
SOFTWARE Open Access

Meta-Alignment with Crumble and Prune:
Partitioning very large alignment problems
for performance and parallelization
Krishna M Roskin1*, Benedict Paten2 and David Haussler3

Abstract

Background: Continuing research into the global multiple sequence alignment problem has resulted in more
sophisticated and principled alignment methods. Unfortunately these new algorithms often require large amounts
of time and memory to run, making it nearly impossible to run these algorithms on large datasets. As a solution,
we present two general methods, Crumble and Prune, for breaking a phylogenetic alignment problem into smaller,
more tractable sub-problems. We call Crumble and Prune meta-alignment methods because they use existing
alignment algorithms and can be used with many current alignment programs. Crumble breaks long alignment
problems into shorter sub-problems. Prune divides the phylogenetic tree into a collection of smaller trees to
reduce the number of sequences in each alignment problem. These methods are orthogonal: they can be applied
together to provide better scaling in terms of sequence length and in sequence depth. Both methods partition the
problem such that many of the sub-problems can be solved independently. The results are then combined to
form a solution to the full alignment problem.

Results: Crumble and Prune each provide a significant performance improvement with little loss of accuracy.
In some cases, a gain in accuracy was observed. Crumble and Prune were tested on real and simulated data.
Furthermore, we have implemented a system called Job-tree that allows hierarchical sub-problems to be solved
in parallel on a compute cluster, significantly shortening the run-time.

Conclusions: These methods enabled us to solve gigabase alignment problems. These methods could enable a
new generation of biologically realistic alignment algorithms to be applied to real world, large scale alignment
problems.

Background
Multiple sequence alignment methods are a major tool
in comparative genomics. The alignments they generate
are primary data for a wide array of analyses: discovery
of evolutionarily conserved elements [1,2], identification
of functional RNAs [3], reconstruction of evolutionary
events [4] to name a few.
New high throughput sequencing methods are greatly

increasing the amount of available sequence informa-
tion. To take full advantage of this wealth of data, cur-
rent multiple sequence alignment methods will need to
be adapted to handle larger datasets.

We present two general methods to adapt current glo-
bal alignment algorithms to large scale problems. This
will enable current methods to be used for larger and
larger problems and also allow computationally expen-
sive methods to be applied to biologically relevant
problems.

Related Work
Segmentation methods have been used to align full
genomes. To align the mouse genome to the human
genome, Schwartz et al. divided the human genome into
approximately 3,000 segments of ~ 1.01 Mb with a 10
kb overlap between adjacent segments [5]. They
hypothesize that any alignment that extends for 10 kb is
almost certain to contain an alignment that would
bridge the adjacent segments and thus no alignment will

* Correspondence: krish@soe.ucsc.edu
1Department of Computer Science, Univ. of California, Santa Cruz, USA
Full list of author information is available at the end of the article

Roskin et al. BMC Bioinformatics 2011, 12:144
http://www.biomedcentral.com/1471-2105/12/144

© 2011 Roskin et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in
any medium, provided the original work is properly cited.

mailto:krish@soe.ucsc.edu
http://creativecommons.org/licenses/by/2.0

be lost by the segmentation. Crumble is a more prin-
cipled segmentation method that, given some assump-
tions, guarantees that each segment contains all the
sequence necessary for correct alignment.
Dress et al. describe a divide and conquer method that

recursively subdivides three sequence alignment pro-
blems length-wise to produce shorter alignment pro-
blems [6]. They outline how their method might be
extended to more sequences but since it is based on
considering all pairs of sequences, it is not applicable to
beyond moderately sized problems. Reinert et al. use the
above method in an iterative framework that allows the
an alignment to be refined until the alignment score
stops improving or time runs out [7]. This methods is
also too computationally expensive to apply to large
datasets.
The MISHIMA algorithm of Kryukov and Saitou

starts by finding a non-conflicting set of k-mers shared
by all sequences [8]. The sequences between these k-
mers are then aligned independently and concatenated
to form the complete alignment. Crumble uses a more
general method that does not require the constraints to
span all sequences. Thus Crumble can be used to align
more diverged sequences where it is impossible to find
k-mers shared by all sequences. Crumble also takes
advantage of parallelization while MISHIMA currently
does not.
The method employed by Prune can be considered a

generalization of the progressive alignment methodology
[9,10]. Progressive alignment proceeds by merging sib-
ling nodes to form the alignment of the parent. Thus it
only moves up the tree one node at a time. Prune, on
the other hand, can move up the tree several nodes at a
time. Progressive alignment also uses leaf sequences to
guide the merging process while Prune uses a more gen-
eral strategy.
Several authors have extended specific alignment algo-

rithms to take advantage of parallelization, usually
thread or intra-core parallelization [11-13]. These meth-
ods are not designed to take advantage of cluster level
parallelization. Furthermore they are specific to a given
alignment program. The open framework we present
here is designed to leverage parallelization for a general
class of multiple alignment programs. Thus it can be
used to enable the parallelization of many current and
future global alignment algorithms.

Implementation
We adopt the general approach of dividing a large align-
ment problem into smaller sub-problems. The sub-pro-
blems are solved and the alignments are recombined to
form a solution to the whole, original problem. We per-
form this division in such a way that most sub-problems
are independent and thus can be solved in parallel. This

can lead to reduced run-time because of smaller indivi-
dual problems and because sub-problems can be solved
in parallel on a multi-core machine or cluster. Smaller
problems can also result in less memory consumption;
allowing some methods to be applied at all.
An alignment problem can be large in two ways: large

in sequence length or large in sequence number. Crum-
ble deals with problems that are large in sequence
length. It breaks up long alignment problems into
shorter problems. Prune handles problems with a large
number of sequences. It cuts up deep alignment pro-
blems into sub-problems with fewer sequences.
Our methods do not perform the actual alignment of

sub-problems. Other programs are used for that part of
the process. Almost any current global alignment algo-
rithm can be adapted to work with Crumble and Prune
by writing a simple wrapper. Thus we refer to Crumble
and Prune as meta-alignment methods. In theory, both
these methods would result in performance gains at the
loss of some alignment accuracy. However, we found
that very significant performance gains can be made
with negligible loss of alignment accuracy and in a few
cases some accuracy can be gained.

