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Slice-to-volume reconstruction (SVR) method can deal well with motion artifacts and provide high-quality 3D image data for fetal
brainMRI. However, the problem of sparse sampling is not well addressed in the SVRmethod. In this paper, we mainly focus on the
sparse volume reconstruction of fetal brain MRI from multiple stacks corrupted with motion artifacts. Based on the SVR
framework, our approach includes the slice-to-volume 2D/3D registration, the point spread function- (PSF-) based volume
update, and the adaptive kernel regression-based volume update. The adaptive kernel regression can deal well with the sparse
sampling data and enhance the detailed preservation by capturing the local structure through covariance matrix. Experimental
results performed on clinical data show that kernel regression results in statistical improvement of image quality for sparse
sampling data with the parameter setting of the structure sensitivity 0.4, the steering kernel size of 7 × 7 × 7 and steering
smoothing bandwidth of 0.5. The computational performance of the proposed GPU-based method can be over 90 times faster
than that on CPU.

1. Introduction

Magnetic resonance imaging (MRI) is an ideal diagnostic
technique for researchers to investigate the development
of the fetal brain [1]. Its advantages are the absence of
ionizing radiation, the availability of different contrast
options (T1-weighted, T2-weighted, and diffusion-
weighted imaging), and the superior contrast of soft tissue
compared with ultrasonography, and MRI is also a safe
and noninvasive procedure for patients and fetuses [2–4].
For these reasons, MRI has been widely used to investigate
the developing fetal brain in vivo [5]. For fetal brain MRI,
the high-quality volume representation of 3D acquisition
has significant clinical meaning [6]. By the observation of
the reconstructed volume data, researchers can study the
mechanism of brain development and maturation [7]
and identify the fetal brain abnormality or potential injury
[8, 9], such as brain tumors, vascular malformations, and

posterior fossa abnormalities. Fetal brain MRI can provide
abundant information about aid clinical management,
prognostication, and counseling [10].

The duration of an examination is typically 45 to 60
minutes for fetal brain MRI [1]. One major problem of fetal
brain MRI is motion artifacts caused by fetal and maternal
motion, because of the long acquisition times of 3D MRI
scanning. Maternal motion may be avoided by some mea-
sures, but fetal motion is usually fast and unpredictable, espe-
cially for the younger fetus. Thus, it is still challenging to
reconstruct high-fidelity image for fetal brain MRI due to
the presence of fetal motion. For fetal motion, different strat-
egies can be adopted to reduce the motion artifacts on MRI
[11]. The first strategy tries to prevent the motion occurring
during the examination, such as maternal sedation. The sec-
ond one tries to quicken the data sampling speed. The faster
the acquisition techniques for fetal brain MRI are, the lower
the motion occurs. For example, the single-shot fast spin
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echo (SSFSE) T2-weighted imaging can acquire a slice at 1-
second speed [12]. On the other hand, sparse data sampling
technique can be applied to shorten the time of data acquisi-
tion. The last strategy tries to reconstruct high-quality image
through advanced postprocessing motion detection and cor-
rection algorithms, such as the SVR method [13].

For the SVR framework [14], it includes the following
steps to reduce the fetal motion and reconstruct the high-
quality 3D result: motion identification and exclusion step,
registration step, reconstruction step, and regularization step.
For the motion identification and exclusion step, we should
estimate the amount of motion and exclude the slices with
large amount of motion corruption. Early reconstruction
approaches need to manually exclude the motion corrupted
slices. The intersection-based motion correction approach
can automatically detect and reject motion corrupted and
incorrect registration slices by the abnormal level of their
mean squared intensity difference with respect to all other
intersecting slices [15]. In [16], Kainz et al. have proposed
an approach to automatically estimate the amount of motion
based on the low-rank decomposition for linearly correlated
image slices [17]. Using this approach, we can reject stacks
with large motion and choose the stack with the least motion
as the template to prepare for the registration step. Registra-
tion step can be utilized to correct the motion between slice
and the reconstructed volume. Rousseau et al. [18] combined
the 2D/3D registration with the PSF to achieve the 3D recon-
struction. PSF [14] is a mathematical function to model the
actual appearance of data points in physical space. By PSF,
we can physically correct estimation of the image acquisition
process. Subsequently, the SVR method was modified to
improve the robustness of the 2D/3D registration [19]. For
the reconstruction step, superresolution methods [20, 21]
are utilized to reconstruct the 3D volume. In [22], Gholi-
pour and Warfield combined the superresolution method
with slice-to-volume registration to reduce the burring
effect. Because the motion identification and exclusion
steps can exclude the slice of which the motion amount
is greater than the threshold, the amounts of the slightly
corrupted slices are still preserved for reconstruction.
Using the robust superresolution volume reconstruction
method [23], the weight of slightly corrupted and misa-
ligned slices would be reduced to minimize the effect of
motion. During the process of superresolution reconstruc-
tion, maximum likelihood estimation (MLE) is treated as
an optimum solution to estimate the point’s value [24].
To get better results, we should minimize the difference
between the estimated slices and the acquired slices. Since
the minimization only depends on the acquired samples,
the estimation in the MLE framework is ill-posed and
inaccurate when the samples are sparse [23]. The regular-
ization step is used to solve the overfitting problem, and it
can reduce image noise and registration errors. In [25],
Charbonnier et al. proposed a deterministic edge-
preserving regularization method to deal with image.
However, this method makes it difficult to avoid the
smoothing of edges. Adaptive regularization techniques
can be employed to reduce the smoothing effects of regu-
larization [26]. In [27], Rousseau et al. took advantage of

