
GigaScience, 9, 2020, 1–6

doi: 10.1093/gigascience/giz149
Technical Note

TE CHNICAL NO TE

Refgenie: a reference genome resource manager
Michał Stolarczyk 1,†, Vincent P. Reuter 1,†, Jason P. Smith 1,2, Neal
E. Magee 3 and Nathan C. Sheffield 1,4,5,2,*

1Center for Public Health Genomics, University of Virginia, PO Box 800717, Charlottesville, VA, 22908, USA;
2Department of Biochemistry and Molecular Genetics, University of Virginia, PO Box 800733, Charlottesville,
VA, 22908, USA; 3Research Computing, University of Virginia, 560 Ray C. Hunt Drive, Charlottesville, VA, 22903,
USA; 4Department of Public Health Sciences, University of Virginia, PO Box 800717, Charlottesville, VA, 22908,
USA and 5Department of Biomedical Engineering, University of Virginia, PO Box 400259, Charlottesville, VA,
22904, USA

∗Correspondence address. Nathan C. Sheffield, University of Virginia, VA, USA. E-mail: nsheffield@virginia.edu http://orcid.org/0000-0001-5643-4068
†Contributed equally.

Abstract

Background: Reference genome assemblies are essential for high-throughput sequencing analysis projects. Typically,
genome assemblies are stored on disk alongside related resources; e.g., many sequence aligners require the assembly to be
indexed. The resulting indexes are broadly applicable for downstream analysis, so it makes sense to share them. However,
there is no simple tool to do this. Results: Here, we introduce refgenie, a reference genome assembly asset manager.
Refgenie makes it easier to organize, retrieve, and share genome analysis resources. In addition to genome indexes,
refgenie can manage any files related to reference genomes, including sequences and annotation files. Refgenie includes a
command line interface and a server application that provides a RESTful API, so it is useful for both tool development and
analysis. Conclusions: Refgenie streamlines sharing genome analysis resources among groups and across computing
environments. Refgenie is available at https://refgenie.databio.org.

Keywords: reference genomes; reference assemblies; data management; data portability

Background

Enormous effort goes into assembling and curating reference
genomes [1–5]. These reference assemblies provide a common
representation for comparing results, and they form the basis
for a wide range of downstream tools for sequence alignment
and annotation. Many tools that rely on reference assemblies
will produce independent resources that accompany an assem-
bly. For instance, many aligners must hash the genome, creating
indexes that are used to improve alignment performance [6–9].

Analytical pipelines typically rely on these aligners and their
indexes for the initial steps of a data analysis. These assembly
resources are typically shared among many pipelines, so it is
common for a research group to organize them in a central folder

to prevent duplication. In addition to saving disk space, central-
ization simplifies sharing software that uses a reference assem-
bly because software can be written around a standard folder
structure. However, this does not solve the problem of shar-
ing genomic resources between research groups. Because each
group may use a different strategy to identify shared genome
resources, sharing tools across groups may require modifying
them.

One solution to this problem is to have a web-accessible
server where standard, organized reference assemblies are
available for download. Indeed, this is exactly the goal of Il-
lumina’s iGenomes project, which provides “a collection of
reference sequences and annotation files for commonly an-
alyzed organisms” [10]. The iGenomes project has become a

Received: 8 August 2019; Revised: 22 October 2019; Accepted: 19 November 2019

C© The Author(s) 2020. Published by Oxford University Press. This is an Open Access article distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium,
provided the original work is properly cited.

