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Abstract

Metastatic cell migration and invasion are regulated by altered adhesion-mediated signaling to the 

actin-based cytoskeleton via activated Src-FAK complexes. SSeCKS (the rodent orthologue of 

human Gravin/AKAP12), whose expression is downregulated by oncogenic Src and in many 

human cancers, antagonizes oncogenic Src pathways including those driving neovascularization at 

metastatic sites, metastatic cell motility and invasiveness. This is likely manifested through its 

function as a scaffolder of F-actin and signaling proteins such as cyclins, calmodulin, protein 

kinase (PK) C and PKA. Here, we show that in contrast to its ability to inhibit haptotaxis, SSeCKS 

increased prostate cancer cell adhesion to fibronectin (FN) and type I collagen in a FAK-

dependent manner, correlating with a relative increase in FAKpoY397 levels. In contrast, SSeCKS 

suppressed adhesion-induced Src activation (SrcpoY416) and phosphorylation of FAK at Y925, a 

known Src substrate site. SSeCKS also induced increased cell spreading, cell flattening, integrin 

β1 clustering and formation of mature focal adhesion plaques. An in silico analysis identified a 

Src-binding domain on SSeCKS (a.a.153–166) that is homologous to the Src binding domain of 

Caveolin-1, and this region is required for SSeCKS-Src interaction, for SSeCKS-enhanced Src 

activity and sequestration to lipid rafts, and for SSeCKS-enhanced adhesion of MAT-LyLu and 

CWR22Rv1 prostate cancer cells. Our data suggest a model in which SSeCKS suppresses 

oncogenic motility by sequestering Src to caveolin-rich lipid rafts, thereby disengaging Src from 

FAK-associated adhesion and signaling complexes.
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Introduction

Metastasis, recurrence and drug-resistance remain the major contributors to cancer-related 

mortality, spurring efforts to identify therapies that specifically target pathways that drive 

these parameters of malignancy (1). Members of the Src tyrosine kinase family (SFK) are 

known to be overexpressed and/or activated in many primary human cancers, typically 

through the activation of upstream growth factor receptor tyrosine kinases (2). However, the 

coincident activation of parallel oncogenic pathways suggests that SFK might be poor 

therapeutic targets in primary cancers (3,4). In contrast, there is a growing appreciation for 

the critical role played by SFK in controlling several parameters of cancer metastasis, such 

as tumor invasiveness and neovascularization at distal sites (5–8), and of drug-resistance (9–

11).

The oncogenic potential of Src and Ras requires both potentiation of enzymatic activities 

(tyrosine kinase and GTPase functions, respectively) and specific localization to membrane 

sites (myristylation and palmitylation, respectively)(12–15). For example, mutation of Src’s 

N-terminus to prevent myristylation ablates its oncogenic activity, even in the context of a 

constitutively-activated kinase domain (16). In contrast, splicing this myristylation signal 

onto AKT facilitates its membrane association and oncogenic activity (17). Indeed, Src 

requires N-terminal myristylation in order to enrich in specific lipid-raft membrane domains 

such as caveolae (18,19). The complex formed between Caveolin-1 (Cav-1), Src, second-

messenger lipids and growth factor receptor tyrosine kinases is thought to mediate normal 

mitogenic downstream signals, endocytosis, cell-cell adhesion and interaction of the actin-

based cytoskeleton with mechano-responsive structures on the plasma membrane (20,21). 

Although many cancers exhibit Cav-1 downregulation, the upregulation of Cav-1 in other 

cancers has been tied to increased oncogenic motility and invasiveness (21). A very recent 

model suggest that phosphorylation of Cav1 by Src on Y14 enables a dynamic, Rac1-

dependent transient translocation of Cav1 from caveolae to focal adhesions, whereupon the 

dephosphorylation and subsequent degradation of Cav1 facilitates focal adhesion turnover 

and cell motility (22). Thus, Src-induced oncogenic motility may be facilitated by the 

increased rate of this pathway, correlating with a net downregulation of Cav1 levels.

SSeCKS (Src-suppressed C-kinase substrate), the rodent orthologue of human Gravin/

AKAP12, seems to function as a metastasis suppressor via its ability to differentially 

scaffold signaling proteins such as protein kinase (PK) C, PKA, calmodulin and Src (23). 

SSeCKS also participates in the control of cytoskeletal reorganization associated with 

motility, most likely facilitated by domains that link it to both plasma membrane and 

cytoskeletal sites. Plasma membrane association is controlled by N-terminal myristylation 

and three N-terminal phosphoinositol-phosphate binding sites (24). SSeCKS/AKAP12 

expression is often downregulated in human cancers, and it is especially downregulated due 

to promoter hypermethylation in metastatic lesions (23). The re-expression of SSeCKS in 

MAT-LyLu prostate cancer cells had little effect on the growth of primary-site tumors, but it 

suppressed the growth of spontaneous pulmonary metastases in part, by inhibiting tumor-

encoded vascular endothelial growth factor (VEGF) secretion, thereby inhibiting 

neovascularization at metastatic sites (25). SSeCKS also inhibits oncogenic motility and 

invasiveness by disengaging growth factor-activated Src from activating PKC-Raf-MEK-
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ERK pathways that control the formation of podosome/invadosome structures and that 

upregulate the expression/secretion of matrix metalloproteinases. Interestingly, Src 

autophosphorylation and substrate phosphorylation activity are not inhibited by SSeCKS, 

and taken together with the finding that SSeCKS alters actin-based cytoskeletal architecture, 

these data suggest that SSeCKS inhibits Src oncogenic signaling by physically scaffolding it 

away from downstream signal mediators.

