 ◦C; 
transfer line temperature, 240 ◦C; scan mode, full scan mode; and mass 
scan range, 30–300 m/z. Searches were performed using the NISTDEMO 
database. 

The volatile compounds in beers were identified by their mass 
spectrometry fragment, which was matched with the National Institute 
of Standards and Technology (NIST 14) and NISTDEMO database, 
assisted by a mixture of n-alkane series (C6 - C40) to compare the 
experimental retention index (RI) with the values available in the NIST 
MS libraries. In addition, the relative content of volatile compounds was 
calculated by dividing the peak area of the isolated compound by the 
peak area of the internal standard. The quantification of phenylethyl 
alcohol, isopentyl alcohol, ethyl caprylate, isopentyl acetate, ethyl 
caproate, and ethyl acetate was carried out using an external standard 
method. The standard curves were prepared by plotting the ratios of the 
response areas of the standard compounds and internal standard against 
their concentration ratios. All analyses were carried out in triplicate, and 
the results are presented as the mean ± standard deviation. 

2.3. FTIR spectra acquisition 

The PerkinElmer Frontier Optica FTIR spectrometer (PerkinElmer, 
Norwalk, CT, USA) was used to collect FTIR spectral data of the samples 
using a previously described method (Wang et al., 2020). The parameter 
was set to point mode to collect the reflection spectrum, and the spot size 
was 50 μm × 50 μm. The resolution was 8 cm− 1, scanning speed was 1.0 
cm s− 1, scanning interval was 2 cm− 1, scanning range was 5005–1000 
cm− 1, and number of background scanning times was 100. Each sample 
was scanned twice, and the spectral data were stored in the form of 
absorbance. Spectrum IMAGE Software from the “stats” R package 
(Śliwińska, Wísniewska, Dymerski, Namieśnik, & Wardencki, 2014) was 
used for spectrum acquisition and spectral data processing; the drawing 
and modeling program codes were prepared by us. Before the experi
ment, corrections were conducted to reduce the experimental error 
caused by atmospheric interference and instrument noise. 

2.4. Characteristic wavelength selection 

PCA analysis was performed using the “prcomp” function of the 
“stats” R package to identify high-dimensional data structures by 
reducing the dimensions of the data to determine more understandable 
features and accelerate the processing of valuable sample information. 

2.5. Quantification using partial least squares regression models 

The PLS regression models were constructed for quantitative analysis 
of the six flavor compounds based on the spectral information of the 
samples, which was implemented using the “PLS” function of the R 
package. The pretreatment methods were smoothing, first-order deriv
ative, and smoothing + first-order derivative, which were applied and 
compared to select the most appropriate pretreatment method. After the 
model was established, 10-fold cross-validation was applied to the test 
set to estimate the predictive ability of the model to reduce the risk of 
overfitting. The predictive ability of the models was evaluated using 
correlation coefficients (R2) and root mean square error for prediction 
(RMSEP). RMSEP was calculated using the following formula: 
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RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑n

i=1

(
Xobs,i − Xpred,i

)2

n

√

Where Xobs is the observed known values of the outcome, Xpred is the 
predicted value obtained using the model, and n is the number of 
samples in the test set. 

3. Results and discussion 

3.1. Analysis of the volatile compounds in the nine beer samples via 
GC–MS analysis 

Beer flavor is affected by various volatile organic compounds, 
including alcohols, esters, aldehydes, ketones, and phenols (Giannetti 
et al., 2019). In the present study, the volatile organic compounds in the 
nine beer samples were identified via SPME–GC–MS. The volatile 
organic compounds and their relative concentrations in different beer 
samples are shown in Table 1. In total, 23 volatile flavor compounds 
were identified: 12 esters, 5 acids, 4 alcohols, and 2 phenols. Significant 
differences were observed in volatile organic compound types and 
content among the different beers. Among them, ethyl caproate, phe
nylethyl alcohol, and ethyl caprylate, as ideal alcohols and esters in beer 
(Riu-Aumatell, Miró, Serra-Cayuela, Buxaderas, & López-Tamames, 
2014), accounted for an essential proportion in each sample, with sig
nificant differences in content (Table1). Almost every type of beer 
contains a distinctive volatile compound, giving each kind of beer its 
characteristic flavor. Beer sample No. 1 contains n-caprylic acid with 