1

http://www.oxfordjournals.org
http://orcid.org/0000-0003-2101-9061
http://orcid.org/0000-0002-7967-976X
http://orcid.org/0000-0002-2688-0988
http://orcid.org/0000-0001-6101-5079
http://orcid.org/0000-0001-5643-4068
mailto:nathan@databio.org
http://orcid.org/0000-0001-5643-4068
http://orcid.org/0000-0001-5643-4068
https://refgenie.databio.org
http://creativecommons.org/licenses/by/4.0/

2 Refgenie: a reference genome resource manager

popular source of genome assets and has greatly simplified shar-
ing analysis tools among research environments. However, this
approach is hampered by some fundamental drawbacks and
leaves several challenges unsolved. First, the individual assets
can only be downloaded in bulk, but what if a particular use case
requires only a small subset of resources in a package? More im-
portant, building the resources is not scripted, so if the reposi-
tory excludes a reference or resource of interest, there is no pro-
grammatic way to fill the gap. In these scenarios, users must
manually build and organize genome assets individually, forfeit-
ing the strength of standardization among groups.

To improve the ability to share interoperable reference
genome assets, we have developed refgenie, which enables a
more modular, customizable, and user-controlled approach to
managing reference assembly resources. Like iGenomes, re-
fgenie standardizes reference genome asset organization so
software can be built around that organization. But unlike
iGenomes, refgenie also automates the building of genome as-
sets, so that an identical representation can be produced for any
genome assembly. Furthermore, refgenie allows programmatic
access to individual resources both remote and local, making it
suitable for the next generation of self-contained pipelines.

Refgenie can organize any files that can be assigned to a
particular reference genome assembly, which could include not
only genome indexes but other resource types such as genome
sequences and annotations [11–13].

Refgenie manages genome-related resources flexibly. It can
handle any asset type, from annotations to indexes. It provides
individual, pre-built asset downloads from a server and allows
scripted building for custom inputs. Refgenie thus solves a major
hurdle in biological data analysis.

Results and Discussion

Refgenie is the first full-service reference genome asset man-
ager. Refgenie provides 2 ways to obtain genome assets: pull and
build (Fig. 1A). For common assets, pulling a pre-built, remote-
hosted asset obviates the need to install and run specialized
software to build a particular asset. It also makes it easier to
satisfy prerequisites programmatically for pipelines and other
software. However, remote-hosted assets are only practical for
common genomes and assets, so for uncommon assets or on
unconnected computers, users may instead build assets, which
creates the same standard output for custom genomes. By pro-
viding both build and pull, refgenie facilitates asset organization
both within and between research groups, increasing interoper-
ability of tools that rely on genome resources.

Asset organization

Refgenie uses a local YAML file called the “genome configuration
file” (Fig. 1B) to keep track of metadata, such as local file paths. In
this file, refgenie stores paths to individual genome assembly re-
sources, or “assets,” each of which represents one or more files.
One can think of a genome asset as a folder of related files tied to
a particular genome assembly. For example, an asset could be an
index for a particular tool, or a group of annotation files. Refge-
nie assets are referred to using “asset registry paths,” which are
human-readable asset identifiers. The registry path follows the
structure {genome}/{asset}:{tag}; a genome thus operates as a
sort of namespace for a set of assets, which are identified both
by asset names as well as by tags, allowing refgenie to manage
multiple versions of the same asset.

The refgenie software suite allows users to interact with as-
sets with 3 components: (i) a command line interface (CLI), (ii) a
server, and (iii) a configuration package that supports them both
(Fig. 1C).

Refgenie command line interface

The workhorse of refgenie is the CLI; it is how users will typically
interact with genome assets. Its implementation as a command
line tool not only makes it useful for general purpose exploration
and access but also allows it to be integrated into existing work-
flows that require access to genome assets from the shell. The
CLI can be installed with pip install refgenie and invoked by
calling refgenie. The refgenie CLI provides 7 functions for inter-
acting with local genome assets:

� refgenie init—initializes an empty genome configuration
file

� refgenie list—summarizes the genome configuration file,
listing local genomes and assets

� refgenie seek—provides the file path to a given asset
� refgenie add—adds an already-built local asset
� refgenie remove—removes a local asset
� refgenie tag—adds a tag to a local asset
� refgenie build—builds a new asset

Initializing refgenie
All of the CLI commands require knowledge of the refgenie con-
figuration file, which is passed via the -c argument. To install
and configure refgenie requires only a few lines of code:

pip install --user refgenie

export REFGENIE=’refgenie.yaml’
refgenie init -c $REFGENIE

In this example, we populate the $REFGENIE environment
variable, which eliminates the need to pass -c to each com-
mand going forward. The init, list, add, and remove func-
tions are relatively straightforward and simply allow a user to
create, view, and manipulate the genome configuration file.

