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Abstract
Introduction  The identification of tumour mutational burden (TMB) as a biomarker of response to programmed cell death 
protein 1 (PD-1) immunotherapy has necessitated the development of genomic assays to measure this. We carried out com-
prehensive molecular profiling of cancers using the Illumina TruSight Oncology 500 (TSO500) panel and compared these 
to whole-genome sequencing (WGS).
Methods  Cancer samples derived from formalin-fixed material were profiled on the TSO500 panel, sequenced on an Illumina 
NextSeq 500 instrument and processed through the TSO500 Docker pipeline. Either FASTQ files (PierianDx) or vcf files 
(OncoKDM) were processed to understand clinical actionability.
Results  In total, 108 samples (a mixture of colorectal, lung, oesophageal and control samples) were processed via the DNA 
panel. There was good correlation between TMB, single-nucleotide variants (SNVs), indels and copy-number variations as 
predicted by TSO500 and WGS (R2 > 0.9) and good reproducibility, with less than 5% variability between repeated controls. 
For the RNA panel, 13 samples were processed, with all known fusions observed via orthogonal techniques. For clinical 
actionability, 72 tier 1 variants and 297 tier 2 variants were detected, with clinical trials identified for all patients.
Conclusions  The TSO500 assay accurately measures TMB, microsatellite instability, SNVs, indels, copy-number/structural 
variation and gene fusions when compared to WGS and orthogonal technologies. Coupled with a clinical annotation pipeline, 
this provides a powerful methodology for identification of clinically actionable variants.

Electronic supplementary material  The online version of this 
article (https​://doi.org/10.1007/s4029​1-020-00462​-x) contains 
supplementary material, which is available to authorized users.
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Key Points 

Formalin-fixed, paraffin-embedded tumour samples 
represent a significant diagnostic challenge for diagnostic 
analysis in molecular pathology

The Illumina TruSight Oncology 500 assay provides 
an option to detect relevant cancer gene mutations and 
fusions

These variants can also be annotated easily with clinical 
interpretation software for ease of clinical interpretation

1  Introduction

Recent developments in next-generation sequencing 
(NGS) and tumour immunology have allowed the dis-
covery that targeting the CTLA4, programmed cell death 

protein 1 (PD-1) and programmed death-ligand 1 (PD-
L1) receptors using therapeutic monoclonal antibodies [1] 
can unmask cancer to the immune system, facilitating its 
immune-mediated destruction. Although initial trials of 
PD-1 inhibitors had mixed results [2, 3], as with previous 
targeted therapies, it was determined that a specific tumour 
genotype was required in order for these inhibitors to be 
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effective, leading to the finding that dramatic regression of 
tumours could occur with the correct genotype.

In order for tumours to become immunogenic, a high 
neoepitope load must be generated via hypermutation 
[4–6], ideally indel/frameshifts or non-synonymous muta-
tions that generate novel proteins that can be recognised 
by the immune system. These neoepitopes can then be 
presented via major histocompatibility complex (MHC) 
in order to aid immune killing [7].

The CHECKMATE [8–10] series of trials have sug-
gested that a specific threshold of “tumour mutational bur-
den” (TMB) must be reached in order for PD-1 blockade 
to become effective, although this has not been adopted 
formally, due to a lack of association between TMB and 
response, although other similar markers such as clonal 
TMB have shown promise. Although TMB has variable 
definitions, it is broadly accepted [9] as the number of mis-
sense mutations in the tumour genome, either divided by 
the size of the exome panel (35–45 Mb) or via the size of 
the human genome for whole-genome sequencing (WGS) 
(3.3 Gb). Based on the CHECKMATE trials, the suggested 
TMB threshold is greater than 10 mutations (mut)/Mb, 
based on the objective response rates of the tumours in 
these studies not improving much beyond this threshold.