Crumble: breaking long alignment problems into shorter
sub-problems
Given a set of sequences, we begin by generating a system
of sequence constraints. These constraints align a base
position in one sequence with a base position in another
sequence [14]. Constraints of this form can be thought of
as a sparse alignment and have been used in several align-
ment programs [15-17]. The constraints impose a partial
ordering ≺ on the sequences [18]. Under this partial order-
ing, aligned positions are equal and base positions along
the same sequence are increasing with respect to the par-
tial ordering. Given a base position x in a sequence, Crum-
ble searches for a set of base positions A = {a1, a2, ..., an} in
each of the n species being aligned such that x ≼ ai for all i
(Figure 1). We now consider the constraints as a sparse
alignment and let y be the right-most position in A, i.e. y
such that ai ≼ y for all i. The sequences between x and y,
inclusive, forms a separation that divides the alignment
into three classes: sequences to the left of x; x, y, and the
sequences between them; and sequences to the right of y.
No base position less that x in the partial ordering may be
aligned with a base position greater than y. Such an align-
ment would contradict the partial ordering imposed by
the constraints. Note that if x = y, then the separation is
simply a column of fully aligned sequence in all species.
Crumble tiles the constraints with a set of positions

x1 � y1 ≺ x2 � y2 ≺ · · · xm � ym,

where each pair xi, yi forms a separation as described
above. The sequences between yk-1 and xk compose a

Roskin et al. BMC Bioinformatics 2011, 12:144
http://www.biomedcentral.com/1471-2105/12/144

Page 2 of 12

core. As noted above, each core is independent in the
sense that sequences in one core cannot be aligned with
sequences in another core. The position of the
sequences between cores is ambiguous. Both sets of
adjacent sequences need to be considered when aligning
a core. Thus we define a block as a core together with
its flanking separations (Figure 1, bottom). The pairs xi,
yi are chosen to maintain a user-selected approximate
core size. The exact size of a block will depend on the
set of initial constraints. To prevent blocks from becom-
ing too large, a user-defined maximum block size can
also be set. If the maximum is reached, the block is
truncated to the maximum block size. The truncated
sequence becomes part of the next block.
Because the blocks are semi-independent, an align-

ment of all sequences is constructed as follows: each
block is aligned in parallel using a user-specified global
alignment method; each aligned block is then trimmed
until there is no sequence overlap between adjacent
blocks; then the trimmed off sequences are realigned;
and, finally, all sub-alignments are concatenated to form
the full alignment (Figure 2).
The method used to generate the sparse constraints is

user-definable. By writing a simple wrapper, any current
alignment constraint method can be used. If the con-
straints are a subset of the true alignment, then the
blocks produced by Crumble contain all the sequence
necessary for their correct alignment.

Prune: trimming deep alignment problems into smaller
sub-problems
Given a set of sequences and a rooted phylogenetic tree,
Prune breaks the tree into sub-trees that overlap at an

internal node. Prune infers a sequence for the root of
each sub-tree, i.e., the overlapping nodes. Using inferred
sequence at an internal node breaks the conditional
dependencies between the sub-trees. In a leaf-to-root
fashion, Prune aligns the sequences in each sub-tree as
well as the sequences of any inferred nodes included in
the sub-tree. A sequence is then inferred for the root of
the sub-tree. This inferred sequence is used in the align-
ment of the sequences in the parent’s sub-tree. Once all
sub-tree alignments have been formed, the alignments
of each sub-tree are merged using the inferred overlap-
ping root sequence as a guide (Figure 3). To provide
information about the rest of the tree, an out-group
sequence from a leaf node closest to the sub-tree root,
as measured by branch length, is included when aligning
each sub-tree. Prune forms the sub-trees so as to mini-
mize the number of stages that must be performed in
sequence while enforcing a maximum number of
sequences in each sub-tree, including inferred
sequences. If the tree nodes are numbered 1, 2, ..., N
and R is the root node, then the minimum number of
stages needed with a maximum of M sequences per
sub-tree is given by SR1. Sij is defined by the following
recurrence relation:

Sij =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1 i leaf and j = 1, (1)
∞ i leaf and j = 2,...,M, (2)
min

n+m≤M
(max{Slin, Srim}) + 1 i internal node and j = 1, (3)

min
n+m=j

(max{Slin, Srim}) i internal node and j = 2,...,M, (4)

where ri and li are the right and left children of inter-
nal node i respectively. Informally, Sij is the minimum
number of stages needed if the sub-tree rooted at node i
has j sequences (leaf or inferred) in it. The only sub-

Separation
Block k

A

AAGG
GAC

T
T

T
...

GA
GC

TG AA
A T

AAT

CA
CA
CA
CA

CT

G
GTC

A

GG

GGGGT

CT
T T TC

C

CT T T
TChimp

Dog
Cat
Human
Pig

xk-1 yk-1 xk yk

Core k

Block k+1

Separation

Block k-1
Separation Separation

G

TA

Figure 1 A set of constraints visualized as a sparse alignment. In each species, positions increase from left to right with respect to the
partial order. Sequence positions in the same column are equal under the partial order. A set of xk, yk separations breaks the sparse alignment
into a set of blocks. Positions xk-1, yk-1 and xk, yk define block k, which is composed of the core k (light gray) and the adjacent separation (dark
gray).

Roskin et al. BMC Bioinformatics 2011, 12:144
http://www.biomedcentral.com/1471-2105/12/144

Page 3 of 12

trees rooted at a leaf that make sense are those contain-
ing one node. Thus Equation (1) assigns all sub-trees
rooted at leaf i containing only one sequence a stage
count of 1. This trivial “alignment” of a single sequence
is counted as a stage since time is spent extracting and
processing the sequence. Equation (2) assigns all other
trees below leaf i (but not rooted at i) a stage count of
∞. Equation (3) calculates the minimum number of
stages needed if node i is the root of a sub-tree. It does
this by considering all ways to merge the right (ri) and
left (li) children of node i into a new sub-tree while
respecting the maximum number of sequences per sub-
tree, M. It selects the merge that minimizes the number
of stages at i. The new stage depth becomes one more
than this minimum. Equation (4) calculates the mini-
mum number of stages needed if the sub-tree below
node i (but not rooted at i) contains exactly j sequences,
leaf or inferred. Thus, SR1 is the minimum number of
stages needed for the entire tree if the global root node
R is the root of a sub-tree. The above recurrence rela-
tion can be calculated using a dynamic programming

algorithm and the sub-trees that achieve the minimum
number of stages can be inferred. For a given maximum
number of sequences per sub-tree, the dynamic pro-
gramming calculation takes time linear in the number
of species.
Originally, two methods were used to infer the root

sequence: Ortheus [19] and Maximal, a heuristic that
assumed that the most commonly occurring base in an
alignment column was the base for that position in the
root. Maximal is such named because it infers the long-
est possible root sequence that fits within the alignment
(Figure 4). Surprisingly, we found that Maximal per-
formed better that Ortheus for this particular application
(Table 1). It is possible that the Maximal method, while
less biologically meaningful, provides more opportunities
for homologous positions to be aligned. Therefore, we
adopted Maximal as the default inference method and
performed our benchmarking using it.
The sub-tree alignment method and the inference

method are user-definable. The maximum number of
sequences in each sub-tree is also user-configurable.