Building assets
The build function allows a user to build assets for any arbi-
trary inputs, which is what enables refgenie to serve custom
genomes. Refgenie has built-in capability to build a selection of
different common genome assets (Fig. 2). The list of assets with
available recipes is displayed by the refgenie list command.
Available assets are built by specifying the asset registry path
along with any required inputs. For example:

refgenie build hg38/ASSET \
--files NAME=FILE

Where ASSET is a unique key defining the asset of interest
(e.g., bowtie2 index), NAME is an identifier for a required input
file, and FILE is a path to the provided input file. For example, to
build a fasta asset requires a compressed fasta file as input. It
can thus be built like this:

refgenie build hg38/fasta \
--files fasta=hg38.fa.gz

Building an asset can require either input arguments,
such as in this example, or it can require other assets.
The list of requirements for building an asset can be
found by adding the --requirements argument to the
build function. Assets are built with locally available

Stolarczyk et al. 3

Figure 1: Refgenie concept and software organization. A, Refgenie provides the ability to either build or pull assets. B, Genome configuration file. Refgenie reads and
writes a genome configuration file in YAML format to keep track of available local assets. C, Refgenie is tripartite, made up of a conf utility, a command line interface
(CLI), and a server package. The configuration package is intended for programmatic use and is used by the CLI and server packages. Users and software use refgenie
via the CLI or server (web API).

Figure 2: Assets available for build. Table listing assets that can currently be built
with refgenie build, along with statistics for size, build time, and memory high
water mark. Assets were built for the human genome using a single core. Times

(in H:MM) and memory/disk (in gigabytes) are representative values from a single
run. These assets are produced by various tools [8, 9, 14–17] and are available to
be built for any arbitrary genome input. ∗ peak disk space usage for dbnsfp is
>300 GB.

versions of the software (e.g., bowtie2-build to create the
Bowtie2 index) or alternatively with containerized software
(using the -d/--docker flag in the refgenie build com-
mand). We have also produced a complete containerized
computing environment capable of building all available
refgenie assets, which can be deployed with the bulker environ-
ment manager [18], making it easy to build any refgenie assets
without installing the required tools natively.

Pulling assets
In addition to functions on local assets, the refgenie CLI also con-
tains additional commands that can interact with remote assets:
pull and listr:

� refgenie listr—lists available remote genomes and assets
� refgenie pull—downloads a remote asset

With these commands, refgenie downloads a standard asset
with a single line of code:

refgenie pull hg38/ASSET

Tagging assets
The tag command allows users to tag assets with unique identi-
fiers. Tags may also be provided when building or pulling assets
to specify a version (e.g., build hg38/ASSET:TAG). Once tagged,
specific versions of assets can be accessed by tag. If no tag is
specified, refgenie will use the tag default, which is automat-
ically given to any built or pulled assets that do not specify a
tag. This makes tags an optional feature of refgenie that are
only necessary if a user desires multiple versions of the same
asset.

Seeking assets
Once the asset has been added to refgenie via either pulling
or building, the user can retrieve the path to it with refgenie

seek:

refgenie seek hg38/ASSET

This command returns the file path to the specified asset
for the specified genome. The seek command is portable, elim-
inating the need to hard-code paths or pass them as argu-
ments. Consequently, in a pipeline or other software that re-
quires access to genome assembly assets, the path to the local
bowtie2 index asset can be retrieved with a shell command:

bowtie2 index path=\
$(refgenie seek hg38/bowtie2 index)

Refgenieserver

The listr and pull functions require the CLI to interact with
a server. The CLI uses a configurable URL to retrieve a remote
archived tarball. After retrieving the tarball, the CLI will unpack
it into the appropriate folder location and update the configura-
tion file to provide access to its path via refgenie seek.