Here we demonstrate the mechanism by which SSeCKS increases FAK-dependent cell 

adhesion to and spreading on Fibronectin (FN) and type I Collagen (Col I). SSeCKS-

enhanced adhesion correlated with increased clustering of integrin β1 and formation of 

mature focal adhesion plaques. SSeCKS enhanced relative adhesion-induced FAKpoY397 

levels, yet suppressed phosphorylation at FAK-Y925, a known Src substrate site (26), 

suggesting that Src is disengaged by SSeCKS from normal FAK/Src complexes. Consistent 

with this notion, we show that a direct binding between Src and SSeCKS via a domain (a.a.

153–166) homologous to the Src-binding site on Caveolin-1 (27) likely facilitates the 

enrichment of Src to caveolin-rich lipid rafts, concomitant with a relative increase in 

Cav-1poY14 levels in these membrane domains. Our findings strongly suggest that SSeCKS 

attenuates Src’s ability to induce metastatic progression by directly scaffolding Src pools 

from FAK complexes to lipid rafts, effectively suppressing formation of constitutive 

FAK/Src complexes that promote downstream signaling and cytoskeletal pathways.

RESULTS

SSeCKS-induced cell flattening and chemotaxis inhibition correlates with increased cell 
adhesion and spreading

Our previous data indicated that in addition to its ability to suppress metastasis in vivo by 

inhibiting tumor-derived expression of VEGF (25), SSeCKS also suppressed chemotaxis 

and oncogenic invasiveness (28). These functions and cell adhesion are governed by 

dynamic changes in actin cytoskeletal remodeling (29), and indeed, SSeCKS induces these 

changes in the context of cell flattening (23). Thus, we addressed whether SSeCKS could 

also alter adhesion and spreading when reexpressed in MAT-LyLu (MLL) prostate cancer 

cells. We confirmed the coincident effects of cell flattening and chemotaxis inhibition using 

MLL cells engineered for tetracycline-regulated (tetOFF) SSeCKS reexpression (MLL/tet-

SSeCKS (30), demonstrating a dose-dependent decrease in chemotaxis concomitant with 

cell flattening (supplemental fig. S1A and B) and the production of exaggerated 

pseudofilopodia projections (Fig. 1A). These data are consistent with our previous 

demonstrations that SSeCKS can normalize cytoskeletal structures such as actin stress fibers 

and mature focal adhesion plaques, and inhibit oncogenic motility parameters when 

reexpressed in Src- or Ras-transformed cancer cells (31,32).

We then addressed whether SSeCKS might also affect cell adhesion. Therefore, MLL/tet-

SSeCKS cells grown in the presence or absence of tet (− or + SSeCKS, respectively) were 

adhered to ECM-coated plates, and both spreading and short-term adherence were assessed. 

SSeCKS induced 3.6- or 10-fold greater spreading activity on FN or Col I, respectively (Fig. 

1B). In contrast, SSeCKS had no effect on cell spreading on vitronectin (VN) or laminin 

(LN) coated plates. Similar results were produced using long-term adhesion assays onto 
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ECM-coated plates (Fig. 1C), namely a dose-dependent increase in SSeCKS-induced 

adhesion to FN or Col I, but not to VN or LN. The SSeCKS-enhanced adhesion to FN was 

accompanied by increased cell flattening (Fig. 1D). Consistent with the notion that tumor 

cells have increased integrin-mediated cell migration (haptotaxis) to facilitate transverse 

migration through basement membranes (33), SSeCKS suppressed haptotactic motility 

towards FN- and Col I-, but not to VN- or LN-coated membranes (Fig. 1E).

SSeCKS induces integrin β1 clustering

The ability of integrins to participate in cell-cell and cell-ECM interactions facilitates the 

altered adhesion and motility parameters that characterize cancer and metastatic cells, 

especially as this relates to the metastasis-related differential expression of specific integrins 

(34) and epithelial-to-mesenchymal transition (35). Moreover, integrins transduce adhesion-

mediated signals to the actin-cytoskeleton via Src-FAK complexes in focal adhesions (36). 

Based on SSeCKS’ ability to induce adhesion on FN (Fig. 1C), which involves β1 integrin 

(37), and based on previously data demonstrating activated β1 integrin in MLL prostate 

cancer cells (38), we addressed whether SSeCKS reexpression alters β1 levels. The relative 

levels of mature β1 were unaffected by SSeCKS reexpression in MLL/tet-SSeCKS cells, 

although SSeCKS slightly decreased the relative levels of uncleaved (“pre”) β1 (Fig. 2A). 

Thus, the ability of SSeCKS to increase adhesion to FN is not due to overall changes in β1 

expression. However, SSeCKS reexpression facilitated FN-induced β1 integrin clustering 

(as evidenced by punctate vs. homogeneous cytoplasmic β1 staining) as well as the 

formation of FAK- and vinculin-containing focal adhesion plaques and F-actin stress fibers 

(Fig. 2B). These effects were concomitant with significant SSeCKS-induced cell flattening. 

Attempts to demonstrate SSeCKS association with FAK or β1 using co-immunoprecipitation 

(IP) experiments were unsuccessful (data not shown). Taken together, these data suggest 

that SSeCKS facilitates adhesion on FN by remodeling β1 integrin/FAK complexes as well 

as their interaction with the actin-based cytoskeleton.