A
Unaligned blocks

B
Blocks are aligned in parallel

C
Blocks are trimmed

D
Trimmed regions realigned

E Final alignment formed

Figure 2 The Crumble pipeline. The pipeline used after the formation of semi-independent blocks (A). Blocks are aligned (B) and trimmed
to remove overlap (C). Overlaps are aligned (D), and the final alignment is formed by concatenation (E). Note that the alignments in (B) and (D)
can be performed in parallel.

Roskin et al. BMC Bioinformatics 2011, 12:144
http://www.biomedcentral.com/1471-2105/12/144

Page 4 of 12

As discussed above, Prune can be considered a gener-
alization of progressive alignment. The two are equiva-
lent if, in Prune, the maximum number of nodes per
sub-tree is set at two, the inference method selects only

leaf sequences, the addition of out-groups is disabled,
and parallelization is disabled.

Job-tree: Solving gigabase alignment problems with
Prune and Crumble
Prune and Crumble can be used together to align long
and deep alignment problems. To take advantage of
both Prune and Crumble’s parallelization, a cluster sys-
tem with the following functionality is needed: any job
must be able to spawn its own set of parallel jobs. This
is because Prune’s sub-tree alignment tasks are run in
parallel and each of those tasks executes Crumble which
in turn spawns its own set of parallel jobs. This requires
a hierarchical and dynamic job system.
Job-tree is a batch system designed to manage jobs in

a cluster running on top of an existing batch system,

leaf

root w/inferred sequence

internal node
Figure 3 Prune partitioning of a phylogenetic tree of 44 species. Prune run with a maximum sub-tree size of 10 sequences breaks the tree
into seven sub-trees. Six of the sub-trees (light gray) can be aligned in parallel because they contain only known leaf sequences (filled squares;
out-groups for sub-trees are not shown). Once these six sub-trees are aligned and the sequence of the roots (filled circles) is inferred, the
internal sub-tree (dark gray) can be aligned. Note that this sub-tree includes both leaf sequences and inferred sequences. The alignments from
the light gray sub-trees are merged with the alignment of the dark gray sub-tree to form the alignment of the entire tree.

GC

Species 1
Species 2
Species 3
Maximal root

C
G

GC

C
C

T
A

A
-

A
A

A
-

G
G

G
-

C
C

C
-

A
T

T
T

G
G

G
G

C
C

C
C

-
C

C
C

-
A

A
A

-
A

A
A

-
T

T
T

-
G

G
-

-
C

C
-

-
C

C
C

C
A

A
A

T
T

T
T

T
T

T
T

Figure 4 Example of the Maximal root inference method. Every
alignment column is assigned the most frequently occurring base
in the column. Thus Maximal infers the longest possible root
sequence that fits within the alignment.

Roskin et al. BMC Bioinformatics 2011, 12:144
http://www.biomedcentral.com/1471-2105/12/144

Page 5 of 12

such as Parasol [20], LSF [21], or Sun Grid Engine [22].
Job-tree makes it simple for jobs to dynamically create
new jobs in a hierarchical fashion (Figure 5).
Communication between Job-tree and the jobs pro-

ceeds via XML files that are processed before and after
each job. Job-tree is currently implemented in Python
and works on top of the Parasol batch system but can
be extended to work with other job systems. It also fea-
tures a serial mode that runs on a single machine,
which is useful for testing or for small tasks.

Results and Discussion
We used two methods to measure the effect that Crum-
ble and Prune had on alignment accuracy and run-time.
The first method uses a large collection of alignment
problems generated by simulation. Alignment problems
generated by simulation provide “true alignments” that
can be used to measure the quality of predicted align-
ments. We created a large collection of simulated data-
sets to test Crumble and Prune. The second method
uses real biological data. We tested Crumble by aligning
sequence from six species to a 90 kb block of the
human genome. Prune was tested on twelve alignment
problems from the Rfam database that contain more
than 200 sequences [23]. Datasets with fewer sequences
can be easily and quickly aligned by current methods
and thus are not on the scale of problem that Prune
was designed to address.

Simulation Results
All computations in this section were performed on an
AMD based cluster. Each compute node had two AMD
Opteron 246 HE processors running at 2 GHz with 4GB
of memory. The largest number of parallelizable jobs
was 26. While hard to guarantee in a shared work

environment, there were sufficient nodes available to
allow most parallelizable jobs to be run in parallel.
Crumble
We used a published dataset of simulated sequences
[24]. The dataset contained 50 alignment problems over
nine species with ~60 kilobase of sequence per species.
These alignments were generated using a model of neu-
tral evolution and have been used to measure the align-
ment accuracy of several other methods [24,17,25,16].
Using the same simulation program, we generated addi-
tional longer datasets with ~150 kilobases, ~500 kilo-
bases, and ~1 megabase of sequence over the same nine
species tree as used in previous studies. The simulation
program was independently developed and models sub-
stitutions using the HKY model [26], deletions and
insertions along each branch as well as retrotransposon
insertions. For more details see the supplemental mate-
rials of Blanchette et al. [24]. The total length of the
tree was 1.13 substitutions per site. Fifty simulations
were run for each sequence size. In total, 200 alignment
problems, totaling ~760 megabases of sequences, were
used to test Crumble.
To measure the degree of similarity between predicted

and true alignments, we used the average agreement
score [24]. For pairwise alignments, the average agree-
ment score (agreement for short) is as defined the frac-
tion of positions of the predicted alignment that agree
with the true alignment. There is agreement if the i-th
nucleotide of species X is aligned to the j-th nucleotide
of species Y in both the predicted and true alignment or
if the positions are similarly aligned to gap characters.
Thus, two identical alignments obtain an agreement
score of 1, whereas two completely different alignments
get a score of zero. For more than two species, the pair-
wise score is averaged over all pairs of species.
We calculated the agreement score resulting from

Crumble breaking up the alignment problem into sev-
eral fractional sized pieces (Table 2). We used Pecan
[17], FSA [25], and MUSCLE [27] as the underlying
alignment algorithms. The set of sparse constraints used
to break up the alignment problem was generated with
PrePecan, the constraint generation system employed by
Pecan. As the block size decreased, Crumble broke the
alignment problem into smaller and smaller sub-pro-
blems that were aligned in parallel using the Parasol job
system. As the sub-problems decreased in size, the run-
time decreased, as expected, with only a small loss in
accuracy. For longer alignment problems, a much more
pronounced performance gain was observed and, at the
same time, the alignment accuracy was maintained.
Some methods were unable to solve long alignment pro-
blems directly because of high memory usage. Crumble
allows these methods to be applied to longer problems
than were previously possible.