To support this remote function, we have developed a con-
tainerized, portable, open-source companion application called
refgenieserver. Many users of refgenie will not have to be
aware of the server application; however, interested users can
use refgenieserver to host their own genome asset server. For
example, a tool developer may wish to simplify use by hosting
indexes for common reference assemblies.

Running refgenieserver is simple for users who are already
familiar with refgenie. It reads the same genome configuration

4 Refgenie: a reference genome resource manager

Figure 3: Server software stack. Archived refgenie assets are mounted into a
Docker container, along with the refgenie server software, which is built using

FastAPI and uvicorn. The container can then be accessed via the web and API
user interfaces.

file format as the CLI. In fact, refgenieserver operates on the
same genome configuration file and asset folders that refgenie
itself builds or downloads. The server software comes with an
archive command that prepares a refgenie genome folder for
serving. It compresses each asset into an individual tarball. This
simple system makes it easy for users to run a server using their
refgenie assets.

This server software leverages cutting-edge web technology
to provide high-concurrency service with minimal compute re-
sources (Fig. 3). We built refgenieserver on top of the FastAPI
Python framework, which is a high-performance web framework
for building APIs. FastAPI automatically produces an API that
complies with OpenAPI 3.0 standards, which will allow other
tools to discover and automatically use the API. It also includes
a self-documenting test interface so that users can see and
test the available API end points. Refgenie leverages the Star-
lette development toolkit and the uvicorn server to make use of
the high-performance Asynchronous Server Gateway Interface
(ASGI) specification, which provides asynchronous access to re-
fgenieserver.

Refgenieserver is containerized and available on dockerhub,
so an interested user could start a server with a single line of
code:

docker run --rm -p 80:80 \
-v genomes folder:/genomes rgsimage \
refgenieserver serve -c /genomes/config.yaml

By mounting a refgenie “genomes” folder into this container,
users get a fully functioning web interface and RESTful API.

Refgenconf package for genome configuration

Refgenie organizes assets by genome in the configuration file,
which is both computer-readable and human-readable. In prac-
tice, users will not need to interact with this file at all because
refgenie will handle both reading and writing the file. However,
users may edit the file if they need a more complicated structure
(such as storing assets on different file systems or adding as-
sets manually). Together with the refgenie software, this simple
file makes the concept of reference genome assets completely
portable. Full documentation for the configuration file format
can be found at http://refgenie.databio.org.

The configuration package, refgenconf, simply provides
functions and data types to read and write items listed in the
genome configuration file. Under the hood, the refgenie CLI it-

self uses refgenconf to interact with the genome configuration
and assets on disk. The server software also relies on it to read,
archive, and serve assets. The refgenconf package also provides
the starting point for any third-party Python developers by pro-
viding a fully functional Python API for interacting with refge-
nie assets. For example, we use refgenconf in Python pipelines
that we develop to make them aware of the genome assets avail-
able in a given computing environment. Using this approach, a
pipeline need only be provided with an assembly key, such as
“hg38,” and it can use refgenconf to locate the correct path to
any genome-related asset necessary for the pipeline. This sim-
plifies the process of configuring pipelines and allows refgenie

to be used both by humans and computers.

The Refgenomes database

We designed the server software so that anyone could eas-
ily run a custom server instance. We have also deployed our
own instance of refgenieserver at refgenomes.databio.org,
where we host pre-built genome assets. Like any instance of
refgenieserver, our refgenomes database provides both a web
interface and a RESTful API to access individual assets that we
have made available. Users may explore and download archived
indexes from the web interface or develop tools that program-
matically query the API.