SSeCKS-enhanced adhesion on FN is FAK-dependent

Integrin-mediated adhesion and motility signaling is regulated through the transient 

recruitment and activation of FAK-Src signaling complexes (39–41). To address whether 

FAK activity is critical to the SSeCKS-induced enhancement of FN-based adhesion, FAK

+/+ and FAK−/− mouse embryo fibroblasts (MEF) were co-transfected with pEGFP plus 

either an SSeCKS expression plasmid or empty vector, and 40h later, GFP-positive cells 

were scored for their ability to adhere to FN-coated plates. The expression level of 

endogenous SSeCKS was roughly 5-fold higher in FAK−/− vs. FAK+/+ cells (Fig. 3A), and 

this correlated with >3-fold higher adhesion of FAK−/−(vector) cells than that of FAK+/+

(vector) cells on all concentrations of FN tested (Fig. 3B). The higher levels of ectopic 

SSeCKS expression in FAK−/− cells did not increase adhesion (Fig. 3B), suggesting that the 

higher basal SSeCKS levels in these cells may already be functionally saturated. In contrast, 

the ectopic expression of SSeCKS in FAK+/+ cells increased adhesion 2- to 3-fold over 

varying FN concentrations (Fig. 3B), paralleling the effect of either stable or transient 

SSeCKS expression in MLL cells (Figs. 1C and 3C, respectively). The co-expression of 

MLL cells with SSeCKS and FRNK, a natural FAK antagonist (42), suppressed the 

enhanced adhesion, whereas substitution of an inactive FRNK mutant, FRNKS1034 
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(“FRNKm”), negated FRNK’s inhibitory effect (Fig. 3C). As a control, we showed that the 

relative expression levels of HA-tagged FRNK and FRNKS1034 were similar in the 

transfected MLL cells (Fig. 3D).

FAK activity is thought to control adhesion turnover because FAK−/− MEF have increased 

numbers of vinculin-associated focal adhesions and display increased cell spreading (43). 

After adherence-induced integrin clustering, FAK autophosphorylates at Y397, forming an 

SH2 binding site for the recruitment of Src. The reciprocally activating FAK-Src complex 

induces the remodeling of the actin cytoskeleton that controls cell adhesion and motility 

(44). The dependence of this signaling on Src is evidenced by findings that motility induced 

by transgenic FAK expression in FAK-null fibroblasts is impaired by Src inhibition (45), 

and that activated Src rescues cell spreading in FAK−/− cells (46,47). We investigated 

whether the effects of SSeCKS on increased adhesion were mediated through FAK 

activation. Thus, serum-starved MLL/tet-SSeCKS grown overnight in the presence or 

absence of tet were either allowed to adhere to FN or kept in suspension (“sus”). SSeCKS 

induced an increase in the relative adhesion-induced level of FAK autophosphorylation (Fig. 

4A). In contrast, SSeCKS decreased relative levels of adhesion-induced Src 

autophosphorylation (poY416) as well as phosphorylation on FAK at a major Src substrate 

site, Y925 (48) (Fig. 4A). The relative phosphorylation of FAK-Y861 (26) was unaffected 

by SSeCKS when normalized to total FAK protein levels. Adherence induced Mek 

activation, as demonstrated by relative phospho-Mek1/2 levels, was decreased by SSeCKS, 

paralleling the effect we showed previously by SSeCKS on serum-induced Mek activation 

(49). A failure to phosphorylate FAKY925 would prevent the formation of the SH2-mediated 

binding site for Grb2, and thus, prevent activation of Mek/Erk signaling associated with 

metastatic progression (50). Taken together with the data in Fig. 2B, these data suggest that 

SSeCKS interrupts adhesion-induced FAK-Src complex formation, disengaging it from both 

oncogenic actin cytoskeletal remodeling and activation of Mek/Erk signaling. This notion is 

backed up by the demonstration that SSeCKS re-expression decreases the amount of Src 

associating with FAK in co-IPs following adhesion to FN (Fig. 4B).

SSeCKS may alter Src-FAK complex formation by directly scaffolding Src

Trevino et al. (51) recently reported that the siRNA-mediated knockdown of Src had little 

effect on primary tumor growth but greatly suppressed the formation of metastases, 

consistent with the known roles for Src in regulating oncogenic cell migration and 

invasiveness (52,53). SSeCKS, which is known to function as an antagonist of Src-induced 

oncogenic growth (31), did not alter the proliferation of MLL cells, he overall level of Src-

induced substrate phosphorylation, or phosphorylation of specific Src substrates such as 

p130Cas (supplemental fig. S2) or Shc (49). This agrees with our previous results showing 

that SSeCKS reexpression could inhibit Src-induced anchorage- and growth factor-

independence and Matrigel invasiveness without affecting Src tyrosine kinase activity 

(54,55).

The decreased level of adhesion-induced FAKpoY925 and the relative decrease in Src-FAK 

complex formation (Fig. 4C) after SSeCKS reexpression suggests that SSeCKS physically 

alters FAK-Src interaction. Multiple attempts at co-IP experiments between FAK and 
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SSeCKS showed no association (data not shown). However, Tao et al. (56) demonstrated 

that Src binds an N-terminal 12PxxP15-containing domain on human SSeCKS, Gravin (Fig. 

5A), which they posited was through Src’s SH3 domain. This might suggest that SSeCKS 

prevents adhesion-induced FAK-Src complex formation by directly scaffolding Src. We 

confirmed that only an N-terminal SSeCKS domain encoding a.a. 2–274 could associate 

with Src in co-IP assays (Fig. 5B). To address whether this binding was Src-SH3 dependent, 

we produced full-length and P15A versions of His-tagged SSeCKS (supplemental fig. 3A), 

and showed that Ni2+-beads charged with these proteins retained full binding activity to Src 

(Fig. 5C). This strongly suggests that the SSeCKS/Src interaction is not mediated through a 

classic SH3/ligand interaction, agreeing with the analysis that the SSeCKS12PxxP15 

sequence does not conform to known SH3 ligand constraints (Kalle Saksela, personal 

communication).

In silico analysis identified an SSeCKS sequence, 154FKKVFKFVGFKTVK165, that is 

homologous to the motif, ΦxxxΦxΦxxΦxx (Φ: hydrophobic residues), in Caveolin-1 (Cav1)

(residues 82–101: DGIWKASFTTFTVTKYWFYR). This so-called Caveolin Scaffolding 

Domain (CSD) facilitates direct binding to H-Ras, Src family tyrosine kinases, PKC 

isoforms and the epidermal growth factor receptor (57), modulating at plasma membrane 

sites their roles in controlling oncogenic cell adhesion and migration (58). Deletion of a.a. 