Initially, TMB was measured using WGS and whole-
exome sequencing [11]; however, these technologies 
are not cost-effective currently for routine use in the 
clinic. Despite the falling cost of NGS reagents, the vol-
ume of data required for sufficient coverage of either 
WGS (200–300 Gb for 60× read depth) or whole-exome 
sequencing (4–5 Gb for 100× read depth) make these tech-
niques impractical except for dedicated sequencing cores. 
Secondly, even with high read depth, sufficiently deep cov-
erage in order to identify rare subclonal [12] mutations 
that may contribute to the neoantigen load is required, of 
the order of 500×. Thus, whole-genome/exome coverage 
is not cost-effective [13].

Rizvi et al. [13] demonstrated that in order to accurately 
measure TMB using an NGS-based assay, a panel size of 
at least 1.5 Mb is required. This panel size offers opportu-
nities for a pan-cancer assay, as a panel of this size could 
cover the majority of known driver genes across multi-
ple cancer types. In designing an oncology assay, ideally 
other types of variations would be included. Recent stud-
ies [14, 15] have shown the potential utility of selecting 
targeted therapies using large gene panels, and therefore a 
panel should include mutations associated with targeting 
therapies.

An additional advantage of panel-based designs is the 
ability to enrich RNA targets. Recent studies have shown 
the importance of RNA fusions such as the TMPRSS-ERG 
fusion in prostate cancer [16], the FGFR2 fusion in cholan-
giocarcinoma [17] and the NTRK fusion in lung and other 

cancers [18]. These fusions are either targetable with molec-
ularly targeted agents (e.g. larotrectinib [19] or pemigatinib 
[20]) or are prognostically relevant (i.e. TMPRSS-ERG).

An ideal oncology panel-based assay would have several 
characteristics [21]: enrichment chemistry rather than poly-
merase chain reaction (PCR) chemistry for identification of 
rare alleles with straightforward library preparation; a broad 
panel that targets the majority of DNA and RNA alterations 
in cancer; rapid run time; prediction of novel biomarkers 
such as TMB; and a standardised, reproducible analysis 
pipeline that can be used in a clinical setting.

In this study, we present our initial results using the 
Illumina TruSight Oncology 500 (TSO500) assay across a 
range of cancer types. We benchmarked it against WGS and 
whole-exome sequencing and determined its ability to detect 
RNA fusions and copy-number variants.

2 � Materials and Methods

2.1 � Patient Samples and Ethics

Patient samples were from three cohorts—colorectal, 
oesophageal and lung—in order to provide a variety of muta-
tions for study across multiple tissue types. For the colorec-
tal cohort, fresh frozen tumours were obtained from an inter-
nal cohort of patients that had undergone WGS as part of a 
pre-pilot prior to the introduction of the 100,000 Genomes 
project. Matched formalin-fixed, paraffin-embedded (FFPE) 
blocks from the tumour were obtained and used for the assay. 
For the oesophageal cohort, sequential oesophageal cancers 
underwent whole-exome sequencing from a cohort collected 
at the Oxford Cancer Centre. For the lung cohort, patient 
samples were obtained from those undergoing routine test-
ing for EGFR mutation status at the Molecular Pathology 
department of the University Hospitals Birmingham NHS 
Foundation Trust.

Ethics approval for the study was obtained from the 
Oxford Ethics committee (reference 05/Q1605/66).

2.2 � Nucleic Acid Extractions and Quality 
Assessment

DNA and RNA were extracted from 2 × 5-µm FFPE scrolls 
on the Covaris E220 evolution (520220, Covaris Ltd, 
Woodingdean, Brighton, UK) using the truXTRAC FFPE 
total NA Kit—Column Purification (520220, Covaris Ltd, 
Woodingdean, Brighton, UK) following the manufacturer’s 
protocol.