The web interface provides a graphical listing of avail-
able genomes and assets, allowing users to browse the site
and download individual assets manually. In addition, refge-
nieserver provides API end points to serve lists of available
genomes and assets, as well as metadata for the individual
assets, including unique digests for file integrity, file sizes,
and archive content information. Furthermore, the server pro-
vides end points to download each asset individually. End
points include the following: /genomes retrieves a list of avail-
able genomes; /assets retrieves a list of all available as-
sets; /{genome}/assets/ retrieves a list of assets for a given
genome; and /{genome}/assets/{asset}/archive retrieves the
tarball for the specified asset. Complete documentation is avail-
able at refgenomes.databio.org. Because it provides a standard
OpenAPI-compliant RESTful API, our server will be useful not
just for our refgenie CLI but for other tools that would ben-
efit from automated access to reference assembly assets and
indexes.

Our refgenieserver instance runs within DC/OS as a con-
tainerized application. The server application makes genome
assets available through a web application connected directly to
a remote filesystem, with no additional database or infrastruc-
ture requirements. Integration and deployment is automated
using GitHub, Travis-CI, Docker Hub, and a custom deployment
technique made simple in DC/OS. Changes committed in code
are generally deployed to development or production services
within 1–3 minutes.

Genome provenance

One challenge with genome assembly assets is name mis-
matches that lead to analysis conflicts. Because refgenie iden-
tifiers are human-readable and user-controlled, refgenie cannot
rely on them to uniquely identify assets. Furthermore, refge-
nie assets may be either built or pulled from different servers,
exacerbating the issue. This is an active area of research, with
several approaches under development related to this problem,
such as the NCBI Assembly database [4], the refget protocol
for sequence identifiers [19], and tximeta checksums for RNA-

http://refgenie.databio.org
http://refgenomes.databio.org
http://refgenomes.databio.org

Stolarczyk et al. 5

Figure 4: Feature comparison. iGenomes, Galaxy Data managers, and genomepy
solve some problems of standardized reference genome assets but lack the inter-

active features of refgenie. ∗Data managers’ assets can be accessed individually
but not outside of the Galaxy user interface.

sequencing data [20]. Refgenie currently provides 2 resources to
confirm the identity of pulled and built assets: first, a unique
digest for each asset, and second, a building log file. Refgenie
makes unique asset digests available via both web interface and
API, allowing users to distinguish between 2 assets with the
same names but different digests. Furthermore, because build-
ing refgenie assets is scripted, it is possible to trace any asset
back to its inputs. Refgenieserver provides API points to retrieve
either the raw recipe (/v2/asset/{genome}/{asset}/recipe) or
the actual log file (/v2/asset/{genome}/{asset}/log) for any
asset available on the server. For built assets, the build com-
mand automatically produces a log file that records the input
files, software versions, and final digests for any locally built as-
sets. These resources make it possible for users to uniquely iden-
tify and trace the provenance of assets they either build or pull.

Comparison with Existing Tools

A few existing tools approach these problems as well. The most
similar projects are Illumina’s iGenomes and Galaxy Data Man-
agers accompanied by Galaxy Tool Shed [21, 22], both of which
offer only a small part of what refgenie does (Fig. 4). iGenomes
provides a single archive download of a standardized folder
structure with pre-built assets for pre-defined genomes. The
Data Managers facilitate building of assets; they are tightly cou-
pled to the larger Galaxy infrastructure, while Refgenie’s mod-
ular design allows for simple implementation in diverse envi-
ronments. The genomepy tool provides a unified command line
interface and Python API to download genome sequences from
multiple sources but does not accommodate custom genomes
and has no remote API or component for downloading indexes
[23]. Some of refgenie’s utility is also satisfied by individual tool
websites that provide individual asset downloads (e.g., bowtie2
indexes), but these provide no shared structure or unified inter-
face for access.