Table 1 Comparison between root inference methods

50 leaves
Agreement

Number Nodes Maximal Ortheus

Prune w/Pecan 30 0.880 0.579

15 0.909 0.560

7 0.912 0.555

Prune w/FSA 30 0.912 0.574

15 0.893 0.523

7 0.885 0.495

Prune w/MUSCLE 30 0.899 0.579

15 0.896 0.555

7 0.905 0.501

The average agreement score of Prune alignments when Maximal and
Ortheus root inference methods are used. Fifty alignment problems with fifty
leaf species and ~10 kilobases of sequence were used. Three underlying
alignment algorithms and three different maximum sub-tree sizes were used
in the comparison. The faster Maximal method performed better across all
comparisons that Ortheus for this application.

Roskin et al. BMC Bioinformatics 2011, 12:144
http://www.biomedcentral.com/1471-2105/12/144

Page 6 of 12

a's descendants

a's follow-on

a's children

a

...

...

...

Figure 5 Schema of the Job-tree job system. In Job-tree, job a creates a set of jobs that perform a task in parallel. These jobs are collectively
called the children of job a. The job also creates a follow-on job to be performed after all children have successfully completed. The follow-on
job is responsible for cleaning up the input files created for the children and for any further processing. After job a ends successfully, the batch
system runs the children. These jobs may, in turn, have children and follow-on jobs. Upon completion of all descendants, the follow-on job is
run. The follow-on job may create more children.

Table 2 Crumble results for different sized simulated datasets and underlying alignment methods

60 kb 150 kb 500 kb 1000 kb

Time Agreement Time Agreement Time Agreement Time Agreement

Pecan1 3.43 0.896 10.6 0.905 46.9 0.906 100 0.906

Crumble w/Pecan 60% 3.29 0.894 7.18 0.904 21.5 0.905 51.9 0.906

30% 2.56 0.889 4.66 0.903 11.9 0.905 23.5 0.905

15% 2.39 0.859 3.77 0.893 8.29 0.903 13.9 0.905

FSA2 37.4 0.886 _a _a _a _a _a _a

Crumble w/FSA 60% 25.8 0.881 69.8 0.903 _a _a _a _a

30% 21.0 0.873 3act9.2 0.898 _a _a _a _a

15% 17.7 0.849 25.5 0.893 104. 0.811 _a _a

MUSCLE3 _a _a _a _a _a _a _a _a

Crumble w/MUSCLE 60% _a _a _a _a _a _a _a _a

30% 128 0.707 _a _a _a _a _a _a

15% 63.1 0.679 251. 0.705 _a _a _a _a
1 Pecan was run with default parameters.
2 FSA was run with the –exonerate, –anchored, and –softmasked flags.
3 MUSCLE was run with default parameters.
a The majority of these problems were unable to be aligned due to running out of memory.

The run-time and average agreement score of Crumble alignments of different sized datasets. Several sets of simulated alignment problems were generated
using a root sequence of 60, 150, 500, and 1000 kilobases. The neutral evolution of each root sequence was simulated over a nine species tree. Fifty problems
were generated per root size for a total of two hundred test alignment problems. The agreement and run-time (in minutes) for each problem size is the average
over the fifty simulated alignments. Crumble was used to break the problems down to sub-problems that were 60%, 30%, and 15% of the length of the original
problem. The approximate core size was set to 60%, 30%, and 15% of the length of the original problem and the block was allowed to be at most 4 kb larger as
measured in any of the sequences. Pecan, FSA, and MUSCLE were used as the underlying alignment method. PrePecan was used to generate the constraints. We
were unable to apply FSA directly (not using Crumble) to 150 kb or larger problems because FSA required more than the 4GBs of memory we had available per
cluster node. Using Crumble we were able to run FSA on problems as large as half a megabase. MUSCLE had more memory issues but we were able to use it on
problems as large as 150 kb using Crumble. For Pecan, Crumble achieved more than a seven fold speedup with almost no loss of accuracy on the largest
problem size.

Roskin et al. BMC Bioinformatics 2011, 12:144
http://www.biomedcentral.com/1471-2105/12/144

Page 7 of 12

Prune
A similar methodology was used to evaluate the align-
ment accuracy achieved using Prune. The neutral evolu-
tion of ~10 kilobase of DNA on a 50, 100, 500, and
1000 species tree was generated using the same simula-
tion program used above. Trees were generated with
Bio::Tree::RandomFactory module of BioPerl
[28]. Lacking data on retrotransposon insertions into
large clades, we disabled the retrotransposon modeling
in the simulation program. To compensate for the lack
of complexity, we greatly increased the tree length to
187.8, 368.8, 709.2, and 925.9 substitutions per site for
the 50, 100, 500, and 1000 leaf trees respectively. Pecan,
FSA and MUSCLE were employed for the underlying
alignment algorithm. We also compare Prune to
MAFFT [29] and SATé [30] which specialize in many
species multiple alignment problems.
Unlike for Crumble, we do not expect to see a mono-

tonic decrease in running time as Prune breaks the tree
into smaller and smaller sub-trees. While smaller sub-
trees will results in faster alignment of the sub-pro-
blems, it can also result in more alignment stages. This
is different from Crumble because the number of stages
in Crumble is fixed. We have observed this non-mono-
tonicity of running times (Table 3). Unexpectedly, we
also see non-monotonicity in agreement as Prune breaks
the tree into smaller and smaller sub-trees. In some
cases, better agreement is actually achieved with smaller
sub-trees. We hypothesize that, on deep alignments,
some methods discard large amounts of information in
order to fit the problem in memory. On smaller sub-
trees more information can be retained which results in
an increase agreement that outweighs any loss that
comes from considering only a sub-tree. In general, as
the sub-trees decreased in size, the run-time decreased
significantly with only a small loss in accuracy.
Job-tree
Using the Job-tree system, we were able to apply Pecan
to gigabase size alignment problems. The neutral evolu-
tion of a one megabase root sequence was simulated on
a 1000 species tree. Prune was used to break the tree
into sub-trees no larger than 10 nodes. Crumble was
then used to break each 10 species sub-problem into
100 kilobase chucks that were then aligned with Pecan.
All the sub-problems were then assembled to form a
solution to the entire gigabase alignment problem.
Each of the fifty gigabase alignment problems took

just over nine hours to solve. No other tested alignment
method was able to align problems of this magnitude.
To calculate the average agreement score, we were
forced to randomly sample the pairs of sequences

instead of averaging over all

(
1000

2

)
= 499500 pairs.

Using this method, the agreement score for these solu-
tions was calculated as 0.754. Since no other methods
were able to solve an alignment problem of this scale,
we have nothing with which to compare.