fresh cheese flavor (Ferreira et al., 2022), No. 2 contains ethyl myristate 
with an oil fragrance, No. 3 contains neopentyl butyrate with a strong 
banana flavor (Han et al., 2023), No. 4 contains 1-octanol with a lemon 
flavor, and No. 5 contains chavicol, contributing to its distinctive odor, 
which can be considered as characteristic fingerprints to identify 
different beers. Interestingly, samples 6–9 were different batches of the 
same kind of beer, and their relative contents of the volatile flavor 
compounds ethyl caproate, phenylethyl alcohol, ethyl caprylate, 
dimethyl salicylic acid, and ethyl laurate were comparatively stable. 
Some amount of malonic acid and pentadecanoic acid was detected in 
the samples, whereas it was not detected in some. The difference in 
flavor compounds in beer may be caused by the raw materials used, 
technological parameters, and yeast (Ferreira et al., 2022; Li et al., 
2022). Although the proportion of these organic acids was <1%, thereby 
not seriously affecting beer flavor, it is important for brewers to identify 
these unstable flavor compounds and determine solutions to maintain 
their stability in products. 

In order to screen for volatile compounds that can help distinguish 
different beer samples, PCA, a technique used to explore high- 
dimensional data structures by reducing the dimension of the data to 
identify more understandable features and accelerating the processing 
of valuable sample information, could be used to screen feature com
ponents effectively to distinguish different samples (Wang & Huang, 
2022) and was used to analyze the differences in major flavor com
pounds in different beer samples. As shown in Fig. 1A, PC1 and PC2 
explained 63% and 16.4%, respectively, of the variance in the total 
variables of the sample; the cumulative contribution rate of the two 
principal components was 79.4%, indicating that the two components 

Table 1 
Relative contents (mg L− 1) of flavor components for 9 beer samples by GC–MS.  

Flavor compounds Relative content (mean ± standard deviation) 

NO.1 NO.2 NO.3 NO.4 NO.5 NO.6 NO.7 NO.8 NO.9 

Phenylethyl alcohol 15.80 ±
0.87 

11.01 ±
0.96 

8.35 ± 0.45 5.91 ± 0.29 7.76 ± 0.33 11.41 ±
0.51 

7.13 ± 0.31 10.77 ±
0.52 

5.47 ± 0.27 

Ethyl caproate 22.64 ±
1.68 

8.83 ± 0.57 13.69 ± 0.89 12.92 ±
0.67 

23.98 ±
1.89 

17.75 ±
0.71 

20.20 ±
2.12 

16.32 ±
0.89 

16.94 ±
0.85 

Ethyl caprylate 21.36 ±
1.98 

26.75 ±
1.06 

22.79 ± 1.32 11.01 ±
0.51 

10.73 ±
0.08 

21.66 ±
1.05 

27.66 ±
2.15 

27.73 ±
1.12 

25.72 ±
1.08 

Octoic acid 5.36 ± 0.22 ND ND ND ND ND ND ND ND 
Ethyl acetate 4.64 ± 0.31 12.80 ±

0.54 
ND 1.21 ± 0.03 1.54 ± 0.09 3.03 ± 0.12 ND 2.49 ± 0.11 ND 

Malonic acid 1.93 ± 0.02 ND 3.61 ± 0.29 3.38 ± 0.11 2.88 ± 0.02 2.88 ± 0.09 ND ND 3.44 ± 0.18 
Ethyl decanoate 4.93 ± 0.38 9.77 ± 0.31 2.70 ± 0.25 2.32 ± 0.09 0.54 ± 0.04 ND ND ND ND 
Ethyl dodecanoate 1.84 ± 0.13 ND ND 0.48 ± 0.02 ND 3.36 ± 0.13 5.14 ± 0.39 6.53 ± 0.34 5.24 ± 0.31 
3-Methylsalicylic acid 0.49 ± 0.02 1.47 ± 0.23 1.70 ± 0.13 1.84 ± 0.07 0.63 ± 0.04 0.560 ±