153–166 abrogated the ability of GST-SSeCKS[2–274] protein (supplemental fig. 3A) to 

pull down Src from cell lysates (Fig. 5D). Furthermore, the ability of purified His-Src and 

GST-SSeCKS[2–274] to efficiently bind each other in reciprocal co-IP assays required the 

putative Src-binding domain in a.a.153–166 (Fig. 5E). Importantly, whereas ectopic FL-

SSeCKS could induce FN-mediated adhesion in MLL cells and in the human prostate cancer 

cell line, CWR22Rv1, SSeCKS deleted of the a.a. 153–166 domain (supplemental fig. 3B) 

failed to enhance attachment (Fig. 5F). These data indicate that SSeCKS likely binds Src via 

its N-terminal Cav-1-like motif and not via the putative PxxP ligand motif, and that an 

SSeCKS-Src interaction facilitates the enhanced attachment on FN by prostate cancer cells.

SSeCKS sequesters Src from FAK-Src complexes

Beside the CSD, Src association with caveolae is facilitated by its N-terminal myristylation 

(15), and indeed, Cav1 was first identified as a v-Src substrate (59,60). SSeCKS is also 

myristylated at its N-terminus (61), and therefore, it is conceivable that SSeCKS may 

function in a similar fashion to scaffold Src to lipid raft sites (and away from sites of 

adhesion-mediated FAK activation such as focal adhesion plaques) via its CSD-like domain. 

This would be especially significant in that caveolae coordinate cell migration by enriching 

major signaling mediators in plasma membrane microdomains in a spatiotemporal fashion 

(62). To address this, we plated serum-starved MLL/tet-SSeCKS cells grown overnight in 

the presence or absence of tet onto FN for 60 min (vs. suspended cells), and then subjected 

TRITON-X100 lysates to sucrose density gradients. Lipid rafts, as marked by the 

enrichment of Cav1, are typically found in lighter membrane fractions 4–5 in adherent cells 

but in heavier fractions in suspended MLL cells (Fig. 6A). SSeCKS did not significantly 

alter the localization of Cav1 in adherent cells, but did shift Cav1 to lighter fractions 4 and 5 

in suspended cells. This corresponded to a similar shift of the ectopic SSeCKS in both 

suspended and adherent cells to lighter fractions (fraction 5 for the suspended cells and 
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fractions 4–5 for the adherent cells). Although SSeCKS had no effect of FAK localization in 

either adherent or suspended cells (with FAK enriching in fractions 6–9), SSeCKS induced a 

shift in Src in both suspended and adherent cells to lighter fractions (5 in suspended cells 

and 4–5 in adherent cells). Thus, SSeCKS induced a movement of some Src from fractions 

containing FAK to those containing Cav1.

SSeCKS also induced increased relative Cav1poY14 levels in adherent cells, specifically a 

two-fold increase in fractions 4 and 5, which are enriched with ectopic SSeCKS and Src 

(Fig. 6A). A similar increase in relative Cav1poY14 levels was detected in total cell lysates of 

adherent MLL/tet-SSeCKS cells (supplemental fig. 4; compare lanes C and D). As a control, 

treatment with methyl-∃-cyclodextrin (MbCD), a cholesterol-binding compound that 

dissolves caveolae (63), induced movement of Cav1 and Cav1poY14 into slightly heavier 

fractions (out of fraction 3 or 4, respectively, in adherent cells). MbCD induced a much 

greater egress of SSeCKS and Src from lighter fractions. These data suggest that SSeCKS 

scaffolds Src to caveolin-rich lipid rafts in adherent cells, resulting in increased Cav1 

tyrosine phosphorylation. Consistent with this model, the ability of SSeCKS to induce Src 

activity in lipid rafts and at general membrane sites using fluorescence resonance energy 

transfer (FRET) sensors (64,65) required SSeCKS’ Src-binding domain (Fig. 6B; fig. S6). In 

contrast, SSeCKS did not activate FAK in lipid rafts, consistent with the notion that FAK 

remains enriched in focal adhesions during adhesion and that SSeCKS does not directly 

regulate its activity.

DISCUSSION

Although there are rare cases of breast and colon cancers expressing Src containing 

activating mutations akin to the so-called “viral Src signature” (66,67), Src likely drives 

oncogenic progression by virtue of being overexpressed or activated by upstream growth 

factor receptors (68,69). Many parameters of metastasis seem to be dependent on Src 

signaling, such as oncogenic motility, recruitment of mural cells to metastatic niches, and 

neovascularization at metastatic sites (6), leading to a renewed focus on Src as a therapeutic 

target in advanced cancer. Our data indicate that SSeCKS functions as an especially potent 

suppressor of Src’s metastasis-promoting functions, even though SSeCKS does not inhibit 

Src’s intrinsic tyrosine kinase activity (55,70). Here, we show that SSeCKS attenuates 

adhesion-induced activation of Src (based on poY416 levels), but more potently suppresses 

phosphorylation of FAKY925, a known Src substrate site, following FN-mediated adhesion. 

This would prevent the formation of a ligand site for Grb2-SH2, and the subsequent 

activation of downstream Mek-Erk pathways. These data are similar to those showing that 

SSeCKS suppresses growth factor-induced oncogenic invasiveness pathways through the 

disengagement of Src from Mek-Erk pathways (49).

