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The operation of both central and peripheral tolerance ensures the prevention of autoim-
mune diseases.The maintenance of peripheral tolerance requires self-antigen presentation
by professional antigen presenting cells (APCs). Dendritic cells (DCs) are considered as
major APCs involved in this process. The current review discusses the role of DCs in
autoimmune diseases, the various factors involved in the induction and maintenance of
tolerogenic DC phenotype, and pinpoints their therapeutic capacity as well as potential
novel targets for future clinical studies.
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INTRODUCTION
Immune reaction against self-antigens is primarily prevented
within the thymus in a process called central tolerance (1). Despite
the rigorous screening of the evolving T-cell repertoire, some
autoreactive T cells escape from the thymus (1). To avoid autoim-
munity, multiple operations ensure the control of the “escaped”
T-cell repertoire at the periphery such as induction of anergy,
deletion of autoreactive T cells, and activation or induction of reg-
ulatory T cells (Tregs) (2, 3). The presentation of self-antigens at
the periphery, similarly to the thymus, is carried out by multiple
antigen presenting cells (APCs) such as stromal cells and dendritic
cells (DCs) (4). This review focuses on DCs as principal APCs
involved in this process.

Dendritic cells are present in all tissues and involved in the
initiation of immune responses (5). They are capable of rec-
ognizing pathogens and various danger signals, which leads to
the upregulation of their co-stimulatory molecules, production of
cytokines, and activation and effector differentiation of pathogen-
specific T cells. Additionally, via communicating with various
immune cells [e.g., natural killer cells (NKs), natural killer T

Abbreviations: Batf3, basic leucine zipper transcription factor, ATF-like 3; Bim, Bcl-
2 interacting protein; CCR7, chemokine (C–C motif) receptor 7; CCR9, chemokine
(C–C motif) receptor 9; CCL18, chemokine (C–C motif) ligand 18; CTL, cytotoxic
T-lymphocyte; CTLA-4,cytotoxic T-lymphocyte antigen 4; CXCL12,chemokine (C–
X–C motif) ligand 12; Flt3L, FMS-like tyrosine kinase-3 ligand; FoxP3, forkhead box
P3; GM-CSF, granulocyte macrophage-colony-stimulating factor; IFN, interferon;
IL, interleukin; MHC-II, major histocompatibility complex II; LPM2 and 7, protea-
some beta subunits; NF-κB, nuclear factor kappa-light-chain-enhancer of activated
B cells; Notch1, notch homolog 1, translocation-associated (Drosophila); PD1, pro-
grammed cell death protein-1; PDL-1, programmed cell death 1 ligand; SIRP1α,
signal regulatory protein-1 alpha; STAT-3, signal transducer and activator of tran-
scription 3; TGFβ, transforming growth factor β; Th1, T helper type 1; TLR, toll
like receptor; TNFα, tumor necrosis factor-alpha; Tr1 cells, type 1 T regulatory cells;
zbtb46, zinc finger and BTB domain containing 46; XCR1, chemokine (C motif)
receptor-1.

(NKT) cells] they bridge the innate and adaptive arm of the
immune response (5).

Dendritic cells are a heterogeneous cell population consist-
ing of multiple subtypes (6). Major populations of DCs present
in murine secondary lymphoid organs (SLOs) are CD8+, CD8−

DCs, and plasmacytoid DCs (pDCs). The CD8− DCs can be fur-
ther subdivided into three groups: CD4+, double negative (DN)
(CD11c+ CD11b+ CD4− CD8−), and triple negative (TN) subset
(CD11c+ CD11b− CD4− CD8−) (Table 1) (6, 7). Differences in
gene signature and consequently in functional characteristics exist
among DC subsets regarding antigen processing, T-cell stimula-
tory capacity, and how they respond to pathogens (7, 8). CD8+

DCs are efficient in cross-presentation, induction of CD8+ cyto-
toxic T-lymphocyte (CTL) response while CD4+ DCs are mainly
involved in the activation of CD4+ T cells and in the induction
and homeostasis of Tregs (5). Moreover, pDCs are the major
source of type-I interferon (IFN) and play important role in
the induction of antiviral immunity and in regulating the activ-
ity of NKs (9, 10). Parallel to the lymphoid organs, three types
of DCs are present in most non-lymphoid organs [except the
lamina propria and dermis (7, 11)] (Table 1): the CD103+DCs
(CD45+ PDCA-1− CD11c+ MHC-II+ CD103+ CD11b−), the
CD103−DCs (CD45+ PDCA-1− CD11c+ MHC-II+ CD103−

CD11b+), and pDCs (CD45+ CD11c+ PDCA-1+) (7, 11). The
CD103+ DCs resemble lymphoid tissue CD8+ DCs and can effi-
ciently cross-present cell-associated antigens (7, 11). The CD103−

DCs display a heterogeneous population containing cells from
both the DC and monocyte lineage (7, 11). Their specific role is
less characterized. Of note, non-lymphoid tissues as well as SLOs
contain not only fully differentiated DCs but also pre-DC popu-
lation (CD45+ Lin− MHC-II− CD11c+) that provide source for
DC development and homeostasis in situ (12, 13).

Due to their functional heterogeneity and central spot in
antigen presentation, DCs seem to carefully balance between
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Table 1 | Murine DC subsets and their role in tolerance.