Biological Data
The above simulation studies provide a comprehensive
look at the effect Crumble and Prune have on perfor-
mance. It is also enlightening to look at performance on
“real world” datasets.
The main problem with real world alignment pro-

blems is evaluation. Unlike simulated data, there is no
clear alignment with which to compare. For RNA and
protein families, there does exist large, commonly used
databases of multiple alignment problems that are used
for benchmarking. The reference multiple alignments in
these databases are usually hand curated multiple align-
ments generated by an ensemble of alignment tools.
These reference multiple alignments are commonly used
as the “true alignment” and used to measure the quality
of predicted alignments. We used alignment problems
from the Rfam database of RNA multiple alignments to
test Prune on real, biological data [23].
For genomic scale problems, there is currently no

large, commonly used database of genomic scale multi-
ple alignment problems. The sequences in Rfam are
very short (<1.2 kb) and thus not useful for testing
Crumble. Thus, we used a different method to evaluate
Crumble on long alignment problems. We extracted and
aligned a 90 kb region of the human genome and the
orthologous region from six other species. To get an
idea of alignment accuracy, we calculated the log-likeli-
hood of the alignment. We used phyloFit from the
PHAST package to calculate the maximum log-likeli-
hood of the alignment [31]. While the tree topology was
fixed, phyloFit was allowed to vary branch lengths when
calculating the maximum log-likelihood of each align-
ment. We used the REV base substitution model where
gaps are treated as missing data [32]. While log-likeli-
hood values closer to zero only represent higher likeli-
hood that the alignment was generated by the given
phylogenetic model, we believe the log-likelihood is a
reasonable, if ad hoc, method of assessing alignment
quality when no good reference alignment is available.
The computations in this section were performed on a

different cluster than the one used for the results of Sec-
tion. That cluster has been reappropriated. The cluster
used for this section has eight nodes each with two
dual-core AMD Opteron 2214 HE running at 2.2 GHz
and 32GB of memory.
Crumble
We examined Crumble’s effect on performance by align-
ing genomic DNA from 7 species. Looking at the UCSC

Roskin et al. BMC Bioinformatics 2011, 12:144
http://www.biomedcentral.com/1471-2105/12/144

Page 8 of 12

Genome browser, we selected a ~90 kb region on the
human genome, chr14:104721193-104812803 [33]. This
region was selected because it contained some but not
an excessive number of rearrangements. Thus it was a
reasonable problem for global alignment algorithms.
Using the “Chain/Net” tracks [34], we found the best
matching region in cow (bosTau4 assembly), dog
(canFam2), mouse (mm9), chimp (panTro2), macaque
(rheMac2), and rat (rn4) and extracted the corre-
sponding sequence to form the alignment problem.
As above, Crumble was used to break the alignment

problem into several fractional sized pieces (Table 4)
and Pecan [17], FSA [25], and MUSCLE [27] were used
as the underlying alignment algorithms. The set of
sparse constraints was generated with PrePecan. The
log-likelihood of the alignment was used to measure
alignment quality. As on the simulated data, Pecan run-
ning by itself produced the best alignments under the
log-likelihood measure. Crumble running on top of

Pecan was able to halve the running time with a very
small loss in log-likelihood. Crumble running with FSA
achieved greater performance gains over FSA with even
less decrease in the log-likelihood score. MUSCLE was
unable to solve this alignment problem without the aid
of Crumble.
Prune
To evaluate the performance of Prune on real world pro-
blems, we considered alignment problems from the Rfam
seed alignment database with more than 200 sequences
per RNA family [23]. This criteria gave twelve families:
tRNA, 5S_rRNA, SRP_bact, MIR807, Cobalamin,
PK-G12rRNA, SSU_rRNA_5, RNaseP_bact_a,
tmRNA, SAM, U2, and U6. We tested the generated align-
ments against the hand curated “seed” alignment main-
tained by Rfam using the agreement score (Table 5). As
for the simulated data in Table 3, we see non-monotoni-
city in agreement score: as Prune breaks the tree into
smaller and smaller sub-trees, the agreement score starts

Table 3 Prune results for different sized datasets and underlying alignment methods

50 leaves 100 leaves 500 leaves 1000 leaves

Time Agreement Time Agreement Time Agreement Time Agreement

Pecan1 21.9 0.914 297. 0.879 _a _a _a _a

Prune w/Pecan 60% 7.26 0.880 39.2 0.862 _a _a _a _a

30% 3.13 0.909 19.6 0.839 _a _a _a _a

15% 7.26 0.912 13.3 0.878 125. 0.844 _a _a

7% 4.24 0.909 13.5 0.849 29.1 0.907 122. 0.877

FSA2 63.1 0.933 266. 0.856 _a _a _a _a

Prune w/FSA 60% 33.8 0.912 78.9 0.838 589. 0.871 _a _a

30% 10.5 0.893 23.8 0.838 142. 0.879 _a _a

15% 4.25 0.885 17.1 0.857 40.8 0.877 150. 0.861

7% 3.00 0.866 4.23 0.842 12.7 0.903 34.8 0.887

MUSCLE3 55.6 0.905 138. 0.799 _b _b _b _b

Prune w/MUSCLE 60% 40.7 0.899 77.9 0.777 886. 0.862 _b _b

30% 24.7 0.896 42.8 0.777 368. 0.883 _b _b

15% 15.1 0.905 29.1 0.828 185. 0.899 440. 0.900

7% 24.7 0.905 18.8 0.841 114. 0.924 228 0.928

MAFFT4 3.17 0.897 5.39 0.806 20.1 0.886 25.2 0.912

SATé5 101. 0.915 301. 0.840 _b _b _b _b
1 Pecan was run with default parameters.
2 FSA was run with the –exonerate, –anchored, –softmasked, and –fast flags.
3 MUSCLE was run with default parameters.
4 MAFFT was run with the –treein option.
5 SATé was run with the -t option but limited to two iterations. We found that more iterations did almost nothing for accuracy.
a The majority of these problems were unable to be aligned due to running out of memory.
b The majority of these problems took longer than 3 days and were aborted.