Our data demonstrate concurrence between SSeCKS-induced cell flattening, previously 

shown as mediated through the remodeling of the actin-based cytoskeleton (71), increased 

cell adhesion to and spreading on FN, and increased relative FAK autophosphorylation 

levels. The ability of SSeCKS to decrease adhesion-induced Src activation and relative 

FAKpoY925 levels suggests that SSeCKS disengages Src from the FAK/Src complexes that 

drive oncogenic adhesion signals, concomitant with decreased focal turnover. In a previous 
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study (49), SSeCKS did not alter serum-induced FAK or Src activation levels, but it did 

suppress the relative levels of Mek activation, again, suggesting that SSeCKS disengages 

Src from downstream signaling, in this case, pathways driving oncogenic invasiveness and 

chemotaxis. In this model, the SSeCKS-induced disengagement of Src would increase the 

relative level of adhesion-activated FAK (reflected in relative FAKpoY397 levels). This 

agrees with previous data from Yeo et al. (72) showing that expression of a Src SH2 domain 

mutant, R175L, which is prevented from binding to autophosphorylated FAK, results in 

higher relative adhesion-induced FAKpoY397 levels.

Although SSeCKS might alter Src compartmentalization indirectly through its ability to 

remodel the cytoskeleton, we addressed whether there is a direct scaffolding function for 

Src, made likely by previous data that the proline 15/16 residues of Gravin are required for 

its association with Src in complex containing (∃2adrenergic receptor (56). Indeed, our data 

indicate that SSeCKS binds Src directly through an N-terminal fragment (a.a. 2–274). 

However, in our hands, both this fragment and a P15A mutant bound equally well to Src, 

suggesting that the this is not a classic SH3/PxxP interaction. A subsequent in silico analysis 

identified another motif within the SSeCKS N-terminus (a.a. 153–166) that is homologous 

to the caveolin binding domain for Src. Importantly, deletion of this domain abrogated 

SSeCKS-Src association and the ability of SSeCKS to enhance Src activity in lipid rafts as 

well as adhesion of prostate cancer cells.

There is growing evidence that the ability of Src to induce oncogenic signaling for 

proliferation, cell survival, and cell motility might relate to an imbalance in its shuttling 

between lipid rafts and cell-cell or focal adhesion complexes. For example, sequestration of 

Src by the Csk-binding protein, Cbp, to lipid rafts suppresses oncogenic transformation (73). 

A recent study by Nethe and Hordijk (74) suggests that during normal adhesion signaling, 

Src shuttling to lipid rafts induces Cav-1 Y14 phosphorylation followed by a secondary 

Rac1-dependent translocation of Src/Cav-1poY14 to FAK-enriched focal adhesion plaques. A 

subsequent dephosphorylation and degradation of Cav-1 then triggers focal adhesion 

turnover associated with cell motility. Another layer of control is added by the findings of 

del Pozo et al. (75), who showed that cell detachment induces translocation of Cav-1poY14 to 

caveolae followed by caveolar endocytosis.

Our compatible model (Fig. 7) suggests that SSeCKS facilitates the initial Src translocation 

to caveolin-rich lipid rafts, likely mediated by SSeCKS’ N-terminal myristyl group, and 

possibly acts as a licensing factor for the amount of Src/Cav-1 that might be able to move to 

focal adhesions. Conditions of SSeCKS deficiency, such as in cancer, would shift more 

association of Src/Cav-1 to the focal adhesions, resulting in both increased focal adhesion 

plaque turnover and Cav-1 degradation. Indeed, our data show that MLL cells lacking 

SSeCKS express roughly twofold lower total Cav-1 protein levels which are increased after 

SSeCKS re-expression (Fig. 6A, supplemental fig. S4), and that SSeCKS re-expression 

rescues the formation of mature, stable focal adhesion plaques (Fig. 2). Consistent with this 

model, the re-expression of SSeCKS in adherent MLL induced the translocation of Src to 

lighter sucrose gradient fractions containing Cav-1 but no FAKpoY397. This enrichment of 

SSeCKS/Src in lipid rafts resulted in increased relative Cav-1poY14 levels. In contrast, in the 

absence of SSeCKS, significant pools of Src and Cav-1poY14 co-fractionated with 
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FAKpoY397, yet almost none was found in the typical lipid raft fractions. Interestingly, 

whereas saturated binding of Cav-1 to Src inhibits its intrinsic kinase activity (27), binding 

by SSeCKS does not, and indeed, SSeCKS seems to enhance Src’s ability to phosphorylate 

Cav-1 in lipid raft fractions. This implies that the function of Src in lipid rafts is dynamic, 

depending on subtle interactions with either SSeCKS or Cav-1. Taken together, these data 

are consistent with a model in which the scaffolding of Src by SSeCKS to caveolin-rich lipid 

rafts modulates the amount of Src/Cav-1poY14 that can translocate to FAK-containing focal 

adhesion complexes, thereby attenuating downstream oncogenic signaling.

Experimental Procedures

Antibodies and reagents

The following primary antibodies (Ab) were used: rabbit polyclonals specific for integrin 

β1, FAKpoY861, FAKpoY925, MEK1, His-Tag, GAPDH (Santa Cruz Biotechnology, Santa 

Cruz, CA) or CAS (BD Transduction Laboratories); mouse MAb specific for HA-epitope 

tag (Applied Biological Materials), Src, SrcpoY416, MEK1/2poS217/221, CASpoY165, 

Cav-1poY14 (Cell Signaling Technology, Beverly, MA) or vinculin (Sigma). F-actin was 

stained with rhodamine-phalloidin (Sigma). Caveolae/Rafts isolation kit and methyl-β-

cyclodextrin (MbCD) were purchased from Sigma (St. Louis, MO).

Cell culture

MLL cell lines expressing tetracycline-regulated (tetOFF) SSeCKS (MLL/tet-SSeCKS) were 

described previously (30). The cells were maintained in Dulbecco’s modified Eagle’s media 

(DMEM) supplemented with 10% bovine serum (BS) and 0.7µg/ml tetracycline. CWR22rv1 

cells were maintained in RPMI1640 media supplemented with 10% fetal bovine serum 

(fBS).