Subgroups Surface markers Function in tolerance Reference

LOs

CD8+

DCs

CD11c+ Induce CD8+ T-cell-tolerance (14–19)
CD8α+ CD4− CD11b− Induce de novo generation of Foxp3 Tregs

CD8−

DCs

CD4− DCs CD11c+ CD8α− CD4+ 33D1+ DC11b+ Efficient in activating existent Foxp3 Tregs (17, 18)
DN DCs CD11c+ CD8α−CD4 CD11b+ Unknown

→mcDCs (CD11blo/−) Presentation of apoptotic cell derived antigens (20)

TN DCs CD11c+ CD8α− CD4− CD11b− Breaking of T-cell tolerance in diabetes (21)

Thymic

migratory DC

CD11c+ CD8αlow CD11b+ SIRP1α+

XCR1+
Unknown

regDCs CD11clo MHCIIlo CD11bhi (CD45RBhi) Acquire antigens at the periphery, migrate to the thymus (22–25)

L-DCs CD11clow MHCII− DC8α− CD11bhi Involved in deletion and Treg induction

Production of IL-10 and inducing Tr1 cells and Tregs (26–31)

Diminish experimental autoimmune hepatitis

Unknown

pDCs CD11c− MHCIIint B220+ PDCA-1+ Regulate breach of self-tolerance in arthritis (32–36)

CCR9+ PDCA-1+ B220− Induce anergy or deletion of T cells during oral tolerance

Aberrant activation promote diabetes and lupus

Acquire antigens at the periphery, migrate to the thymus (22, 24, 37)

Involved in deletion and Treg induction

eTACs CD45low, CD11clow, MHC-IIhi,

CD357+, DC80int/86int

Induction of tolerance through AIRE-mediated expression of

self-antigens

(38)

Induction of T-cell unresponsiveness of CD4+ T cells independent of

Tregs

Prevention of autoimmune diabetes

NON-LOs

CD103+ CD11c+ MHCII+ CD11b− CD103+ Cross-presentation of self-antigens to maintain CD8+ T-cell-tolerance (39–44)

LP: CD103+CD11b+ Induce and enhance the de novo generation of Foxp3 Tregs

CD11b+ CD11c+ MHCII+ CD11b+ CD103− Need further clarification

pDC CD11c− B220+ PDCA-1+ Aberrant activation of pDCs promote diabetes and lupus (34, 36)

Arrow indicates that mcDCs belong to the DN DC subset. (CD45RBhi) indicates that this marker was investigated and associated with some regDCs only. regDCs,

regulatory DCs; DCs, dendritic cells; pDC, plasmacytoid DC; DN/TN DCs, double/triple negative DCs; mcDCs, merocytic DC; eTACs, extrathymic Aire-expressing

cells; Los, lymphoid organs; non-Los, non-lymphoid organs; LP CD103+CD11b+, refer to the additional DC subset present in lamina propria besides the CD103+ and

CD11b+ subsets.

immunity and tolerance. Considering the substantial amount of
data available, there are at least five contrasting points to contem-
plate in order to understand what features describe a tolerogenic
DC (tDC) and therefore their influence in autoimmune diseases:
(a) Maturation status of DCs, (b) intrinsic characteristics of DCs
(involving intracellular signaling, antigen presentation capacity of
DCs, and expression of effector molecules), (c) division of labor
among DC subsets in tolerance induction, (d) interaction between
DCs and other immune or stromal cells, and (e) the effect of
the microenvironment to generate DCs with tolerance-inducing
potential (e.g., soluble factors).

SELF-ANTIGEN PRESENTATION BY DCs: DOES DC
MATURATION MATTER?
The early groundbreaking studies have demonstrated in a series of
transgenic animal models that cell-associated antigen expressed

in peripheral tissues resulted in CD8+ T-cell deletion (14, 15).
These studies identified DCs as major APCs involved in peripheral
tolerance. In these models, DCs acquired cell-associated anti-
gens under non-inflammatory condition from apoptotic cells at
the periphery and migratory DCs carried these antigens to the
draining lymph node (LN) where CD8+ T-cell deletion was initi-
ated (14, 15). This so-called cross-tolerance toward autoantigens
involved CD95-signaling (45, 46), Bcl-2 interacting protein (Bim)-
dependent apoptosis of T cells (47), and was controlled by cognate
CD4+ T-cell help (48). The importance of cross-tolerance was
additionally demonstrated in an animal model where phago-
cytosis of apoptotic cells was inhibited in CD11c+ cells (16).
Transfer of polyclonal CD8+ T cells from these animals to Rag1
deficient recipients resulted in an autoimmune phenotype (16).
Moreover, viral epitope genetically targeted to CD11c expressing
cells caused CD8+ T-cell unresponsiveness that was dependent
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on the engagement of programmed cell death protein-1 (PD1)
and cytotoxic T-lymphocyte antigen 4 (CTLA-4) (49). Subsequent
studies have similarly demonstrated that model antigen targeted
to DCs using C-type lectin receptors (CLRs) such as Dec205
and dendritic cell immunoreceptor (DCIR) induced peripheral
CD8+ T-cell tolerance and resulted in CD4+ Treg induction in
the steady state (17, 18). Overall, above data led to the widely
accepted notion that immature DCs present self-antigens under
non-inflammatory condition and this result in peripheral toler-
ance. These immature DCs were defined as cells expressing low
level of co-stimulatory molecules (CD80, CD86, MHC-II) and
failed to produce pro-inflammatory effector molecules such as
interleukin (IL)-12 (50) (Figure 1). This notion was underlined
by the fact that the same self-antigen presentation by resident
DCs using targeting strategy toward, e.g., Dec205, DCIR, or DC
NK lectin group receptor-1 (DNGR1) in the presence of anti-
CD40 resulted in DC maturation and efficient T helper type 1
(Th1) immunity (17, 18, 51, 52). These mature DCs capable of
inducing immunogenic response exhibited high expression of co-
stimulatory molecules (CD80, CD86, CD40), upregulated MHC-I
and II, and produced pro-inflammatory cytokines such as IL-6,
IL-12, and TNF (5) (Figure 1A). Thus, DCs seemed to remain
in an immature state during tolerance while they fully mature
during induction of immunity. This view was challenged by mul-
tiple consecutive studies. CCR7hi MHC-IIhi DCs could develop
without pathogen within peripheral tissues, after disruption of
cell adhesion via E-cadherin and despite their phenotypic matu-
ration; they failed to secrete inflammatory cytokines and elicited
a tolerogenic T-cell response in vivo (53). Moreover, increasing
number of MHC-IIhi matured DCs could be observed in drain-
ing LN prior to the detection of the autoreactive T and B-cell

responses in arthritis (54). Transfer of these matured DCs caused
autoimmunity in recipient animals indicating that these cells were
responsible for the breaching of self-tolerance (54). Thus, tDCs
are not necessarily remaining in an immature state for tolerance
induction. Accordingly, it has been suggested by Reis and Sousa
that immature DCs could give rise to several different types of
“effector” DCs (55). In this model, each type of “effector” DC is
functionally distinct and can drive various T-cell responses, such
as T helper cell differentiation, induction of CTL, and T-cell toler-
ance (55). This suggests that tolerance-inducing capacity of DCs
is associated with another entity of DCs that is distinct from their
immature state (Figure 1B). According to this model, two impor-
tant questions remain: (i) what features define “effector” DCs with
tolerance-inducing capacity and (ii) what signals influence the
generation of this “effector” tDC phenotype?