Sixty-five per cent isopropanol was used during RNA 
purification. On-column DNA digestion was performed 
after the first wash during RNA purification using the 
TURBO DNA-free kit (AM1907, Invitrogen, ThermoFisher 
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Scientific, Paisley, UK) following the Covaris protocol. 
DNA and RNA concentrations were measured on the Qubit 
3 Fluorometer (ThermoScientific, Paisley, UK) and the per-
centage of fragments > 200 nucleotides in size (DV200) was 
assessed using Tapestation 2200 (Agilent, Cheshire, UK). 
DNA quality was determined by the Infinium HD FFPE 
quality control (QC) Assay Protocol (15020981, Illumina, 
Cambridge, UK).

RNA samples with a DV200 of ≥ 30% and DNA sam-
ples with a Delta Cq value of ≤ 5 were used for downstream 
applications.

2.3 � Library Preparation

DNA libraries were prepared using the hybrid capture-based 
TruSight Oncology 500 Library Preparation Kit (Illumina, 
San Diego, CA, USA) following Illumina’s TruSight Oncol-
ogy 500 Reference Guide (document # 1000000067621 v00, 
Illumina Cambridge, UK) with the following modifications:

Genomic DNA (gDNA) was sheared using the Covaris 
E220 evolution (Covaris Ltd, Woodingdean, Brighton, UK), 
8 micro TUBE—50 AFA Fiber Strip V2 (520174, Cova-
ris Ltd, Woodingdean, Brighton, UK) and Rack E220e 8 
microTUBE Strip V2 (500437, Covaris Ltd, Woodingdean, 
Brighton, UK). The size of double-stranded DNA (dsDNA) 
fragments (90–250 bp) was confirmed using Tapestation 
2200 (Agilent, Cheshire, UK) after shearing. A HorizonDx 
HD753 control (Horizon Discovery, Cambridge, UK) was 
included with every set of seven test samples. When no 
beads were involved, reagents were mixed by pipetting up 
and down ten times. Before the bead-based normalisation, 
libraries were quantified and sized on the Qubit 3 Fluorom-
eter (ThermoScientific, Paisley, UK) and Tapestation 2200 
(Agilent, Cheshire, UK), respectively.

Ten microlitres of each normalised DNA library (maxi-
mum of eight libraries per pool) was pooled and incubated 
at 96 °C for 2 min. The tube containing the library pool was 
immediately inverted two times to mix, centrifuged briefly 
and placed on ice for 5 min. Ten microlitres of the library 
pool was mixed with 190 µL HT1 to make a 1:20 dilution 
(DIL1). Forty microlitres of DIL1 were mixed with 1360 µL 
HT1 (for a final library concentration of 1.5 pM), and 2.5 µL 
of denatured 20 pM PhiX was added (1%). Libraries were 
sequenced on an Illumina NextSeq 500 instrument.

For WGS libraries, 1 µg of DNA was prepared using the 
TruSeq DNA library preparation kit (Illumina, San Diego, 
CA, USA) and sequenced across four lanes of a HiSeq 2500 
(Illumina, San Diego, CA, USA).

2.4 � Bioinformatics

The raw sequencing output was transferred from the 
sequencing instrument to a bioinformatics server running 

Ubuntu 18.04LTS. A pre-supplied Docker image (the 
TSO500 pipeline; Illumina, San Diego, CA, USA) was used 
to generate TMB and microsatellite instability (MSI) calls. 
The pipeline consists of several steps. Initially, raw bcl files 
were converted to sample-specific FASTQ files as specified 
by the sample index. FASTQ files were then aligned against 
the hg19 reference genome using Isaac 4; local realignment 
to indels was performed, and paired-end reads were stitched 
together, followed by variant calling with the somatic sample 
caller Pisces. Germline variants were filtered using a pro-
prietary database; then the called variants were annotated to 
identify synonymous and non-synonymous variants. Actual 
coverage of the panel compared to the reference coverage 
was computed, and TMB was calculated based on the num-
ber of synonymous and non-synonymous mutations detected 
divided by the size of the panel successfully sequenced.