Adhesion assay

Cell adhesion experiments were performed as described in (76). In brief, 96-well microtiter 

plates were coated with 0.1 ml of extracellular matrix protein (ECM: FN, vitronectin, 

laminin or Col-I), incubated at room temperature (RT) for 1 h, and blocked by 10mg/ml 

BSA at RT for 0.5 h after washing. Cells (1.5 × 104) were added to each coated well and 

incubated at 37 °C followed by fixing with 5% glutaraldehyde and staining with crystal 

violet after two washes. The absorbance of each well was measured at 570 nm. The data 

were expressed as the mean of triplicate wells. For assessment of cell spreading on ECM, 

images from adherent cells were taken at 30, 60, 90, and 120 min after seeding. Image J 

(http://rsbweb.nih.gov/ij/) was used to quantify cell spreading as described by Ross et al. 

(77). In brief, measurements were taken from at least three different fields of view with a 

minimum of ten cells per field. Areas were measured in pixels and the spreading index was 

determined by standardizing the spreading of cells to the mean size of cells under control 

conditions.

Haptotaxis assays

Modified Boyden chamber assays were performed to assess haptotaxis by using a 

polyethylene terephthalate tissue culture insert with 8-µm pores (Becton Dickinson, Franklin 
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Lakes, NJ). 3 × 104 cells in 100 µl of serum-free DMEM were seeded atop membranes 

coated on their bottoms with serum-free ECM protein as an attractant. The cells were 

allowed to migrate overnight, and cells that had not penetrated the filters were removed by 

scrubbing with cotton swabs. The chambers were fixed and stained using Diff-Quik Stain 

Set (Dade Behring Inc., Newark, DE), and examined under a bright-field microscope. 

Values for migration were obtained by counting 6 fields of at least 80 cells/field per 

membrane and represent the average of three independent experiments.

Western blotting (IB)

MLL/tet-SSeCKS cells grown in the presence or absence of tet (0.7 µg/ml) were plated in 10 

cm dishes, serum-starved overnight, trypsinized, resuspended in DMEM containing soybean 

anti-trypsin inhibitor (Sigma), and either kept in suspension or re-plated onto FN-coated 

dishes (10 µg/ml) for various durations. Cells were lysed in RIPA buffer (61) supplemented 

with 10 mM Na3VO4, 1 mM NaF, and Complete Protease Inhibitor Cocktail (Roche 

Diagnostics, Mannheim, Germany). 40 µg of total protein per sample was subjected to SDS-

PAGE, blotted onto PVDF membranes which were blocked for 30 min with 5% bovine 

serum albumin (Sigma) in 1×TBS/T (0.1% Tween-20 in Tris-buffered saline) and then 

probed and washed as described previously (61). Digital imaging and signal quantification 

were performed on a Chemi-Genius2 Bio-Imager using GeneTools software (Syngene, 

Frederick, MD).

Immunofluorescence Analysis

MLL/tet-SSeCKS cells plated on glass coverslips (22 mm2) coated with FN for 90 min in 

the presence or absence of tet were fixed at −20°C for 20 min with 60% acetone/3.7% 

paraformaldehyde in PBS, and blocked with 3% non-fat dry milk in PBS for 30 min at RT. 

Cells were incubated with primary Rb-PAbs against integrin β1 (1:100) or FAK (1:150), 

washed and then incubated with DAPI (Invitrogen; 1:500) and FITC-conjugated goat anti-

rabbit IgG (1:250; Chemicon, Temecula, CA). Fluorescent images were captured using 

Nikon TE2000-E inverted microscope equipped with a Roper CoolSnap HQ CCD camera.

Cell lines

FAK+/+[SSeCKS] or FAK−/−[SSeCKS] expresser cell lines were produced by infecting 

with pBABE-SSeCKS (25) retrovirus packaged in 293GPG cells (78) and then selecting in 2 

µg/mL puromycin. MLL/tet-SSeCKS[FRNK] or FRNKm expressor cell lines were produced 

by transfecting with 2 µg of DNA (pcDNA3.1-FRNK-HA or pcDNA3.1-FRNK-(Ser1038)-

HA in Lipofectamine 2000 (Invitrogen) and selecting in 200 µg/ml hygromycin.

Cell viability

Cell proliferation was evaluated using colorimetric MTS assay (Promega) that measures 

restoration of 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-

sulfophenyl)-2H-tetrazolium (MTS) to formazan by metabolically active cells. The 

absorbance of the formazan at 490 nm was determined using a microplate reader in tissue 

culture medium following 24h, 48h, 72h incubation with or without tet. The results are 

expressed as mean values ± standard deviation for two independent experiments.
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Plasmid constructs

SSeCKS constructs containing the Δ153–166 deletion in either GST-SSeCKS[a.a.2–274] or 

pcDNA3.1/αSSeCKS-GFP were produced by a long range inverse PCR technique we 

described previously (79) using “153" and “166" primers containing an SpeI site 

(underlined): “153" primer 5’-ATGCACTAGTGCCAACATCATTAGCCTGGGA-3'; 

“166" primer- 5’-GCGCACTAGTACGGTGAAGAAGGATAAAAATGAA -3'. SSeCKS 

constructs containing Pro15Ala mutation in either pBABE-SSeCKS or pHis-TAT-SSeCKS 

(80) were produced by a PCR-mediated mutagenesis (QuikChange Site-Directed 

Mutagenesis Kit, Stratagene) using primers: SSeCKS-Pro15AlaF: 5’- 

AGCCCCGAGCAGGCGGCGGGGAGCGAC -3’ and SSeCKS-Pro15AlaR: 5’- 

GTCGCTCCCCGCCGCCTGCTCGGGGCT – 3’.