WHAT FEATURES ARE ASSOCIATED WITH THE TOLEROGENIC
CAPACITY OF DCs? – INTRINSIC CHARACTERISTICS OF tDCs
INTRACELLULAR SIGNALING EVENTS AFFECTING THE ACTIVATION
AND SURVIVAL OF DCs
There is increasing evidence that tDC phenotype (or develop-
ment of “effector” tDCs) is an active process and the result of the
operation of multiple signaling pathways. In agreement with this,
several recent studies have identified key signaling molecules nec-
essary for the tolerogenic function of DCs. One of the prominent
pathways involved in this process is the nuclear factor kappa-light-
chain-enhancer of activated B cells (NF-κB) pathway. The central
role of the NF-κB pathway was demonstrated in DCs specifically
lacking A20, a ubiquitin-editing enzyme, which induces the degra-
dation of various signaling molecules that activate NF-κB signaling
such as receptor interacting protein-1 (RIP1) (56–59). In these

FIGURE 1 | Scientific concepts: how to characterize tolerogenic DCs?
(A) Previous concept described DCs as a cell type existing in two
different states: immature and mature DCs. These categories were based
primarily on their co-stimulatory molecule expression, effector cytokine
production, and T-cell stimulatory capacity. According to this model, immature

DCs were able to induce tolerance. (B) Based on novel observations, the
existence of multiple effector DCs has been suggested by Reis and Sousa
(55). According to this model, immature DCs develop into various types of
effector cells. Consequently, effector DCs, capable of inducing tolerance, are
the effector tolerogenic DCs.
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animals, colitis and arthritis developed spontaneously (56). Addi-
tionally, milk-fat-globule-EGF VIII (MFG-E8), a secreted mole-
cule that determines the recognition of apoptotic cells, supported
the tolerogenic activity of DCs. Mechanistically, MFG-E8 activated
signal transducer and activator of transcription 3 (STAT-3) and
A20 and decreased pro-inflammatory cytokine production (60)
further suggesting the supportive role of the decreased activity
of NF-κB pathway in promoting tolerance. Consequently, inhi-
bition of NF-κB and notch homolog 1, translocation-associated
(Drosophila) (Notch1) by miR-23b promoted tDC differentiation
of murine bone marrow dendritic cells (BMDCs) (61). There-
fore, over-expression of miR-23b in BMDCs produced less IL-12,
increased level of IL-10, and demonstrated enhanced Treg induc-
ing capability in vitro (61). NF-κB plays a significant role in DC
activation (62) and consequently inhibition of this pathway likely
shifts the balance toward tolerance. Surprisingly,unstimulated NF-
κB1 deficient DCs pulsed with self-antigen were able to mount
CD8+ T-cell response and induced autoimmunity (63). This indi-
cates that some degree of activation of this pathway is required
for maintaining tolerance as well. It is possible that a combination
of pathways will determine whether finally tolerance or immunity
occurs and which effector DC phenotype will be the end result of
the various stimuli.

Furthermore, p50, active form of NF-κB1, regulated the
immunogenicity and life span of DCs (64). According to this,
p50 deficient DCs produced higher level of pro-inflammatory
cytokines, exhibited increased T-cell stimulatory capacity, and
showed longer survival (64). The lifetime of DCs provides an
interesting aspect of how tolerance and immunity is regulated
and it is thought to be at least partially determined by intrinsic
properties of DCs (65). Under physiological condition, DCs die
within 48 h after the activating stimuli (66). Significant accumu-
lation of DCs has been observed in MRL-lpr/lpr mice suggesting
a connection between apoptosis and autoimmunity (67). More-
over, over-expression of the caspase inhibitor p35 in CD11c+ cells
resulted in accumulation of DCs and anti-nuclear antibody pro-
duction in aged mice (65). FAS (68) or Bim deficiency (69) in DCs
also caused autoimmunity including autoantibody production.
Thus, besides NF-κB, apoptotic pathways regulate the lifetime of
DCs and they provide additional checkpoint to maintain tolerance.

Generally, intracellular signaling events, that negatively regu-
late DC activation, have been implicated to balance tolerance vs.
immunity. These pathways primarily act through affecting the size
of DC compartment or the extent of the DC activation. Accord-
ingly, DCs deficient in protein tyrosine phosphatase-1 (SHP1)
promoted strong Th1 activation that resulted in glomerulonephri-
tis and autoantibody production in aged mice (70). Furthermore,
DC-specific deletion of Lyn tyrosine kinase, a negative regula-
tor of the myd88 pathway, resulted in spontaneous T- and B-cell
activation, which caused lupus-like autoimmune disease (71).
Additionally, STAT-3 deficiency in DCs was also associated with
their increased T-cell stimulatory activity and caused ileocolitis
resembling human inflammatory bowel disease, suggesting its role
in mucosal tolerance (72). Transgenic mice, where suppressor of
cytokine signaling-1 (SOCS-1) expressed only in the T- and B-cell
compartment exhibited B-cell hyper activation and autoantibody
production. SOCS-1 deficient DCs in these animals produced

more B-cell activating factor (BAFF), which contributed to the
observed autoimmune phenotype (73). Negative regulatory motifs
such as immunoreceptor tyrosine-based inhibitory motif (ITIM)
containing molecules could affect the numbers and activity of the
DCs and thereby tolerance as well. DCIR, a C-type lectin, has
been identified as a negative regulator of DC expansion in spleen
(74). Consequently, DCIR deficient mice spontaneously developed
autoimmune sialadenitis and enthesitis (74).