Refgenie provides a full-service manager that unifies and
transcends all of these available tools. Refgenie solves a series
of related problems all in 1 convenient package. It provides a
unified web interface for all assets, plus programmatic access to
modular individual assets via a RESTful API for metadata and as-
sets. Refgenie also provides the ability to build assets for custom
genomes with a uniform interface that integrates seamlessly
with downloaded assets. Refgenie is unique in providing a local

asset manager that makes locating assets portable, simplifying
building pipelines that use these assets. It is also the only easily
deployable, independent, containerized server application and
Python API for reference genome assets. Thus, no existing soft-
ware can solve these problems specific to genome-related data
resources.

Conclusions and Future Directions

Reference genomes, indexes, annotations, and other genome
assets are integral to sequencing analysis projects, and these
genome-associated data resources are growing rapidly [11]. Ref-
genie provides a full-service management system that includes
a convenient method for downloading, building, sharing, and
using these resources. Refgenieserver is among a growing num-
ber of API-oriented projects in the life sciences [5, 24, 25]. Refge-
nie will simplify management of reference assembly assets for
users and groups, facilitating data sharing and software inter-
operability [26].

Several new features under development will make refgenie
even more useful. Currently, refgenie is completely flexible with
respect to genomes, but it is less flexible with respect to assets
because only pre-scripted assets can be built. A more flexible ap-
proach would allow refgenie to accept custom recipes, allowing
users to add new asset types. Future development will address
the challenges of sharing recipes, provenance, and trust for flex-
ible assets. We are also improving the way refgenie records and
uses identifiers and relationships among assets. For instance, by
recording more detailed information about what an asset con-
tains and how it was generated, we open the possibility of de-
lineating more fine-grained compatibilities. For instance, while
2 indexes would be compatible only if derived from the same set
of sequences, 2 annotation files could be compatible on different
sequences that shared a coordinate structure. Finally, we antic-
ipate that future development will extend refgenie to be able to
accommodate ontology annotation for assets and genomes. To-
gether, these improvements will enable more robust discovery of
assets and genomes, as well as the relationships among them.

Availability of Source Code and Requirements

Project name: Refgenie
Project home page: http://refgenie.databio.org
Operating system: Platform independent
Programming language: Python
Other requirements: Varies by use case
License: BSD-2
RRID:SCR 017574
biotools ID: Refgenie
An archival copy of the code is available via the GigaScience
database, GigaDB [27].

Abbreviations

API: Application Programming Interface; ASGI: Asynchronous
Server Gateway Interface; CLI: command line interface; DC/OS:
distributed cloud operating system; NCBI: National Center for
Biotechnology Information: REST: representational state trans-
fer; URL: universal resource locator.

Competing interests

The authors declare that they have no competing interests.

http://refgenie.databio.org
https://scicrunch.org/resolver/RRID:SCR_017574

6 Refgenie: a reference genome resource manager

Authors’ contributions

NCS conceived the study. MS, VPR, and NS wrote the software
with contributions from JPS and NEM. All authors contributed
to and approved the manuscript.

References

1. Harrow J, Frankish A, Gonzalez JM, et al. GENCODE: The ref-
erence human genome annotation for The ENCODE Project.
Genome Res 2012;22(9):1760–74.

2. Pruitt KD, Tatusova T, Brown GR, Maglott DR. NCBI
Reference Sequences (RefSeq): Current status, new fea-
tures and genome annotation policy. Nucleic Acids Res
2011;40(D1):D130–5.

3. Church DM, Schneider VA, Graves T, et al. Moderniz-
ing reference genome assemblies. PLoS Biol 2011;9(7):
e1001091.

4. Kitts PA, Church DM, Thibaud-Nissen F, et al. Assembly: A
resource for assembled genomes at NCBI. Nucleic Acids Res
2015;44(D1):D73–80.

5. Ruffier M, Kähäri A, Komorowska M, et al. Ensembl core
software resources: Storage and programmatic access for
DNA sequence and genome annotation. Database (Oxford)
2017;2017(1), doi:10.1093/database/bax020.