Pulldown assay

Lysates containing 500 µg of protein from NIH3T3/c-Src cells were incubated with 

glutathione Sepharose 4B beads bound to GST or various GST-SSeCKS fusion proteins 

described previously (70). After washing twice in RIPA buffer, the beads were subjected to 

IB analysis and probed with anti-Src rabbit Ab. Lysates of NIH3T3/c-Src cells were 

incubated with Ni2+-beads bound to His-SSeCKS (full length or P15A) proteins or 

glutathione Sepharose 4B beads bound to GST, GST-SSeCKS[a.a.2–274] or GST-

SSeCKS[a.a.2–274Δ153–166] proteins. After washing twice in RIPA lysis buffer, the beads 

were subjected to IB analysis and probed with anti-Src rabbit Ab.

Isolation of Caveolin-rich membrane fractions

The experiments were performed using a Sigma kit (CS0750) following cmanufacturer 

protocols. Briefly, MLL/tet-SSeCKS cells incubated overnight with or without tet were kept 

in suspension or adhered to FN-coated wells (10 µg/ml) for 1h, washed twice with ice-cold 

PBS and lysed with Sigma lysis buffer (L7667) containing 1% TRITON X-100. The lysates 

were transferred to a pre-cooled microcentrifuge tube, incubated on ice for 30 min, adjusted 

to 40% sucrose in lysis buffer, and placed on the bottom of an ultracentrifuge tube. A 5–

30% linear sucrose gradient was formed above the samples and then centrifuged in an SW41 

rotor (Beckman) at 46,000 rpm for 4 h at 4 °C. One ml fractions were collected across the 

entire gradient, and equal amounts of total protein (40 µg/lane) were analyzed by IB. 

Caveolae were interrupted by treatment with the cholesterol-binding agent MbCD (10 mM) 

for 1 h during FN stimulation.

Fluorescence resonance emission transfer (FRET) analysis

Images were obtained using an inverted Zeiss Axio Observer A1 equipped with an Andor 

iXon DV897 back-illuminated cooled CCD camera (Andor, CT, USA). The images at the 

donor emission and acceptor emission were recorded through a Dual View (Photometrics) 

splitter with double band excitation filters. An LED light engine from Lumencor (Lumencor, 

San Francisco, CA) was used for excitation at wavelengths of 433 nm for the donor and 515 

nm for acceptor. FRET ratios were calculated as the energy transfer index: FRET Ratio = 

(IA − IDbt)/ID, where IA is the peak acceptor emission signal of FRET, ID is the peak donor 
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emission signal and IDbt is the signal in the acceptor channel due to donor signal bleed-

through as described previously (81)

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. SSeCKS increases adhesion toward fibronectin and collagen type I
A. SSeCKS reexpression induces exaggerated pseudofilopodia. MLL/tet-SSeCKS cells were 

cultured with or without tet overnight, then replated on FN-coated coverslips and allowed to 

attach for 90 min. Arrows, exaggerated pseudofilopodia. B. SSeCKS promotes cell 

spreading on FN and Col I. MLL/tet-SSeCKS cells grown overnight in the presence or 

absence of tet were replated onto ECM-coated plates, and the flattened (“spread”) cells 

scored after 60 min. Error bars, SE of 6 independent fields; *, p < 0.01. C. SSeCKS 

increases cell attachment toward FN and Col I. MLL/tet-SSeCKS with or without SSeCKS 

reexpression (white vs. black bars, respectively) were plated for 60 min onto wells coated 

with increasing ECM concentrations, and the attached cells identified as those remaining 

after washing with PBS and staining with crystal violet. The extent of retained dye, 

representing relative cell numbers, was quantified by solubilizing the stained cell with 10% 

Su et al. Page 17

Oncogene. Author manuscript; available in PMC 2013 October 18.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



acetic acid and was measuring by spectrophotometer at 570 nm. Error bars, SE of three 

independent experiments; *, p < 0.01. D. SSeCKS-induced cell flattening (left panel) after 

overnight attachment to FN-coated plates, compared to MLL/tet-SSeCKS cells grown in the 

presence of tet (right panel). E. SSeCKS decreases haptotaxis towards FN and Col I but not 

to VN or LN. Error bars, SE of 6 independent fields; *, p < 0.01.
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Fig. 2. SSeCKS induces integrin β1 clustering
A. SSeCKS does not affect integrin β1 expression. MLL/tet-SSeCKS cells incubated with or 

without tet (− or + SSeCKS, respectively) were plated for various time points on FN or kept 

in suspension (“sus”) and then immunoblotted for integrin β1. The bottom graph shows the 

relative levels of premature (“pre”) or mature integrin β1 from three independent 

experiments. Error bars, S.E. B. MLL/tet-SSeCKS cells were plated onto glass FN-coated 

coverslips coated for 60 min or overnight in the presence or absence of tet, then fixed and 

stained for integrin β1, FAK, vinculin or F-actin.
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Fig. 3. SSeCKS regulates cell adhesion through FAK
A. FAK+/+ and FAK−/− MEF transiently transfected with SSeCKS or vector plus pEGFP 

were analyzed by immunoblotting for SSeCKS (or for Gapdh as a loading control). B. 
SSeCKS increases cell adhesion in FAK+/+ cells. Transfected cells described in Panel A 

were subjected to adhesion assays as performed in Fig. 1C, where adherent cells were scored 

as GFP-positive. Error bars, S.E. for duplicates from two independent experiments. *, p < 

0.05. C. FRNK blocks SSeCKS-stimulated cell adhesion. MLL/tet-SSeCKS cells transiently 

transfected with HA-tagged FRNK or FRNK Ser-1034 (FRNK-KM) plus pEGFP (or pEGFP 
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alone) were grown in the presence or absence or tet and then plated on various FN 

concentrations for 1h, followed by assessing cell adhesion levels. Error bars, S.E. for 

duplicates from two independent experiments. *, p < 0.05. D. FRNK or FRNKM expression 

from the experiment in Panel C was confirmed by HA immunoblotting.
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Fig. 4. SSeCKS differentially controls adhesion-induced FAK and Src phosphorylation
(A) summary of potential Src phosphorylation sites on FAK (arrows) and the SH2-mediated 

association of Src with phospho-Y397-FAK (dotted lines). (B) Serum-starved MLL/tet-