Small variants were exported from the TSO500 pipeline 
and annotated using VEP, then converted using vcf2maf and 
imported into the maftools module of R/Bioconductor.

TMB calls for whole-genome sequenced control data 
were carried out using the Genomics England v3 pipeline 
for calling tumour-normal pairs and used to compare to calls 
from the TSO500 pipeline. In brief, this pipeline utilised 
Isaac v3 to align sequence data to the hg19 genome, fol-
lowed by copy-number variant calling using Canvas and 
structural variant calling using Manta. Copy-number varia-
tion (CNV) calls for the TSO500 files were obtained using 
the Craft copy-number caller set in somatic tumour only 
mode. Overlaps were computed using bedtools. Structural 
variant calls for the TSO500 files were obtained using the 
Manta structural variant caller set in tumour only mode with 
a custom modification to the C++ code of the Manta struc-
tural variant caller to enable detection with less read support 
and on amplicon sequencing data. Structural variant overlaps 
were computed using bedtools.

For clinical actionability, raw FASTQ files (CGW, Pie-
rianDx, St. Louis, MO, USA) and UMI collapsed vcf files 
obtained from the TSO500 v1 Docker image (OncoKDM, 
OncoDNA, Gosselies, Belgium) were uploaded to their 
respective data portals and run in their standard analysis 
mode. The Clinical Genomic Workspace (CGW; PierianDx, 
St Louis, MO, USA) is a secure web-based Health Insur-
ance Portability and Accountability Act- and General Data 
Protection Regulations-compliant platform for clinical deci-
sion support management. Initially developed by one of the 
very first medical institutes to launch a routine clinical NGS 
service for cancer and complex inherited diseases, the CGW 
encompasses a rules engine built on a curated knowledge-
base that is updated weekly. Information from over 18 mil-
lion publications, including Food and Drug Administration 
(FDA) and European Medicines Agency (EMA) approvals, 
National Comprehensive Cancer Network (NCCN), Associa-
tion of Molecular Pathology (AMP) and European Society 
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for Molecular Oncology (ESMO) guidelines and PubMed 
articles is coupled with public data sources such as popula-
tion databases, dbSNP, The Cancer Genome Atlas (TCGA), 
ClinVar and COSMIC in order to annotate and pre-classify 
variants for interpretation. Uniquely, the CGW utilises the 
world’s largest clinical interpretation-sharing network that 
provides variant interpretations in the context of the spe-
cific disease defined for the patient at time of accessioning. 
Although no patient data are transferred, network members 
can view the clinical interpretations supplied to the clinical 
team of the provider institution (giving the most up-to-date 
information with true clinical provenance). Actionability 
calls were downloaded according to standard AMP tiers. 
The CGW platform is configurable to accept bcl, FASTQ or 
vcf files and can process all variant types, including TMB 
and MSI biomarkers, complex variants, CNVs and fusions.

OncoKDM is a secure web-based ISO27001, IS013485 
and GDPR-compliant platform for clinical decision support 
management and clinical report sharing. Initially developed 
for its proprietary OncoDEEP products that have been on the 
market since 2013, OncoKDM encompasses a proprietary 
daily/weekly curated knowledge database of 22,000 genes, 
3,886,000 variants, 792 drugs (including FDA and EMA 
approvals, NCCN, Compermed and ESMO guidelines), 
5000 associated clinical trials and 7000 associated publica-
tions. Coupled with several public data sources, OncoKDM 
accurately retrieves biological and clinical information for 
proper data interpretation and has already been used for 
6 years thanks to the sharing platform OncoSHARE, used 
by 6500 healthcare professionals in 50 countries worldwide.