0.03 
0.55 ± 0.04 0.46 ± 0.02 ND 

Salicylic acid - 2-ethyl ethyl 
ester 

0.14 ±
0.018 

ND 0.073 ±
0.001 

ND 0.14 ± 0.01 ND ND ND ND 

Ethyl laurate 0.37 ±
0.089 

ND 0.095 ±
0.065 

0.74 ± 0.03 ND 0.41 ± 0.02 ND 0.33 ± 0.01 ND 

Caproic acid ND 0.21 ±
0.021 

ND ND ND ND ND ND ND 

n-decanol ND 0.46 ±
0.078 

ND ND ND ND ND ND ND 

Ethyl myristate ND 0.038 ±
001 

ND ND ND ND ND ND ND 

Homosalate ND 0.20 ± 0.02 0.21 ± 0.09 ND ND ND ND ND ND 
Butyl phthalate ND 0.21 ± 0.08 ND ND ND ND ND ND ND 
Neoamyl Butyrate ND ND 2.10 ± 0.21 ND ND ND ND ND ND 
Linalool ND ND 0.95 ± 0.08 ND ND ND ND ND ND 
P-allylphenol derivative ND ND ND 0.17 ± 0.01 ND ND ND ND ND 
P-allylphenol ND ND ND 0.42 ±

0.009 
ND ND ND ND ND 

Ethyl palmitate ND ND ND 0.15 ± 0.01 ND ND ND ND ND 
N-Octanol ND ND ND ND 0.77 ± 0.06 ND ND ND ND 
Ethyl 9-Hexadecenoate ND ND ND ND 0.54 ± 0.05 ND ND ND ND 

The relative content of volatile compound was calculated by dividing the peak area of the isolated compound by the peak area of internal standard. No.1-No.9 were 
Tsingtao stout black beer, Tsingtao premium beer, Tsingtao Craft Beer IPA, Tsingtao Classical, Tsingtao pilsner beer, Tsingtao pure draft beer batch on May 22, 
Tsingtao pure draft beer batch on May 22, Tsingtao pure draft beer batch on May 24, Tsingtao pure draft beer batch on May 25, Tsingtao pure draft beer batch on May 
27. 
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explained 79.4% of the variance; thus, the prepared principal compo
nents represented most of the sample information. PC1 explained 63% of 
the total samples, indicating that it was the most significant principal 
component. Fig. 1B shows the significant contributions of the differ
ences. The larger the circle area in the figure is, the greater the contri
bution of that variable. Additionally, the closer the color was to red, the 
lower the contribution, and the closer the color was to blue, the greater 
the contribution. Fig. S1 shows the contributions of different volatile 
compounds to the differences in the beer samples. Finally, ethyl cap
roate, ethyl caprylate, and phenylethyl alcohols with contributions 
>10% were selected as the volatile compounds to distinguish among the 
different beers. 

3.2. Establishment of a rapid quantitative prediction model for the six 
flavor compounds 

The above results demonstrated that ethyl caproate, phenylethyl 
alcohol, and ethyl caprylate significantly contributed to the flavor dif
ferences among different beer samples. Studies have reported that ethyl 
acetate, isopentyl alcohol, and isopentyl acetate have a strong effect on 
beer flavor (Alves et al., 2020; Giannetti et al., 2019). Therefore, these 
six flavor compounds were selected to establish a rapid infrared spec
trum quantitative analysis method. 