SSeCKS cells (+/− tet) were adhered to FN coated wells for various times, and then RIPA 

lysates were analyzed by IB (30 µg protein/lane) for phospho- and/or apo-forms of FAK, 

Src, Mek or Gapdh. Expression levels were quantified from two independent experiments by 

digitization (numbers under blots; same in Panel C). (C) RIPA lysates of MLL/tet-SSeCKS 

cells grown in the presence or absence of tet (− or + SSeCKS, respectively) and then plated 
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onto FN for various times as in Panel B were IP’ed with FAK Ab-beads (1 mg protein/IP) 

and then analyzed for Src or FAK by IB.
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Fig. 5. Docking of Src to SSeCKS occurs in the N-terminal region of SSeCKS
A. The potential Src binding sequence in SSeCKS. Top- Src protein, identifying he Src-

homology domains (including a favored SH3 ligand sequence) and the caveolin binding 

domain (with the binding motif sequence above; residues 82–101: 

DGIWKASFTTFTVTKYWFYR). Bottom- A potential Src-SH3 binding site on SSeCKS 

(P12xxP15; grey box), previously suggested by Tao et al. (56), is shown along with the 

mutant construct, P15A, and the calveolin-1binding motif 

homology, 153FKKVFKFVGFKFTVK167. B. Beads containing GST or GST-SSeCKS 
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fusion domains (Coomassie stained proteins in top panel) were incubated with NIH3T3 

lysates overexpressing c-Src, washed and then blotted for bound Src protein (bottom panel). 

A control of NIH3T3/c-Src lysate (10% of the input) blotted for Src is shown at left. C. 
Ni2+-beads charged with full-length (FL) or P15A His-SSeCKS proteins were used to pull 

down (PD) lysates of HEK293T cells transiently overexpressing Src, followed by IB for Src. 

An aliquot of the lysate representing 8% of the input is shown on the right. D. Glutathione-

beads charged with GST-SSeCKS[a.a.2–274] or containing an internal deletion of the 

putative caveolin-1-binding domain (Δ153–166) were used to bind HEK293T/c-Src lysates 

as shown in Panel C, followed by IB for Src. An aliquot of the lysate representing 8% of the 

input is shown on the right. E. Upper panel- Ni2+-beads charged with 1 µg/assay of His-

tagged Src (GenWay Biotech) were used in pulldown (PD) assays with 5 µg GST, GST-

SSeCKS[2–274] or GST-SSeCKS[2–274Δ153–166] (left panel) as in Panel D, and then 

blotted for GST or Src. Lower panel- Glutathione-beads charged with GST, GST-

SSeCKS[2–274] or GST-SSeCKS[2–274Δ153–166] were used in PD assays with His-Src, 

followed by Src IB. F. GFP-fusions to FL or SSeCKS[Δ153–165] were transiently 

transfected into MLL or CWR22rv1 cells, and the cells were then assayed for attachment to 

FN-coated plates as in Fig. 1B. Error bars, S.E. of two independent experiments done in 

triplicate.
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Fig. 6. SSeCKS drives Src into lipid rafts
A. Stable MLL/tet-SSeCKS cells grown in the presence or absence of tet were either kept in 

suspension or adhered to FN (10 µg/ml) coated plates for 1h, and after washing with ice-cold 

PBS, lysates subjected to sucrose gradients were fractionated into heaviest (“bottom”, 

fraction #9) and lightest (“top”, fraction #1) as described previously (27) to isolate 

detergent-resistant caveolin-rich lipid rafts (“light” fractions 4–5). Equal protein aliquots 

from each fraction were blotted for SSeCKS, Src, FAKpoY397, Caveolin-1, or Cav-1poY14, a 

known Src phosphorylation site (82). Cell conditions- A: Suspension/tet+, B: Suspension/tet
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−, C: Attached/tet+, D: Attached/tet−, E: Attached/tet-/MbCD (10 mM for 1h during FN 

attachment). B. FRET analysis of CWR22Rv1 cells transiently transfected with Src or FAK 

kinase activity sensors in the cytosol (Cyto-Src), detergent-insoluble, lipid-rafts (Lyn-Src or 

Lyn-FAK) or general membrane sites (KRas-Src), plus either vector, FL-SSeCKS or 

SSeCKS[Δ153–166]. Error bars, S.E.; *, P<0.01.
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Fig. 7. Model for SSeCKS-mediated modulation of adhesion-induced FAK/Src signaling
A. Src is scaffolded to lipid rafts by SSeCKS, where it phosphorylates Cav-1 on Y14. As 

postulated by Nethe and Hordijk (74), normal adhesion signaling induces FAK 

autophosphorylation, triggering the Rac1-dependent translocation of Src/Cav-1poY14 to 

FAK-containing focal adhesion complexes and the subsequent association with and 

phosphorylation of FAK by Src on secondary sites such as Y925. The subsequent 

dephosphorylation of Cav-1 triggers Cav-1 degradation, focal adhesion turnover and cell 

motility. SSeCKS likely sustains a dynamic balance between Src/Cav-1 pools in lipid rafts 
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vs. focal adhesions, thereby assuring transience to the focal adhesion turnover. B. In cancer 

cells exhibiting SSeCKS downregulation, Src/Cav-1 translocation to focal adhesions is over-

activated, thereby facilitating in higher levels of FAK autophosphorylation and 

transphosphorylation by Src, and resulting in sustained kinetic focal adhesion turnover, 

decreased adhesion and increased oncogenic motility and invasiveness.
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