3 � Results

3.1 � DNA Quality Metrics

In total, 108 samples were profiled using the assay, with a 
median sample age of 2 years (range 4 months–10 years). 
All samples were from FFPE blocks. All samples were 
examined by haematoxylin staining and had tumour con-
tent > 50%. The input for all assays was 40 ng of DNA and 
40 ng of RNA. The suitability of samples for sequencing 
was determined using the real-time PCR-based Illumina 
FFPE QC assay. For a sample to pass initial QC, the delta 
Cycle threshold (dCt) must be under 5. Study samples had a 
median dCt of 2.46 [interquartile range (IQR) 1.73–4.3]. The 
maximum dCt run was 13.57, and all samples bar one passed 
TMB calling. Eight samples failed MSI calling due to poor 
sample quality (dCt = 5–13.57). Samples were all sequenced 
despite the initial QC metrics to determine the validity of 
this measure in determining samples for sequencing.

In terms of DNA sequencing metrics, the median insert 
size was 92.5 bp (IQR 80–112 bp), the median exon coverage 

was 185× (IQR 123–247×), and 98.1% and 90.5% of all 
samples were covered at least 50× and 100×, respectively. 
The median reads per sample was 126 M (IQR 105–138 M 
reads); there was a median of 0.9% (IQR 0.25–2.7%) chi-
meric reads per sample. Median read enrichment was 82.1% 
(IQR 79–85%).

3.2 � Mutational Coverage and Spectrum

In all 108 samples, mutational coverage of the panel was 
successfully performed, with little probe drop out. Figures 1, 
2 and 3 show the variant classification results (for cancer 
type variant results, see supplementary Fig. 1 in the elec-
tronic supplementary material). There was a median of 14 
variants per sample (range 2–479). The predominant muta-
tion type was a missense single-nucleotide polymorphism 
(SNP), followed by frameshift deletion. The top ten most 
commonly mutated genes were TP53 (73%), APC (54%), 
FLT3 (50%), LRP1B (27%), SPTA1 (20%), BRCA2 (20%), 
KRAS (30%), PIK3CA (22%), ARID1A (21%) and CREBBP 
(20%). Within the sample subgroups, colorectal cancer was 
significantly enriched for APC mutations (40/54 colorec-
tal cancer samples), ZFHX3 (13/54 samples) and FBXW7 
(13/54). Oesophageal cancer was significantly enriched for 
EPHA7 mutations (3/9 samples) and TP53 (9/9 samples). 
For lung, RBM10 (5/22 samples) and MGA (7/22 samples) 
were significantly enriched.  

In terms of mutational spectrum, a predominance of C > T 
transversions was seen, as the samples were all derived (with 
the exception of controls) from FFPE tissue blocks. The 
predominant mutational signatures [22] seen in the samples 
were signature ten (defects in polymerase POLE), signature 
five (due to tobacco smoke) and signature six (defective mis-
match repair), which fit well with the source of the samples 
(lung, colorectal and oesophageal) as well as the fact that 
several hypermutant samples were deliberately chosen for 
the project.

3.3 � Precision of Control Calls

In order to understand the ability of the assay to detect low 
variant allele frequencies (VAFs), assessment of the VAF 
was performed for two known low VAF mutations in the 
HD753 cell line (Fig. 4). This cell line has validated muta-
tions in AKT1 (E17K, chr14: 105246551C > T), with a VAF 
of 0.05, and in PIK3CA (E545K, chr3: 178936091G > A), 
with a VAF of 0.056. The same control was run across 12 
runs, with AKT1 median VAF = 0.059 (IQR 0.037–0.072) 
and PIK3CA median VAF = 0.036 (IQR 0.033–0.0493).
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3.4 � Copy‑Number Calls

A subset of 24 samples underwent copy-number calling 
with the Craft pipeline. A variety of copy-number gains 
and losses were detected in the 520 genes profiled on the 
TSO500 panel. The HD753 control was used to determine 
whether the observed copy-number calls (Fig. 5) correlated 
with known copy-number changes: amplifications in MET 
(CNV = 4.5) and MYC-N (CNV = 9.5). The amplification in 
MET was observed in all control samples, with an average 
copy number of 4, and in MYC-N, with an average copy 
number of 9.1. No whole-gene deletions were present in the 
control samples, but were observed in a variety of samples 
in the tumour cohort.