ANTIGEN CAPTURE, PROCESSING, AND PRESENTATION
Dendritic cells acquire antigens via phagocytosis, receptor medi-
ated endocytosis, and macropinocytosis that lead to the presenta-
tion of these antigens to T cells (5). Autoimmune diseases are
associated with multiple autoantigens against which the toler-
ance is broken (75–78). Therefore, the ability of DCs to obtain,
process, and present self-antigens is key in understanding toler-
ance and to closer define the tDC phenotype. Along this line,
the antigen-uptake, the nature of antigen, and the specialized
machinery associated with tolerance or autoimmunity need to be
considered.

Firstly, the mechanism of antigen capture can influence the
outcome of the response induced by DCs. Indeed, apoptotic cells
(unlike necrotic cells) or soluble proteins, as major sources of
self-antigen presentation at the periphery, resulted in tDC acti-
vation (50, 79). In case of apoptotic cells, TAM receptor tyrosine
kinases (Tyro3, Axl, and Mer) expressed in apoptotic cell mem-
branes triggered SOCS-1 and SOCS-3 expression in DCs, which
inhibited the toll like receptor (TLR) and cytokine-induced signal-
ing cascades and therefore the immunogenic DC maturation (80).
Underlining this, TAM triple gene (Tyro3, Axl, Mer) deficient mice
possessed hyperactive DCs and developed systemic autoimmunity
(81). Moreover, the uptake of apoptotic cells triggered transform-
ing growth factor β (TGFβ) release, which led to DC-mediated
Treg induction (82, 83). Accordingly, the DC-specific loss of TGFβ

activating integrin (αvβ8) resulted in the failure of Treg devel-
opment initiated by DCs in vitro and caused autoimmune colitis
in vivo (84).

For the uptake of soluble proteins as source of self-antigens, an
important antigen-uptake receptor group is the CLRs. They play
a role in the uptake of glycosylated antigens. The recognition of
most CLRs was not pathogen-restricted, as they often interacted
with self-glycoproteins (85–87). Thus, CLRs were involved in the
clearance of multiple soluble self-antigens such as thyroglobu-
lin by the mannose receptor (87). In particular, CLRs directed
antigen to both MHC-I and MHC class II to prime CD4+ and
CD8+ T-cell responses (88, 89). Targeting antigen to Dec205 or
DCIR on DCs is a classical example of inducing antigen specific
tolerance toward the antibody coupled soluble protein (17, 18).
Additionally, engaging the mannose receptor by mannosylated
myelin peptide inhibited EAE (90). Similarly, oral administra-
tion of mannose-enriched antigens can induce oral tolerance and
favor the generation of IL-10-producing type 1 T regulatory cells
(Tr1 cells) via SIGNR1 expressed on DCs of the lamina propria
(91). It is less understood which is the exact self-antigen recogni-
tion repertoire for each CLRs, and to what extent CLRs on DCs
influence autoimmunity. Nevertheless, their intracellular signal-
ing motifs (either ITIM or ITAM motifs) could greatly influence
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DC activation and effector cytokine production (86) and thereby
could influence the tDC phenotype upon antigen capture.

Secondly, in several autoimmune disorders multiple post-
translational protein modifications have been observed resulting
in alteration of self-antigens and neoantigen formation against
which the immune system has not been exposed and tolerized.
Multiple autoimmune disorders were dependent on the presence
of such post-translational modifications of autoantigens (77).
Acetylation of myelin basic protein was required for the develop-
ment of EAE as non-acetylated peptides failed to stimulate T cells
or induce the disease (92, 93). Similar post-translational modifi-
cations were involved in the autoimmune process in lupus, celiac
disease, and psoriasis (75, 77). Importantly, these modified pro-
teins could be produced and/or taken up by DCs for presentation
to T and B cells. So far there is limited understanding of how
these modified proteins are captured or produced by DCs, what
are the exact consequences of this presentation in disease devel-
opment, and whether specific DC subsets could be skewed toward
presenting these modified proteins during autoimmunity. In line
with this, certain modifications such as citrullination could alter
the peptide generation of DCs for MHC-II by altering the sus-
ceptibility of antigen to cathepsin D (94). On the opposite end
of the spectra are the enzymes involved in creating these post-
translational modifications. They could affect tolerance such as
the N-acetyl glucosaminyl transferase (Mgat5) involved in gly-
cosylation process. Mtga5 deficient animals exhibited profound
autoimmune disease due to the decreased threshold for T-cell
activation (95, 96). Accordingly, increasing N-glycan branching
inhibited TCR activation in autoimmune models of EAE and dia-
betes (97). It will be important for future studies to dissect the
involvement of this and similar enzymes in autoimmunity in a cell
specific manner especially focusing on DCs.

Thirdly, differences in antigen processing machinery might
affect tolerance toward self-antigens. Accordingly, murine CD8+

(Dec205+) and CD4+ (DCIR+) DCs differed in their antigen
processing machinery, as CD8+ DCs were specialized in cross-
presentation while CD4+ DCs were more potent inducers of
CD4+ T-cell activation (17). These differences were based on a dis-
tinct expression of antigen processing components such as TAPs,
cathepsins, and HLA-DM (17).

The proteasome is involved in the production of most MHC-
I ligands and therefore considered as main component of the
antigen processing machinery (98). Interestingly, autoimmune
disorder such as scleroderma was associated with allele variants
of immunoproteasome subunits, LMP2 and LMP7 (99). Also,
local immunopathology could be explained by tissue specific dif-
ferences in the proteasomal processing of MHC-I epitopes in a
colitis model (100). Additionally, during inflammation the upreg-
ulation of LMP7 immunoproteasomal subunit at the periphery
was associated with the prevention of diabetes (101). As opposite
to this, over-expression of the LMP7 in splenocytes was required
for CD8+ T-cell auto-reactivity (102). While above studies demon-
strate the clear participation of the proteasome in autoimmune
processes, it is less understood how cell specific (DC-specific)
changes in these components influence disease development. Such
cell or subset specific alterations could be especially interesting,
as in the thymus, different sets of the proteasome subunits are

expressed in mTECs and cTECs suggesting specialization for pre-
sentation of self-antigen repertoire for tolerance induction (103).
In scleroderma, DC-specific alteration in proteasomal process-
ing was associated with the disease (76, 104). In this case, the
unusual processing of topoisomerase-I by the nucleoproteasome
in DCs was connected with autoantibody production and clinical
manifestation of this autoimmune disorder (76, 104).