The run-time and average agreement score of Prune alignments of different sized datasets. Several sets of simulated alignment problems were generated using a
root sequence of 10 kilobases. The neutral evolution of each root sequence was simulated over 50, 100, 500, and 1000 species trees. Fifty problems were
generated per tree size for a total of two hundred test alignment problems. The agreement and run-time (in minutes) for each problem size is the average over
the fifty simulated alignments. Each underlying alignment method was tested on the dataset (Pecan, FSA, MUSCLE). Prune was then used to break the problems
down into sub-trees that contained at most 60%, 30%, 15%, and 7% of the nodes in the entire tree. The largest number of stages was six but most of the
problems had no more than 3 stages. Pecan, FSA, and MUSCLE were used as the underlying alignment method to Prune. We also performed alignment using
MAFFT and SATé to compare against. To ensure a fair comparison, the true tree topology was passed to SATé (using -t option) and to MAFFT (using the poorly
documented –treein option). We were unable to apply some alignment algorithms to large problems because of very long run-times and memory issues.
Using Prune, we were able to use Pecan, FSA, and MUSCLE to solve alignment problems that were much deeper than could be solved without Prune. Prune
achieved a very large speedup with little loss of accuracy and sometimes with an increase in accuracy.

Roskin et al. BMC Bioinformatics 2011, 12:144
http://www.biomedcentral.com/1471-2105/12/144

Page 9 of 12

to decrease but then begins to increase. Prune’s perfor-
mance on this data set is not as good as on simulated
data. But it does significantly decrease run-time with only
small to moderate loss of accuracy.

Future Development
The results presented here are for RNA and DNA align-
ment problems. While Crumble and Prune can be used
to align protein sequences, their performance on this
problem remains to be measured.
Crumble and Prune achieve their performance gains

by leveraging smaller problem sizes and taking advan-
tage of parallelization. The relative contributions of
these two factors to overall performance has yet to be
explored for the various alignment algorithms and pro-
blem sizes.
The next major step in the development of these

methods is to adapt them to align regions that have
undergone chromosomal translocations and inversions.
The methods presented here can be used after programs
such as Mercator [35] have unscrambled the region. A
more integrated approach could better take advantage of
the performance gains possible.
We also aim to adapt these methods to work on var-

ious cloud computing platforms such as Amazon’s Elas-
tic Compute Cloud.

Conclusions
We have presented two general methods, Crumble and
Prune, for improving the running time of alignment
programs. The methods work by breaking large align-
ment problems into smaller sub-problems, solving those
sub-problems, and reassembling them to form the full
alignment. The sub-problems are formed so that many
of them can be solved in parallel. This allows modern
computer cluster systems to be leveraged to solve large
alignment problems.
We have tested Crumble and Prune on a very large set

of simulated alignment problems. The test dataset includes
both long (~1 megabase of sequence) and deep (1000 spe-
cies) alignment problems. Crumble and Prune were able
to dramatically improve the run-time of Pecan, FSA, and
MUSCLE on long and deep alignment problems with very
little loss in alignment accuracy. In some cases, Prune was
also able to improve the accuracy of FSA and MUSCLE

Table 4 Crumble results for 90 kb of genomic DNA from
seven species

Time Log-likelihood1

Pecan2 11.3 -0.354

Crumble w/Pecan 60% 7.42 -0.355

30% 4.67 -0.357

15% 5.42 -0.357

FSA3 38.3 -0.374

Crumble w/FSA 60% 20.4 -0.375

30% 12.2 -0.375

15% 9.68 -0.376

MUSCLE4 _a _a

Crumble w/MUSCLE 60% _a _a

30% 153. -0.363

15% 59.2 -0.367
1 The log-likelihood of the alignment as calculated by phyloFit, in millions of
nats.
2 Pecan was run with default parameters.
3 FSA was run with the –exonerate, –anchored, –softmasked, and
–fast flags.
4 MUSCLE was run with default parameters.
5 This problem was unable to be aligned due to running out of memory.

The run-time and log-likelihood score of Crumble alignments. Each underlying
alignment method (Pecan, FSA, MUSCLE) was tested on the dataset. Crumble
was then used to break the problem into sub-problems that were
approximately 60%, 30%, and 15% of the length of the original problem.
While MUSCLE was unable to align this problem directly, using Crumble we
were able to apply it to this problem.

Table 5 Prune results for twelve alignment problems
from the Rfam database

Time Agree.

Pecan1 _a _a

Prune w/Pecan 60% _a _a

30% 14.6 0.651

15% 5.35 0.649

7% 2.57 0.643

FSA2 13.6 0.792

Prune w/FSA 60% 10.3 0.669

30% 4.30 0.615

15% 2.39 0.636

7% 2.17 0.636

MUSCLE3 3.67 0.709

Prune w/MUSCLE 60% 3.03 0.704

30% 1.23 0.649

15% 1.03 0.672

7% 1.42 0.659

MAFFT4 0.04 0.693

SATé5 93.9 0.753
1 Pecan was run with default parameters.
2 FSA was run with the –exonerate, –anchored, –softmasked, and
–fast flags.
3 MUSCLE was run with default parameters.
4 MAFFT was run with –treein option.
5 SATé was run with the -t option but limited to two iterations. We found
that more iterations did almost nothing for accuracy.
a The majority of problems were unable to be aligned due to running out of
memory.

The run-time and agreement score of Prune alignments of twelve RNA
alignment problems from the Rfam database. The average time and
agreement over all twelve problems are shown. Pecan, FSA, and MUSCLE
were used as the underlying alignment method of Prune. MAFFT and SATé
were also tested to provide comparison. We were unable to apply Pecan
without using Prune because of memory issues. Using Prune, we were able to
use Pecan to solve these alignment problems. Prune achieved a very large
speedup with little loss of accuracy. Other alignment methods achieved a
large speedup but more accuracy was lost.

Roskin et al. BMC Bioinformatics 2011, 12:144
http://www.biomedcentral.com/1471-2105/12/144

Page 10 of 12

while, at the same time, providing a boost in performance.
We also tested Crumble and Prune on a set of biological
data. While these data sets are relatively small with respect
to the scale of problems that Crumble and Prune are
designed to handle, they show that our methods do pro-
vide a significant performance improvement with only
moderate loss of accuracy.
With Crumble and Prune we were able to apply

Pecan, FSA, and MUSCLE to much longer and deeper
problems than could be solved by running those pro-
grams without Prune because of memory or time con-
straints. This extends the applicability of these methods
to larger alignment problems.
We believe that these methods will enable the application

of more sophisticated and statistically motivated alignment
algorithms toward large, real world alignment problems.

Availability
• Project name: Crumble, Prune, Job-tree
• Project home page: http://hgwdev.cse.ucsc.edu/
~krish/crumble_prune/. Datasets used to test the
alignments are available at: http://hgwdev.cse.ucsc.
edu/~krish/test_alignments/.
• Operating System(s): Linux 2.6.18
• Programming language: C++, Python
• Other requirements: Boost C++ Libraries 1.46
• License: GNU GPL

Crumble, Prune, and Job-tree are licensed under the
GPL and and available for download at: http://hgwdev.
cse.ucsc.edu/~krish/crumble_prune/. The datasets used
to test the alignments are available at: http://hgwdev.cse.
ucsc.edu/~krish/test_alignments/.