3.5 � Structural Variant Calls

The HD753 control is known to have a variety of structural 
variants, including an SLC34A2/ROS fusion (VAF = 5.6%) 
and CCDC6/RET fusion (VAF = 5.0%). With use of a 
custom pipeline, there was evidence for detection of both 
fusions: 7/506 reads supported the SLC34A2/ROS fusion and 

5/498 reads supported the CCDC6/RET fusion. A variety 
of structural variants were observed in the tumour cohort. 
In addition, long indels were successfully detected by the 
Manta pipeline, specifically a 14-bp deletion in EGFR 
(NM_005228.5:c.2235_2249del), known to be present in 
the HD753 control.

3.6 � Tumour Mutational Burden and Microsatellite 
Instability

TMB calling was successfully performed in 107/108 sam-
ples. The one failure was a sample with very poor qual-
ity that failed hybridisation. There was good correlation 
between TMB determined by TSO500 and WGS (R2 = 0.9, 
Fig. 6). The median TMB was 8.6 mut/Mb (range 0.85–325 
mut/Mb, Fig. 7). Several known hypermutant tumour sam-
ples were deliberately run first, including a somatic POLE 
mutant colorectal cancer (reported TMB 261.71 mut/Mb 
in WGS sample), a somatic MLH1 mutant colorectal can-
cer (reported TMB 67.43 mut/Mb) and a somatic MSH6 
mutant colorectal cancer (reported TMB 104.0 mut/Mb). 
As the HD753 control was run in each experiment, we 

Fig. 1   Plot of variant classification for all samples using TSO500. a 
Total number of variants detected by variant classification. b Total 
number of variants detected by variant type. c Total number of vari-
ants detected by SNV class. d Number of variants per sample. e Box 
plot of the number of variants within each classification per sample. f 

Top 10 mutated genes. For d–f, the colours are equivalent to a. DEL 
deletion, DNP dinucleotide polymorphism, INS insertion, SNP single-
nucleotide polymorphism, SNV single-nucleotide variant, TNP trinu-
cleotide polymorphism, TSO500 TruSight Oncology 500
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Fig. 2   Mutational plot for all samples in TSO500 assay. Top left panel: Type of mutation (frequency in percent). Top right panel: Transitions 
(Ti) vs. transversion (Tv). Bottom panel: Proportion of mutations. TSO500 TruSight Oncology 500

Fig. 3   OncoStrip plot of common variants across samples. Genes on y-axis. Samples on x-axis
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compared the reproducibility of the TMB measurement for 
this control sample. There was a median TMB of 311 mut/
Mb (range 289–325) in the HD753 control, a variance in 
TMB score of ± 5%. Comparison to TCGA tumour cohorts 
was performed in mafTools and is shown in Fig. 8.  

For MSI (Fig. 9), the threshold for classification as micro-
satellite instability high (MSI-H) was > 10% of microsatel-
lite sites being unstable. Using this threshold, both known 
somatic mismatch repair mutant (MLH1 and MSH6) cancers 
were MSI-H, with 55% and 67% of sites being unstable, 
respectively. Reassuringly, the POLE mutant cancer had 2% 

of MSI sites being unstable, meaning it was microsatellite 
stable (MSS), as is typical in POLE mutant cancer.

3.7 � RNA Fusions

RNA fusion analysis was carried out on 13 samples, of 
which six had known fusions. Fusions were detected 
between ETV6 and NTRK3 (three samples), RBPMS and 
NTRK3 (one sample), EML4 and ALK (one sample) and TG 
and RET (one sample). All fusions that had previously been 
identified by fluorescence in situ hybridisation (FISH) were 
detected using this methodology. A fusion was detected in 
one sample between ETV6 and NTRK3 that had not been 
identified via FISH; however, the fusion was supported 
by 12,627 reads in the sequencing run, which we felt was 
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unlikely to be a false positive, and therefore, we labelled it 
as a true fusion.