The proteasome generates peptides some of which are further
trimmed by aminopeptidases. Some of the trimming takes place
in the cytoplasm but a large proportion is located within the endo-
plasmic reticulum (ER). One of the primary enzymes in the ER is
the ER associated aminopeptidase (ERAP) (105). These trimming
enzymes in humans were associated with susceptibility to various
autoimmune diseases (106). For example, based on genetic stud-
ies, ERAP1 was highly associated with ankylosis spondylitis (107)
and ERAP2 was linked to Crohn’s disease (108). Whether specific
alterations in such peptide processing are associated explicitly with
DCs needs further evaluation.

In terms of the presence of specialized intracellular compart-
ments associated with tolerance or autoimmunity, merocytic DCs
(mcDCs) that were able to breach self-tolerance (20)(Table 1)
possessed specialized vesicles where they could store apoptotic cel-
lular material for autoantigen presentation for an extended period
of time. Nevertheless, the understanding of these intracellular
organelles is limited so far.

Hence, it remains to be further explored whether altered anti-
gen presentation machinery exists and would be associated with
DCs inducing tolerance and/or with DCs breaching tolerance.

Taken together, various signaling pathways and processes influ-
encing antigen handling and processing determine the capacity
of DCs for tolerance induction and dysregulation in these path-
ways could result in alteration of tDC “effector” phenotype toward
promoting autoimmunity.

WHAT FEATURES DEFINE tDCs? – EFFECTOR
CHARACTERISTICS OF tDCs
The tolerogenic effector capacity of DCs predominantly has been
analyzed in functional co-culture assays (induction of Tregs or
Tr1 cells), determining how DC-transfer affected disease out-
come or via using transgenic animal models (3, 50). Moreover,
increased expression of IL-10 or TGFβ and reduced expression
of pro-inflammatory cytokines (e.g., IL-12, IL-1, IL-6, TNF) and
co-stimulatory molecules (e.g., CD80, CD86) are typically con-
sidered as hallmark of tDCs (3, 50) (Figure 1B). In NOD mice,
DC-derived IL-2 was required for CD8+ T-cell deletion and for
protection from diabetes (109). Additionally, DC-derived IL-2
together with CD40–CD40L interaction were involved in Treg
homeostasis (110–112) establishing IL-2 as novel effector mol-
ecule for tDCs. Besides, variety of enzymes such as retinalde-
hyde dehydrogenase-2 (RALDH2) involved in retinoid acid (RA)
metabolism and indolamine 2,3 dioxygenase (IDO) altering tryp-
tophan metabolism were associated with tDCs (3, 113). RA was
involved in Treg induction primarily in the gut and skin while IDO
could inhibit the proliferation of activated T cells and enhanced the
induction of Tregs (3, 113). It has been recently demonstrated that
the non-enzymatic activity of IDO upon TGFβ challenge in pDCs
was involved in maintaining their regulatory phenotype (114).
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IDO mediated intracellular signaling in pDCs, evoked the capacity
of these cells to suppress Th1 immunity, and resulted in increased
Treg differentiation in vivo (114).

Apart from this, there is increasing evidence suggesting a high
level of complexity associated with the tDC “effector” phenotype.
The effect of dexamethasone and vitamin D on human DCs has
been recently characterized at a molecular level (115). Both com-
pounds alone and in combination induced tDCs and have been
widely used to generate these cells in vitro (113). Interestingly,
the tDC phenotype was associated with unique protein profiles
with severe impact on metabolic pathways (115). These pathways
affected lipid, glucose, and oxidative phosphorylation in tDCs.
Moreover, they altered the production of ROS, the survival of
DCs, and the dependence of DCs on available nutrients (115).
This is in line with the observation that after TLR stimuli, the
metabolic status of DCs transitioned from oxidative phosphory-
lation to glycolysis (116). This transition was partially inhibited
by IL-10, a cytokine associated with tolerance (116). Hence, it
is likely that the tolerogenic potential of DCs is associated with
a specific metabolic fingerprint that supports DC function in
maintaining immune homeostasis. Also, blocking mammalian tar-
get of rapamycin (mTOR) signaling via rapamycin during DC
maturation resulted in tDCs, which promoted alloantigen spe-
cific tolerance (117). Although, mTOR affects multiple cellular
processes and only one aspect of them is associated with metabo-
lism, further studies are needed to clarify whether the above effect
of rapamycin was due to specific metabolic changes associated
with tDCs.

Overall, it seems that the specific features of “effector” tDCs are
more complex than previously thought. The broader determina-
tion of the switch in metabolic status, the checkpoints regulating
this change together with the intracellular pathways, and secre-
tome profile of tDCs might provide more precise specifications
of what the tDC phenotype means. It is plausible that these fea-
tures are slightly different dependent on the microenvironmental
factors affecting DCs and might show organ or even DC subset
specific amendments.

DIVISION OF LABOR FOR TOLERANCE INDUCTION
Various animal models have demonstrated the importance of
CD11c+ cells in the maintenance of tolerance (3, 14–18, 49, 50).
Supporting this notion, transient depletion of CD11c+/hi cells
aggravated immune pathology and inflammation (118). Rather
surprisingly, the constitutive ablation of CD11c+ cells showed
myeloproliferative disorder associated with elevated serum Fms-
like tyrosine kinase-3 ligand (FLT3L) level (119, 120). Between
the two pioneering studies on constitutive DC depletion, only
Ohnmacht et al. found impaired negative selection of CD4+ T
cells and the development of inflammatory bowel disease (120).
Although the ultimate role of DCs in autoimmunity could not be
demonstrated in these studies, they pinpointed an important reg-
ulatory circuit within the myeloid cell compartment. Importantly,
unlike CD11c, novel molecules such as the transcription factor
zinc finger and BTB domain containing 46 (zbtb46) and DNGR1
were exclusively expressed by DCs and were absent in NK cells,
pDCs, or monocytes (121, 122). It will be interesting to investi-
gate in future studies how short- or long-term depletion of DCs

using the above-mentioned markers would affect autoimmunity
and peripheral tolerance.