Acknowledgments and Funding
KMR would like to thank Cricket Sloan, Glenna Smith, Melissa Cline, and
Dent Earl for comments on an early form of this manuscript.
KMR and BP are supported by the National Human Genome Research
Institute (grant numbers 23975-444113, 59889-443720 respectively).

Author details
1Department of Computer Science, Univ. of California, Santa Cruz, USA.
2Center for Biomolecular Science & Engineering, Univ. of California, Santa
Cruz, USA. 3Howard Hughes Medical Institute, Univ. of California, Santa Cruz,
USA.

Authors’ contributions
KMR wrote the implementation, participated in software design, performed
the benchmarking, and drafted the manuscript. BP participated in software
design, assisted with the implementation, and helped draft the manuscript.
DH participated in the design and coordination. All authors read and
approved the final manuscript.

Received: 27 October 2010 Accepted: 10 May 2011
Published: 10 May 2011

References
1. Siepel A, Bejerano G, Pedersen JS, Hinrichs AS, Hou M, Rosenbloom K,

Clawson H, Spieth J, Hillier LW, Richards S, Weinstock GM, Wilson RK,

Gibbs RA, Kent WJ, Miller W, Haussler D: Evolutionarily conserved
elements in vertebrate, insect, worm, and yeast genomes. Genome
Research 2005, 15(8):1034-1050.

2. Roskin KM, Diekhans M, Haussler D: Scoring Two-Species Local Alignments
to Try to Statistically Separate Neutrally Evolving from Selected DNA
Segments. Proceedings of the seventh annual international conference on
Computational molecular biology ACM Press; 2003, 257-266[http://doi.acm.
org/10.1145/640075.640109].

3. Pedersen JS, Bejerano G, Siepel A, Rosenbloom K, Lindblad-Toh K,
Lander ES, Kent J, Miller W, Haussler D: Identification and Classification of
Conserved RNA Secondary Structures in the Human Genome. PLoS
Comput Biol 2006, 2(4):e33.

4. Ma J, Ratan A, Raney BJ, Suh BB, Miller W, Haussler D: The infinite sites
model of genome evolution. Proceedings of the National Academy of
Sciences 2008, 105(38):14254-14261.

5. Schwartz S, Kent WJ, Smit A, Zhang Z, Baertsch R, Hardison RC, Haussler D,
Miller W: Human-Mouse Alignments with BLASTZ. Genome Research 2003,
13:103-107.

6. Tönges U, Perrey SW, Stoye J, Dress AW: A general method for fast
multiple sequence alignment. Gene 1996, 172:33-41.

7. Reinert K, Stoye J, Will T: An iterative method for faster sum-of-pairs
multiple sequence alignment. Bioinformatics 2000, 16(9):808-814.

8. Kryukov K, Saitou N: MISHIMA-a new method for high speed multiple
alignment of nucleotide sequences of bacterial genome scale data. BMC
Bioinformatics 2010, 11:142-142.

9. Feng DF, Doolittle RF: Progressive sequence alignment as a prerequisite
to correct phylogenetic trees. J Mol Evol 1987, 25(4):351-360.

10. Waterman M, Perlwitz M: Line geometries for sequence comparisons.
Bulletin of Mathematical Biology 1984, 46:567-577[http://dx.doi.org/10.1007/
BF02459504], [10.1007/BF02459504].

11. Katoh K, Toh H: Parallelization of the MAFFT multiple sequence
alignment program. Bioinformatics 2010, 26(15):1899-1900.

12. Kim T, Joo H: ClustalXeed: a GUI-based grid computation version for
high performance and terabyte size multiple sequence alignment. BMC
Bioinformatics 2010, 11:467-467.

13. Di Tommaso P, Orobitg M, Guirado F, Cores F, Espinosa T, Notredame C:
Cloud-Coffee: implementation of a parallel consistency-based multiple
alignment algorithm in the T-Coffee package and its benchmarking on
the Amazon Elastic-Cloud. Bioinformatics 2010, 26(15):1903-1904.

14. Lee C, Grasso C, Sharlow MF: Multiple sequence alignment using partial
order graphs. Bioinformatics 2002, 18(3):452-464.

15. Bray N, Pachter L: MAVID: Constrained Ancestral Alignment of Multiple
Sequences. Genome Res 2004, 14(4):693-699.

16. Schwartz AS, Pachter L: Multiple alignment by sequence annealing.
Bioinformatics 2007, 23(2):e24-29.

17. Paten B, Herrero J, Beal K, Fitzgerald S, Birney E: Enredo and Pecan:
Genome-wide mammalian consistency-based multiple alignment with
paralogs. Genome Res 2008 [http://genome.cshlp.org/cgi/content/abstract/
gr.076554.108v1].

18. Myers G, Selznick S, Zhang Z, Miller W: Progressive multiple alignment
with constraints. RECOMB ‘97: Proceedings of the first annual international
conference on Computational molecular biology New York, NY, USA: ACM;
1997, 220-225.

19. Paten B, Herrero J, Fitzgerald S, Beal K, Flicek P, Holmes I, Birney E:
Genome-wide nucleotide-level mammalian ancestor reconstruction.
Genome Res 2008, 18(11):1829-1843.

20. Kent WJ: The Parasol Parallel Batch System. 2009 [http://users.soe.ucsc.
edu/~donnak/eng/parasol.htm].

21. Lumb I, Smith C: Scheduling attributes and Platform LSF Norwell, MA, USA:
Kluwer Academic Publishers; 2004, 171-182.

22. Gentzsch W: Sun Grid Engine: Towards Creating a Compute Power Grid.
CCGRID’01: Proceedings of the 1st International Symposium on Cluster Computing
and the Grid Washington, DC, USA: IEEE Computer Society; 2001, 35.

23. Griffiths-Jones S, Moxon S, Marshall M, Khanna A, Eddy SR, Bateman A:
Rfam: annotating non-coding RNAs in complete genomes. Nucleic Acids
Res 2005, , 33 Database: 121-124[http://www.hubmed.org/fulltext.cgi?
uids=15608160].

24. Blanchette M, Kent WJ, Riemer C, Elnitski L, Smit AF, Roskin KM, Baertsch R,
Rosenbloom K, Clawson H, Green ED, Haussler D, Miller W: Aligning
Multiple Genomic Sequences With the Threaded Blockset Aligner.
Genome Res 2004, 14(4):708-715.