3.2.1. Selection of the characteristic infrared spectra for the different flavor 
compounds 

Fig. 2 illustrates the original spectra of the 20 concentration gradi
ents of the six flavor compounds. The information range and shape of the 
characteristic peaks of the infrared spectrum of each flavor compound 
were different. To establish an efficient and accurate calibration model 
using infrared spectral data, the characteristic wavelengths in the 
infrared spectra of each flavor compound were screened using PCA, as 
shown in the PCA load diagram in Fig. 3. It reflected the score co
efficients of each observation wave number in the principal components 
PC1 and PC2. The sum of the product of each observation object and the 
PC1 score coefficient was the score of the principal component PC1, and 
the sum of the product with the PC2 score coefficient was the score of the 
principal component PC2. The wave number range was included when 
the value of at least one of the two principal components was >0 and 

was depicted as the characteristic wavelength range. The characteristic 
wavelengths of each flavor compound were finally selected as follows: 
phenylethyl alcohol, 5000–4876 and 2369–2353 cm− 1; isopentyl 
alcohol, 4970–4876 and 1566–1474 cm− 1; ethyl caprylate, 2898–2608, 
1455–1381, 1335–1300, 1285–1273, and 1103–1022 cm− 1; isopentyl 
acetate, 2372–2311 cm− 1; ethyl caproate, 2921–2650, 1431–1377, 
1331–1304, and 1103–1022 cm− 1; and ethyl acetate, 2372–2315 and 
1802–1709 cm− 1. 

Analysis of the selected characteristic wavelengths combined with 
the published data revealed that the bands at 2925 and approximately 
1465 cm− 1 were attributed to the (C–H) tensile vibration and variable 
angle vibration in alcohols and esters, respectively (Majstorović, 
Živković, Mitrović, Munćan, & Kijevčanin, 2016). The bands at 
approximately 1080 and 1430 cm− 1 were characteristics of the (C–O) 
stretching vibration and (C-OH) in-plane bending vibration in esters, 
respectively (Majstorović, Živković, Matija, & Kijevčanin, 2017). The 
band at the range 1750–1800 cm− 1 was the characteristic of the (C = O) 
stretching vibration in ester carbonyls (Shigley, Bonhorst, Liang, 
Althouse, & Triebold, 1955).Thus, selection of this region for the anal
ysis of the six volatile compounds is fully addressable. 

3.2.2. Quantification model for single flavor compounds 
PLS, a mathematical optimization technique (Yamashita, Anzanello, 

Soares, Rocha, & Fogliatto, 2022), is widely used to analyze infrared 
spectral data (Costa, Morgano, Ferreira, & Milani, 2019; Kahmann et al., 
2018). It can support regression modeling when the number of variables 
is greater than the number of samples. The independent variables have 
multiple correlations (Yao et al., 2022). Furthermore, the final model 
contains all the original independent variables. Recently, infrared 
spectroscopy combined with the PLS method has been applied for the 
quantitative analysis of food ingredients (Bassbasi, Platikanov, Tauler, & 
Oussama, 2014; Wang et al., 2020). In the present study, we established 
quantitative prediction models for the six flavor compounds by 
combining infrared spectral data with PLS. 

Smoothing and derivative processing can reduce interference from 
noise and baseline drift and efficiently highlight the differences between 
samples in the spectrogram. The derivative-processed spectrogram can 
reveal the absorption peak position of the original spectrogram and the 
absorption intensity of the peak position, facilitating further analysis. In 

Fig. 1. PCA analysis of GC–MS data of 9 beer samples. A: Variable correlation plots of various flavor compounds; B: Contribution plots of various flavor compounds.  
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Fig. 2. Stacked FTIR spectra of 20 concentration gradients of six flavor compounds in 5% ethanol. A: Phenylethyl alcohol; B: Isopentyl alcohol; C: Ethyl caprylate; D: 
Isopentyl acetate; E: Ethyl caproate; F: Ethyl acetate. The numbers 1 and 2 represented FIRT maps of flavor compounds in different wavelength ranges. 
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this study, the infrared spectral data corresponding to the filtered 
characteristic wave numbers were preprocessed in three different ways: 
smoothing, first-order derivative, and smoothing + first-order 

derivative. The PLS model was established using the processed data. The 
determined coefficient (R2) and RMSEP of the model are shown in 
Table S1. Higher R2 values and lower RMSEPs were considered signs of 

Fig. 2. (continued). 
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the successful model prediction. Therefore, this experiment adopted the 
smoothing and the first-order derivative pretreatment methods. 