Given the heterogeneity of DCs, genetic models where cer-
tain DC subtype was missing provided interesting insight into the
process associated with immune homeostasis. Batf3 deficient mice
lack CD8+ DCs in SLOs and CD103+ DCs at the periphery (123).
Despite this loss in these subtypes, the mice under steady state have
no obvious autoimmune phenotype (123). Nonetheless, renal LN
CD8+ XCR1+ DCs were absent in Batf3 deficient animals and
therefore failed to induce tolerance against soluble antigen con-
centrated in the kidney (19). Additionally, pulmonary tolerance
toward inhaled antigen correlated with the ability of CD103+ DCs
to upregulate RALDH2, which promoted forkhead box P3 (FoxP3)
expression in Tregs (39). Correspondingly, Batf3 deficient mice
failed to induce tolerance toward inhaled antigen (39). Besides the
lung, the CD103+ DC subpopulation in the gut prevented colitis
and was efficient in inducing Tregs via production of TGFβ, RA,
and induction of IDO (40–42). Similarly, CD103+ skin migra-
tory DCs were responsible for tolerance induction by transporting
skin-associated antigens into draining LNs (43). Since Batf3 defi-
cient animals showed no obvious autoimmune phenotype, it is
likely that other subsets took over the tolerance-inducing function
of the missing DC subtype.

Also, pDCs have been identified as guardians of immune home-
ostasis in arthritis (32) and oral tolerance (33). Despite these
data, transient depletion of pDCs did not result in spontaneous
autoimmune disorder (10, 124). Additionally, pDCs have been
associated with multiple autoimmune disorders (34–36). Thus,
the question is whether do individual subsets of DCs specialized
in tolerance exist and is there functional redundancy among the
DC subsets?

A novel subset of tDCs has been recently identified within SLOs
localized at the T–B cell border: the extrathymic Aire-expressing
cells (eTACs) (38). These cells were CD45loCD11clo and posi-
tive for zbtb46, therefore could be identified as DCs (38). Besides,
eTACs expressed high level of Epcam and MHC-II but low level of
co-stimulatory molecules (Table 1). Importantly, eTACs function-
ally inactivated autoreactive CD4+ T cells independent from Tregs
and were unresponsive to a variety of inflammatory stimuli (38).

Moreover, Wakkach et al. have distinguished in the spleen, the
IL-10 secreting tDCs harnessing CD11cloCD45RBhi surface mark-
ers (Table 1) (26). These cells showed immature phenotype and
induced the differentiation of Tr1 cells (26). Additionally, they
were resistant to various inflammatory maturation stimuli and
upon adoptive transfer they induced antigen-specific unrespon-
siveness in recipient mice (26). Further studies demonstrated that
the differentiation of CD11cloCD45RBhi tDCs from hematopoi-
etic precursors could be instructed by splenic stromal cells (27)
and via utilizing neuropeptides such as vasoactive intestinal pep-
tide (VIP) and pituitary adenylate cyclase-activating polypeptide
(PACAP) (125).

Specific peripheral DC populations could migrate via blood to
the thymus and contributed to central tolerance. Approximately
50% of the thymic DCs arrived from the peripheral blood and
represented the migratory DC population in this organ (126).
This migratory DC population in the murine system consisted
of CD11c+CD8αlowCD11b+SIRP1α+ conventional DCs, CCR9+
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pDCs, and distinguished from the resident thymic DC popu-
lation (CD11c+CD8αhiCD11b−SIRP1α−) (22–24, 37, 126, 127)
(Table 1). Importantly, similar DC subsets were described in
humans as well (128). The three murine DC subsets differed in
their thymic localization, chemokine receptor requirement for
their intrathymic positioning, and their origin (25, 37, 129). The
migratory thymic DC populations are especially interesting for
tolerance induction. SIRP1α+ DCs and pDCs sampled blood
borne antigens and transported them to the thymic cortex area
where they contributed to clonal deletion and Treg induction
(23, 24, 127). Additionally, SIRP1α+ DCs has been implicated
in negative selection toward circulating tumor antigens thereby
promoting tumor tolerance (130). Moreover, in an experimental
system where model antigen was expressed in cardiac myocytes
in a membrane-bound form, autoantigen presentation depended
on VLA4-mediated recruitment of migratory peripheral DCs to
the thymus (22) suggesting that cell-associated antigen was trans-
ported by migratory DCs to the thymus. Also, pDCs could acquire
particulate antigens injected subcutaneously from the skin and
transported to the thymus for tolerance induction (37). Regard-
less, it remains to be elucidated how these DCs sample antigens
from peripheral organs before migrating to the thymus, what is
their exclusive physiological contribution in tolerance induction,
and what regulatory circuits play a role in their migration. Inter-
estingly, TLR ligands downregulated the capacity of these DCs
to reach the thymus (22, 37), thus separating the immunogenic
response toward pathogens from the thymic tolerance. Another
intriguing possibility about these cells is that they may transport
antigens from the digestive tract that could potentially result in tol-
erance toward food-related antigens (103). This possibility needs
further investigation in the future.

Importantly, in balancing tolerance and immunity, tDCs rep-
resent one side of the spectrum and on the other side are the DC
subtypes, which are specifically promoting autoimmunity. Such
DC subtype has been also found in NOD mice (20). This sub-
type of DCs is called mcDCs (Table 1). The frequency of mcDCs
was elevated in spleen and pancreatic LNs of NOD mice possess-
ing insulitis (20). Importantly, these cells could acquire apoptotic
cellular materials and induce T-cell activation that reversed the
deletion of self-reactive T cells (20). Moreover, upon transfer to
young NOD recipients,antigen loaded mcDCs could break periph-
eral tolerance toward β-cell antigens (20). The number of mcDCs
within the spleen was negatively regulated by the Idd13 locus which
was previously associated with diabetes prevention (21). It remains
to be elucidated whether mcDCs could break tolerance toward
other antigens than β-cell related ones in vivo thus indicating a
general tolerance breaking DC subtype.

Long-term culture of splenic stromal and hematopoietic cells
could also result in the generation of a novel DC subtype, the
L-DCs (Table 1). L-DCs were superior in cross-presentation of
soluble antigens in vitro compared to CD8+ DCs (131). Interest-
ingly, adoptive transfer of these DCs induced immunogenic CD8+

T-cell activation in vivo (131). It will be interesting to see whether
according to their immunogenic properties they could manifest
DC subtypes breaching CD8+ T-cell tolerance.