6. Sadakane K, Shibuya T. Indexing huge genome sequences
for solving various problems. Genome Inform 2001;12:
175–83.

7. Hon WK, Sadakane K, Sung WK. Breaking a time-and-space
barrier in constructing full-text indices. SIAM J Comput
2009;38(6):2162–78.

8. Li H, Durbin R. Fast and accurate short read align-
ment with Burrows-Wheeler transform. Bioinformatics
2009;25(14):1754–60.

9. Langmead B, Salzberg SL. Fast gapped-read alignment with
Bowtie 2. Nat Methods 2012;9:357–9.

10. Illumina. iGenomes. Ready-to-use reference sequences and
annotations. 2019. https://support.illumina.com/sequencin
g/sequencing software/igenome.html.

11. Agarwala R, Barrett T, Beck J, et al. Database resources of
the National Center for Biotechnology Information. Nucleic
Acids Res 2018;46(D1):D8–13.

12. Zerbino DR, Wilder SP, Johnson N, et al. The Ensembl Regu-
latory Build. Genome Biol 2015;16:56.

13. Sheffield NC, Bock C. LOLA: Enrichment analysis for genomic
region sets and regulatory elements in R and Bioconductor.
Bioinformatics 2016;32(4):587–9.

14. Krueger F, Andrews SR. Bismark: A flexible aligner and
methylation caller for Bisulfite-Seq applications. Bioinfor-
matics 2011;27(11):1571–2.

15. Bray NL, Pimentel H, Melsted P, et al. Near-optimal
probabilistic RNA-seq quantification. Nature Biotechnol
2016;34(5):525–7.

16. Kim D, Langmead B, Salzberg SL. HISAT: A fast spliced
aligner with low memory requirements. Nat Methods
2015;12(4):357–60.

17. Dobin A, Davis CA, Schlesinger F, et al. STAR: Ultrafast uni-
versal RNA-seq aligner. Bioinformatics 2012;29(1):15–21.

18. Sheffield NC. Bulker: A multi-container environment man-
ager. OSF Preprints 2019, doi:10.31219/osf.io/natsj.

19. GA4GH. Refget - reference sequence retrieval implementa-
tion. 2019. http://samtools.github.io/hts-specs/refget.html.

20. Love MI, Soneson C, Hickey PF, et al. Tximeta: Reference
sequence checksums for provenance identification in RNA-
seq. bioRxiv 2019, doi:10.1101/777888.

21. Blankenberg D, Johnson JE, Taylor J, et al. Wrangling Galaxy’s
reference data. Bioinformatics 2014;30(13):1917–9.

22. Blankenberg D, Kuster GV, Bouvier E, et al. Dissemination
of scientific software with Galaxy ToolShed. Genome Biol
2014;15(2):403.

23. van Heeringen SJ. genomepy: Download genomes the easy
way. J Open Source Softw 2017;2(16):320.

24. Yates A, Beal K, Keenan S, et al. The Ensembl REST API:
Ensembl data for any language. Bioinformatics 2014;31(1):
143–5.

25. Tarkowska A, Carvalho-Silva D, Cook CE, et al. Eleven quick
tips to build a usable REST API for life sciences. PLoS Comput
Biol 2018;14(12):e1006542.

26. Wilkinson MD, Dumontier M, Aalbersberg IJJ, et al. The FAIR
Guiding Principles for scientific data management and stew-
ardship. Sci Data 2016;3:160018.

27. Stolarczyk M, Reuter VP, Smith JP, et al. Supporting data
for “Refgenie: A reference genome resource manager.” Giga-
Science Database 2019. http://dx.doi.org/10.5524/100670.

https://support.illumina.com/sequencing/sequencing_software/igenome.html
http://samtools.github.io/hts-specs/refget.html
http://dx.doi.org/10.5524/100670