3.8 � Clinical Actionability

In order to recover as many clinically actionable variants 
as possible, mutational calls were fed into the OncoDNA 
OncoKDM (Gosselies, Belgium) and PierianDx CGW (St. 
Louis, MO, USA) pipelines. OncoDNA was provided with 
the vcf files coming from the Illumina pipeline, and Pieri-
anDx started the analysis directly from the FASTQ files. 
Also, in order to take an overview of pathway mutations 

and potential targets, the OncogenicPathways function of 
mafTools was used to generate a list of druggable path-
ways. The rat associated sarcoma pathway had 39/85 genes 
mutated (45.9%), the phosphoinositide 3-kinase pathway had 
20/29 (69.0%), and transforming growth factor beta had 6/7 
(85.7%).

Using this combined approach, more than 72 tier 1 
variants and more than 297 tier 2 variants were identified 
between the two pipelines. Twenty-one samples were clas-
sified as TMB high, 19 as TMB medium and the remainder 
(64) TMB-low. Clinical trials could also be identified for 
all samples, with a median of 22 (range 4–105) trials sug-
gested per sample. The most common actionable mutations 
observed were BRAF p.V600E (18 samples), KRAS p.G13D 
(14 samples) and KRAS p.G12D (12 samples). For other 
tiers, there were 8175 tier 3 mutations and 17,649 tier 4 
mutations detected.

PierianDx and OncoKDM pipelines were not directly 
comparable in this study because of the differing inputs 
(FASTQ for PierianDx, vcf for OncoKDM), but the combi-
nation of both platforms provided a comprehensive variant 
overview.

4 � Discussion

We utilised the TSO500 assay in order to understand its util-
ity and accuracy in determining both the TMB and drug-
gable mutation calls in cancer. One of the key challenges 
with patient testing [23] is the ability to take a patient biopsy 
sample with limited input material and produce sequencing 
data and mutational calls of sufficient quality in order to 
make decisions on target selection and drug therapy [24].

The assay was designed in its first iteration to meas-
ure TMB as a surrogate marker for response to anti–PD-1 
immunotherapy, as multiple studies have shown a correla-
tion between TMB and response to this type of therapy [8, 
13]. The TSO500 assay performs well in this respect, with 
accurate measurement of TMB when compared to WGS. 
Taking a threshold of 10 mut/Mb as “TMB high” (i.e. that 
which would have benefit for immunotherapy), we found that 
the TSO500 assay was able to classify samples with 100% 
accuracy. The precision of the calls varies at the extremes of 
TMB values, undoubtedly as a factor of panel size in calling 
TMB at extremely high levels. We conclude that the TSO500 
pipeline is usable in the clinical determination of TMB sta-
tus across a range of clinical sample types and DNA inputs.

We successfully detected MSI in all samples that were 
known to be MSI-H using TSO500. MSI detection using 
NGS has been shown to be feasible [25] previously, using 
a variety of software solutions, usually relying on off-target 
reads [26], but other assays have used dedicated MSI probes 
(like the TSO500). We have found that the performance of 

Fig. 8   Plot of mutational burden in TSO500 trial tumour set as com-
pared to tumours from TCGA. TSO500 trial tumour set shown in 
black. Y-axis Log10(variants per sample), TCGA​ The Cancer Genome 
Atlas, TSO500 TruSight Oncology 500
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this approach is variable, as the probes are vulnerable to drop 
out in FFPE samples. We propose that TMB instead may be 
a good surrogate biomarker for MSI, as a range of 30–80 
mut/Mb is typically seen in MSI tumours, as opposed to 
MSS POLE/POLD1 tumours, which typically have greater 
than 150 mut/Mb.