The spectral data corresponding to the selected characteristic 

wavelength of each flavor compound (40 samples: 20 concentrations, 
two in parallel) were randomly divided into an 80% training set and 
20% test set after smoothing + first-order derivative pretreatment to 

Fig. 3. PCA loading plot of six flavor compounds. A: Phenylethyl alcohol; B: Isopentyl alcohol; C: Ethyl caprylate; D: Isopentyl acetate; E: Ehyl caproate; F: 
Ethyl acetate. 
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establish the final PLS model. A linear relationship was observed be
tween the spectral data established using the PLS model of each flavor 
compound and the content of flavor compounds (Fig. 4). The R2 value of 
each sample was 0.9398–0.9994, and the RMSEP was 0.012–0.0013. 
These results indicate that the prediction performance of the model is 
perfect. 

3.3. Determination of six flavor compounds in three beer samples 

The concentrations of six flavor compounds in three beer samples 
were detected using the PLS calibration model and GC–MS. The results 
are presented in Table 2. The relative standard error of the 

concentrations of the six flavor compounds measured by the two 
detection methods was 1.38%–25.61%, suggesting the feasibility of the 
proposed method. Wang et al. (2020) used FTIR spectroscopy combined 
with machine learning methods to rapidly quantify the content of arti
ficial sweeteners in beverages. The relative standard error between the 
results of their proposed method and the reference HPLC method was 
within the range of 2.52–11.01%. Further, Martins, Nascimento, Bar
bosa, and Barauna (2022) analyzed whey protein content in wheat flour 
via FTIR spectroscopy. The predicted error range was 6–29%. These 
studies suggest that FTIR is a reliable method to rapidly detect the 
content of flavor compounds in beer. 

Fig. 3. (continued). 

Fig. 4. Quantifification models for the six flavor compounds using PLS. A: Phenylethyl alcohol; B: Isopentyl alcohol; C: Ethyl caprylate; D: Isopentyl acetate; E:Ethyl 
caproate; F: Ethyl acetate. 
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4. Conclusions 

In this study, we identified volatile compounds in 9 types of beer 
using GC–MS, and employed PCA analysis, ethyl caproate, phenylethyl 
alcohol, and ethyl caprylate with a contribution of >10% to beer dif
ferentiation were selected as key compounds to distinguish different 
beers. Our results highlight the feasibility of establishing a PLS quanti
fication model for beer volatile compounds based on infrared spectrum 
data for the rapid and nondestructive detection of beer flavor com
pounds. The quantitative method proposed in this study was validated 
within a certain concentration of six volatile compounds in beer. The 
RSD value between the rapid quantitative method and the GC–MS for 
measuring the concentrations of six flavor compounds is 1.38–25.61%. 
In short, FTIR spectroscopy combined with machine learning is a 
promising tool to quantification of some volatile compounds in beer. 
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(2014). Assessment of the aroma profiles of low-alcohol beers using HS-SPME–GC- 
MS. Food Research International, 57, 196–202. 

Scioli, G., Valle, A. D., Zengin, G., Locatelli, M., Tartaglia, A., Cichelli, A., Stefanucci, A., 
& Mollic, A. (2022). Artisanal fortified beers: Brewing, enrichment, HPLC-DAD 
analysis and preliminary screening of antioxidant and enzymatic inhibitory 
activities. Food Bioscience, 48, Article 101721. 

Shigley, J. W., Bonhorst, C. W., Liang, C. C., Althouse, P. M., & Triebold, H. O. (1955). 
Physical characterization of (a) a series of ethyl esters and (b) a series of ethanoate 
esters. Journal of the American Oil Chemists’ Society, 32, 213–215. 

SINDICERV. (2021). O setor em números. Retrieved from https: www.sindicerv.com.br 
/o-setor-em-numeros. 
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