Future studies should illuminate whether there might be a
functional cross-talk among tDCs, the tolerance breaching DC

population, and the well-established lymphoid organ resident DCs
during prevention and development of autoimmune disease.

INTERACTIONS BETWEEN tDCs AND IMMUNE OR STROMAL
CELLS FOR TOLERANCE INDUCTION
Dendritic cells were capable of inducing or activating Tregs in
multiple ways (3,113). The rather surprising discovery was the par-
ticipation of DCs in maintaining homeostasis of Tregs. According
to this, transient depletion of CD11c+ cells reduced the frequency
of Tregs (118) while the expansion of DCs using FLT3L resulted in
increased Treg numbers in vivo (118, 132, 133). Moreover, MHC-II
expression by DCs was required to maintain the Treg population at
the periphery (118). These results suggested that the DC-Treg feed-
back would set the tone for tolerance. Accordingly, human diabetes
patients displayed lower DC numbers than healthy ones (134).
Also the expansion of Tregs,due to increased DC numbers, reduced
severity of colitis and arthritis (118, 133, 135). Despite these data,
in some cases autoimmunity was associated with increased num-
ber of DCs, but was not accompanied with altered Treg numbers
(65, 74). This could indicate additional factors, which might influ-
ence Treg homeostasis or could pinpoint functional alterations of
the expanding DC population. Indeed, recent study demonstrated
that DCs generated using FLT3L lacked the ability to induce Tregs
in vitro (136). Moreover, the expansion of donor liver DCs, using
FLT3L before transplantation, abrogated liver allograft acceptance
and resulted in graft rejection (137). The discrepancies in the effect
of FLT3L as well as the exact relation in DC and Treg numbers
in vivo remain to be determined.

Another type of cellular cross-talk between Tregs and DCs has
been recently demonstrated in the murine model of contact hyper-
sensitivity (138). Here Tregs conditioned DCs to induce regulatory
CD8+ T cells that could protect against the disease (138). how and
what is the molecular mechanism of this imprinting needs further
clarification.

Autoimmune arthritis induced in B-cell deficient mice resulted
in exacerbation of the inflammatory response. In this model, DCs
produced higher amount of inflammatory cytokines due to the
missing control by the IL-10hi B-cell subpopulation (139). Similar
phenomenon exists between human B cells and DCs, where B cells
in soluble and cell contact dependent manner regulated DC acti-
vation and IL-12 production (140). This suggests a close interplay
between these two cell types while maintaining homeostasis.

Not only B cells but also innate cells such as NKT could con-
trol tDC function. Treatment of NOD mice with NKT activating
ligand such as α-galactosyl ceramide resulted in the accumulation
of tDCs in draining LN (141). These tDCs anergized autoreactive
T cells and therefore prevented diabetes (141). The interaction
between NKT cells and DCs was rather complex, bidirectional,
and not restricted to only tolerogenic outcome (142, 143). The
exact circumstances when NKT cells act toward the development
of tDCs remain to be elucidated.

In the last few years, multiple studies have demonstrated that
LN stromal cells are capable of inducing T-cell tolerance (144–
147). Anatomically, stromal cells within SLOs are positioned in
close proximity with lymphoid resident DCs (148) and guide
migratory DCs within SLOs (149). In addition to this, stromal
cells inhibited the capacity of DCs to activate T cells (150, 151).
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Furthermore, they prompted hematopoietic progenitors to dif-
ferentiate toward regulatory IL-10 producing tDCs (27). During
Leishmania infection, splenic stromal cells upregulated chemokine
(C–X–C motif) ligand 12 (CXCL12) and CCL8 to specifically
attract hematopoietic precursors and induced tDC differentiation
in situ (152). Importantly, tDCs have been identified under steady
state in lung (28), spleen (26, 27, 29), and liver (30). Moreover,
stromal cells directed the differentiation of not only hematopoi-
etic precursors but also matured DCs toward regulatory ones.
These tDCs produced nitric oxide and IL-10 and consequently
dampened T-cell responses (31). Importantly, in adoptive transfer
experiment, the tDCs promoted by liver stromal cells diminished
experimental autoimmune hepatitis (30). Thus, it is likely that
these DCs not only provide important negative regulatory circuit
during T-cell activation but also contribute to maintain tolerance.
It still needs to be clarified what is the exact role of these DCs
under steady state and whether they could play a role in balancing
autoimmunity and tolerance.

WHICH SOLUBLE MOLECULES ENDORSE THE tDC
PHENOTYPE?
The soluble molecules involved in inducing tDC phenotype can
be generally divided into two groups: the ones which promote
differentiation of tDCs from hematopoietic precursors or periph-
eral blood monocytes and the ones that directly act on immature
DCs (113, 153). Not only natural biomolecules but also mul-
tiple pharmacological compounds have been used to generate
tDCs in vitro (113, 153). These experiments generally combined
basic differentiation factors, such as granulocyte macrophage-
colony-stimulating factor (GM-CSF) for murine BMDCs, with
the variety of soluble molecules and characterized the tolero-
genic phenotype of the developed DCs in vitro (113, 153). IL-
10, TGFβ, TNF, IL-6, hepatocyte growth factor, prostaglandins,
and vitamin D were identified as effective molecules in inducing
tDC phenotype in vitro (113). Hormones could also affect DC
maturation and the tolerance-inducing competence of DCs. In
particular, glucocorticoids suppressed DC maturation and gen-
erated tDCs in vitro. Glucocorticoids acted via nuclear receptors
followed by the induction of glucocorticoid induced leucine zipper
(GILZ) (154). GILZ is a transcription factor, which was absolutely
required for glucocorticoid-mediated tDC differentiation (154).
DC-specific transcript (DC-SCRIPT), a corepressor of GILZ has
been recently identified in DCs (155), indicating a network of tran-
scription factors that counterbalances the effect of glucocorticoids
in immunity vs. tolerance. It remains to be identified whether
changing the balance of these transcription factors can be used as
therapeutic target for generating tDCs for therapy as well.