A key requirement for clinical specimens is the ability to 
process low-input specimens as well as the ability to detect 
the low VAFs associated with these specimens [27]. Reas-
suringly, we found that the TSO500 assay performed well 
at its recommended input concentration and also below 
these levels. Within our control samples with known VAF 
(of approximately VAF = 0.05), we determined that there 
was good precision and reproducibility with minimal vari-
ability. Another advantage to tolerance of low sample input 
is the possibility of using input levels seen in circulating 
tumour DNA (ctDNA), which are typically 1 ng/mL plasma 
in most cancers. This would allow derivation of blood 
TMB [28], which has been shown to be a better biomarker 
of response in PD-1/PD-L1 inhibitor therapy. The assay is 
also performed at sufficiently high read depth to allow cal-
culation of clonal TMB [29, 30], another marker associated 
with more accurate identification of potential response to 
immunotherapy.

In terms of identifying druggable mutations for targeted 
therapy selection, the TSO pipeline presents an attractive 
platform, especially when coupled with a clinical annotation 
engine such as the two used here (OncoKDM and PierianDx 
CGW [31]). We found good correlation between mutations 
detected in WGS experiments, and the identification of drug-
gable mutations was made straightforward by the use of inte-
grated clinical pipelines to produce reproducible data.

CNVs, especially amplifications, represent important 
therapeutic targets. The TSO500 assay detected the known 
amplifications in a control sample, meaning that patients can 
potentially undergo therapeutic targeting. A unique advan-
tage of the TSO500 system is the ability of a partner targeted 
RNA-seq assay that can detect RNA fusions. We found that 
the assay reliably detected NTRK [32], ALK [33] and RET 
[34] fusions that had previously been identified by FISH, as 
well as a novel fusion not previously detected using other 
technologies. Intriguingly, we also successfully detected 
known fusions at the DNA level de novo in the HD753 con-
trol sample, suggesting that this methodology may also be 
valid for future use, although DNA-based fusion calling has 
a high false negative rate. Fusion genes represent good drug 
targets, and a number of novel agents [19, 32] have been 
shown to be active against fusion genes. Detection of circu-
lating RNA for these fusion genes may also be possible [35] 
using this assay and could be explored further.

Direct comparison of analysis pipelines can be difficult, 
particularly when the data files fed into the systems have 
different sources. Although PierianDx hosts Illumina’s 

secondary analysis for the TSO500 panel and OncoDNA 
were provided with UMI collapsed vcf files from an Illumina 
pipeline, there is no indication that the pipeline versions 
were the same. This, along with the possibility that the same 
selection criteria and filter settings were not used by the two 
systems, could account for the fact that the PierianDx CGW 
platform returned more clinical associations and clinical tri-
als, but this was not investigated here. For the purpose of this 
study, this difference was not explored as it was clear that 
both systems were suitable for determining clinical action-
ability in a routine clinical setting.

The UK 100,000 Genome project has recently been com-
pleted, and analysis and reporting are ongoing. The use of 
WGS for tumour-normal pairs using fresh frozen material 
still has significant challenges from a cost perspective as 
well as the practicalities of obtaining fresh frozen tissue over 
readily available paraffin-embedded material. The TSO500 
assay costs approximately one third of the price of a WGS 
assay, requires no germline DNA control, allows RNA fusion 
detection and can be implemented on bench-top sequencers. 
Its main limitations include more laborious library prepara-
tion and enrichment chemistry that is vulnerable to drop out.

In conclusion, we believe that the TSO500 assay offers 
a cost-effective, accurate, pan-cancer assay that can derive 
SNP, CNV, and gene fusion information across the major-
ity of cancers using a standardised pipeline and therefore 
is suitable for routine use in precision oncology as a com-
prehensive genomic profiling solution. In addition, several 
commercial decision support tools, two of which were suc-
cessfully tested here, are available to assist in the interpre-
tation of the increased number of variants that are derived 
from such a large gene set.
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