Roskin et al. BMC Bioinformatics 2011, 12:144
http://www.biomedcentral.com/1471-2105/12/144

Page 11 of 12

http://hgwdev.cse.ucsc.edu/~krish/crumble_prune/
http://hgwdev.cse.ucsc.edu/~krish/crumble_prune/
http://hgwdev.cse.ucsc.edu/~krish/test_alignments/
http://hgwdev.cse.ucsc.edu/~krish/test_alignments/
http://hgwdev.cse.ucsc.edu/~krish/crumble_prune/
http://hgwdev.cse.ucsc.edu/~krish/crumble_prune/
http://hgwdev.cse.ucsc.edu/~krish/test_alignments/
http://hgwdev.cse.ucsc.edu/~krish/test_alignments/
http://www.ncbi.nlm.nih.gov/pubmed/16024819?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16024819?dopt=Abstract
http://doi.acm.org/10.1145/640075.640109
http://doi.acm.org/10.1145/640075.640109
http://www.ncbi.nlm.nih.gov/pubmed/16628248?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16628248?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12529312?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/8654987?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/8654987?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11108703?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11108703?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20298584?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20298584?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/3118049?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/3118049?dopt=Abstract
http://dx.doi.org/10.1007/BF02459504
http://dx.doi.org/10.1007/BF02459504
http://www.ncbi.nlm.nih.gov/pubmed/20427515?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20427515?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20849574?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20849574?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20605929?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20605929?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20605929?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11934745?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11934745?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15060012?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15060012?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17237099?dopt=Abstract
http://genome.cshlp.org/cgi/content/abstract/gr.076554.108v1
http://genome.cshlp.org/cgi/content/abstract/gr.076554.108v1
http://www.ncbi.nlm.nih.gov/pubmed/21385028?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21385028?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18849525?dopt=Abstract
http://users.soe.ucsc.edu/~donnak/eng/parasol.htm
http://users.soe.ucsc.edu/~donnak/eng/parasol.htm
http://www.hubmed.org/fulltext.cgi?uids=15608160
http://www.hubmed.org/fulltext.cgi?uids=15608160
http://www.ncbi.nlm.nih.gov/pubmed/15060014?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15060014?dopt=Abstract

25. Bradley RK, Roberts A, Smoot M, Juvekar S, Do J, Dewey C, Holmes I,
Pachter L: Fast Statistical Alignment. PLoS Comput Biol 2009, 5(5):e1000392.

26. Hasegawa M, Kishino H, Yano T: Dating of the human-ape splitting by a
molecular clock of mitochondrial DNA. J Mol Evol 1985, 22(2):160-74.

27. Edgar RC: MUSCLE: multiple sequence alignment with high accuracy and
high throughput. Nucl Acids Res 2004, 32(5):1792-1797.

28. Stajich JE, Block D, Boulez K, Brenner SE, Chervitz SA, Dagdigian C,
Fuellen G, Gilbert JG, Korf I, Lapp H, Lehväslaiho H, Matsalla C, Mungall CJ,
Osborne BI, Pocock MR, Schattner P, Senger M, Stein LD, Stupka E,
Wilkinson MD, Birney E: The Bioperl Toolkit: Perl Modules for the Life
Sciences. Genome Research 2002, 12(10):1611-1618.

29. Katoh K, Toh H: Recent developments in the MAFFT multiple sequence
alignment program. Brief Bioinform 2008, 9(4):286-298.

30. Liu K, Raghavan S, Nelesen S, Linder CR, Warnow T: Rapid and Accurate
Large-Scale Coestimation of Sequence Alignments and Phylogenetic
Trees. Science 2009, 324(5934):1561-1564.

31. Siepel A, Haussler D: Combining phylogenetic and hidden Markov
models in biosequence analysis. J Comput Biol 2004, 11(2-3):413-428.

32. Yang Z, Goldman N, Friday A: Comparison of models for nucleotide
substitution used in maximum-likelihood phylogenetic estimation. Mol
Biol Evol 1994, 11(2):316-324.

33. Rhead B, Karolchik D, Kuhn RM, Hinrichs AS, Zweig AS, Fujita PA,
Diekhans M, Smith KE, Rosenbloom KR, Raney BJ, Pohl A, Pheasant M,
Meyer LR, Learned K, Hsu F, Hillman-Jackson J, Harte RA, Giardine B,
Dreszer TR, Clawson H, Barber GP, Haussler D, Kent WJ: The UCSC genome
browser database: update 2010. Nucl Acids Res 2009, gkp939[http://nar.
oxfordjournals.org/cgi/content/abstract/gkp939v1].

34. Kent WJ, Baertsch R, Hinrichs A, Miller W, Haussler D: Evolution’s cauldron:
Duplication, deletion, and rearrangement in the mouse and human
genomes. Proceedings of the National Academy of Sciences of the United
States of America 2003, 100(20):11484-11489.

35. Dewey CN: Aligning multiple whole genomes with Mercator and MAVID.
Methods Mol Biol 2007, 395:221-36.

doi:10.1186/1471-2105-12-144
Cite this article as: Roskin et al.: Meta-Alignment with Crumble and
Prune: Partitioning very large alignment problems for performance and
parallelization. BMC Bioinformatics 2011 12:144.

Submit your next manuscript to BioMed Central
and take full advantage of:

• Convenient online submission

• Thorough peer review

• No space constraints or color figure charges

• Immediate publication on acceptance

• Inclusion in PubMed, CAS, Scopus and Google Scholar

• Research which is freely available for redistribution

Submit your manuscript at
www.biomedcentral.com/submit

Roskin et al. BMC Bioinformatics 2011, 12:144
http://www.biomedcentral.com/1471-2105/12/144

Page 12 of 12

http://www.ncbi.nlm.nih.gov/pubmed/19478997?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/3934395?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/3934395?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15034147?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15034147?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12368254?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12368254?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18372315?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18372315?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19541996?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19541996?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19541996?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15285899?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15285899?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/8170371?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/8170371?dopt=Abstract
http://nar.oxfordjournals.org/cgi/content/abstract/gkp939v1
http://nar.oxfordjournals.org/cgi/content/abstract/gkp939v1
http://www.ncbi.nlm.nih.gov/pubmed/14500911?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/14500911?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/14500911?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17993677?dopt=Abstract

	Abstract
	Background
	Results
	Conclusions

	Background
	Related Work
	Implementation
	Crumble: breaking long alignment problems into shorter sub-problems
	Prune: trimming deep alignment problems into smaller sub-problems
	Job-tree: Solving gigabase alignment problems with Prune and Crumble

	Results and Discussion
	Simulation Results
	Crumble
	Prune
	Job-tree

	Biological Data
	Crumble
	Prune

	Future Development

	Conclusions
	Availability
	Acknowledgments and Funding
	Author details
	Authors' contributions
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 500
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 500
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents suitable for reliable viewing and printing of business documents. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