Although most of the above-mentioned compounds were used
in a combination with GM-CSF in vitro, the effect of GM-CSF
itself in tolerance is not straightforward. GM-CSF deficient ani-
mals developed lupus-like systemic autoimmune disorder and
GM-CSF together with IL-3 promoted diabetes (156, 157). On
the other hand, in the absence of GM-CSF, mice were protected
against collagen-induced arthritis (158).

Pro-inflammatory mediators such as IFNγ and TNF could
transform DCs into inhibitory IDO expressing tDCs. Such IDO+

DCs induced oral tolerance and prevented arthritis and colitis

(41, 159). IDO expression and induction of tDCs could be initi-
ated by chemokine (C–C motif) ligand 18 (CCL18) as well (160).
The role of cytokines affecting DC function under steady state
could be of relevance, as these molecules could actively main-
tain the tolerogenic environment. This could be underlined by the
fact that asthmatic patient exhibited reduced CCL18 binding to
its receptor suggesting a protective role of CCL18 under steady
state (160). As opposite to this, cytokine signaling could also con-
tribute to the breaking of tolerance. Indeed, IL-1R1 signaling in
DCs promoted autoreactive CD4+ T-cell expansion and caused
autoimmune myocarditis (161).

There are increasing examples of novel soluble molecules, with
known primary function unrelated to DC biology that can incite
immature DCs with a tolerogenic capability. Adiponectin, which
is an adipocytokine with anti-inflammatory properties, increased
programmed cell death 1 ligand (PDL-1) expression of DCs and
thereby intensified their Treg inducing capacity (162). Likewise,
adiponectin deficient mice exhibited severe cardiac transplant
rejection (163). Further studies are required to delineate its effect
in tolerance induction.

Thrombomodulin (TM), a cofactor of thrombin, turned
BMDCs to secret IL-10 independent of its thrombin and coag-
ulation related function (164). Importantly, transfer of TM+

DCs protected recipient animals against airway hypersensitiv-
ity (164). Another novel molecule involved in DC biology is
adrenomedullin, a calcitonin related neuropeptide. This mole-
cule induced IDO in immature BMDCs and thereby promoted
the conversion of CD4+ T cells to CD4+ CD25+ Foxp3hi Tregs
in vitro (165).

Additionally, it has been also recently identified that Wnt3a and
Wnt5a directly induced immunoregulatory cytokine expression
by DCs and promoted Treg development. Interestingly, Wnt3a
acted via β-catenin signaling while Wnt5a triggered other sig-
naling pathways (44, 166). β-Catenin signaling in intestinal DCs
induced RALDH2, inhibited the expression of pro-inflammatory
cytokines, and promoted their Treg inducing capacity (44).

In mucosal sites, secretory IgA encompasses protective role
against invasion of various pathogens but it seems that it exhibits
further functions within the circulation. SIGNR1 binding to
secretory IgA on BMDCs rendered these cells resistant to TLR
dependent maturation (167). IgA primed BMDCs showed higher
capacity to induce Tregs via their IL-10 production and were able to
inhibit autoimmunity in animal models of diabetes and EAE (167).

Taken together, a long line of biomolecules is available with the
capacity to either alter DC function or promote tDC differenti-
ation. It is not clear yet whether all in vitro defined tolerogenic
signals truly induce similar DC activation in vivo or other factors
might intervene with their effect in vivo. Most of these soluble
molecules are in the focus of tDC research to utilize them for
generating human tDCs from autologous bone marrow or from
peripheral blood monocytes. Autologous transfer of tDCs has been
tested in clinical trials and was well tolerated in diabetic patients
(168, 169). Although this approach provides attractive therapeutic
possibilities, more research is needed to evaluate and understand
the complexity of tolerance, such as the stability of the tDC phe-
notype in vivo and the dose and route of tDC vaccine used for the
treatments of autoimmune patients.
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SUMMARY AND CONCLUSION
In peripheral tolerance, similarly to the thymus, various APCs
are involved to guard immune homeostasis. DCs are the major
APCs involved in this process. Multiple components are impli-
cated in maintenance and/or induction of tolerogenic effector DC
phenotype (Figure 2). Intrinsic signaling and antigen processing
properties of DCs together with the impact of the microenvi-
ronment influence the tolerogenic adeptness of DCs. It is itself
intriguing that a variety of active processes seem to be necessary
for mediating immune homeostasis and it is clearly not a passive
effect of the missing maturation signal as previously thought. The
picture is further complicated with the fact that various subtypes
of DCs seem to possess different capacity for tolerance. Similarly in

immunity, sequential antigen presentation by different DC types
resulted in different aspects of T-cell activation and effector differ-
entiation (170). Thus, maintenance of immune homeostasis is a
result of a complex interaction of soluble and cell-associated com-
ponents. Understanding this network and thereby influencing DCs
provide important targets for treatment of autoimmune disease.
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FIGURE 2 | Components that determine the establishment and
tolerance-inducing capacity of tolerogenic effector DCs. (A) DCs
expressing high level of anti-inflammatory cytokines (IL-10, TGFβ) and low
level of co-stimulatory molecules (DC80/86) show a tolerogenic rather than an
immunogenic phenotype. Additionally, the capacity of DCs to express Raldh2
or IDO is associated with tolerance. Furthermore, the activity of several
pathways is linked to tDCs, such as metabolic, apoptosis, and NF-κB pathway,
or activity of SHP1 and STAT-3. Additionally, the antigen capture and
processing machinery (uptake of apoptotic cells, antigen-uptake receptors
such as CLRs together with the MHCI and II processing machinery) greatly

influence the T-cell inducing and tolerogenic capacity of DCs. (B) A variety of
biological substances have an impact on tDC differentiation and function.
Cytokines, vitamins, hormones as well as antibodies, thrombomodulin (TM),
adrenomedullin (AM), and VIP induce tDCs. (C) The dialog of DCs with other
immune cells and stromal cells provides additional checkpoints for the
maintenance of tolerance. DC-Treg crosstalk involves the regulation of Treg
homeostasis, the activation and induction of Tregs. Tregs, IL-10 expressing B
cells, and natural killer T (NKT) cells favor a tDC phenotype. In addition,
stromal cells promote tDC differentiation toward IL-10 or nitric oxide (NO)
producing regulatory tDCs.
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