total variation regulation to extend the superresolution
reconstruction method.

The general SVR framework with the superresolution
reconstruction method has been developed in [28]. One
important way to alleviate fetal motion is to quicken the data
acquisition time by the sparse data sampling technique.
However, the traditional SVR method could not deal well
with the sparse sampling problem and cannot provide high-
quality image. In this paper, we utilize the SVR method with
adaptive kernel regression to cope with the sparse volume
reconstruction withminimummotion artifacts under the con-
dition of sparse data acquisition. The key improvements com-
pared to previous works are as follows: firstly, we make use of
the sparse samples to get faster speed of data acquisition in
fetal brain MRI. Next, the adaptive kernel regression-based
reconstruction method [29] with robust statistics calculation
[24] can reconstruct high-quality volume under the condition
of sparse sampling. In general, our comprehensive recon-
struction method for fetal brain MRI mainly includes slice-
to-volume registration, the robust statistics calculation, the
PSF-based volume update, and adaptive kernel regression-
based volume update.

The rest of the paper is organized as follows. The detailed
methodology is discussed in Section 2. We design the actual
implementation of the algorithm in Section 3. Section 4
involves the experiment results and compares with those of
superresolution methods. In this section, we also discuss
how to determine the optimal values of related parameters
using GPU-based fast reconstruction. Finally, we make a
brief conclusion in Section 5.

2. Methods

2.1. Model of Data Acquisition and Motion Estimation. Dur-
ing data acquisition of fetal brain MRI, we collected several
stacks of 2D slices in different orientations. Because of the
fetal motion, the movement could be observed between these
slices. Assume that the acquired k misaligned 2D slices are
I j ∈ Rn×h, j = 1,⋯, k, and the corresponding sparse 2D slices

are Isj ∈ Rn×h, j = 1,⋯, k. During the slice acquisitions of
MRI, the inhomogeneity of the magnetic field Bj, j = 1,⋯, k
, affects the intensities of the slices and the scaling factor Sj′,
j = 1,⋯, k, is potentially different for each acquired slices.
In [30], the logarithmic transformation was chosen to make
the bias additive. However, field in-homogeneities are known
to be multiplicative. Differently, we use the multiplicative
bias field to form the multiplicative exponential model which
replaces the logarithmic model. So the scaled and bias cor-
rected slice I j′ can be modeled as

Isj = sparse I j
� �

,

vec I j′
� �

= Sj′ ⋅ exp −Bj

� �
⋅ vec Isj

� �
,

ð1Þ

where Isj is the sparsely sampled slice coming from the sparse
operator sparseð∙Þ, vecð∙Þ is the vectorization operator that
transforms a m-pixel (m = n × h) image Rn×h into a vector
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of intensity values Rm. The corresponding k-aligned 2D
ground-truth slices are I∗j ∈ Rn×h, j = 1,⋯, k. The relation-

ship between corrected slices I j′ and the ground-truth slices
I∗j can be denoted as follows:

vec I j′
� �

= θj ⋅ vec I∗j
� �

+ vec ej
� �

, j = 1,⋯, k, ð2Þ

where ej is the motion error, and θj denotes the unknown
motion transformation parameter of slice I∗j . Then, we can
define the following data matrix:

D = vec I1′
� �

;⋯ ; vec Ik′
� �h i

∈ Rm×k,

X = vec I∗1ð Þ ;⋯ ; vec I∗kð Þ½ � ∈ Rm×k,

E = vec e1ð Þ ;⋯ ; vec ekð Þ½ � ∈ Rm×k,

T total = θ1 ;⋯ ; θk½ � ∈ Rm×k:

ð3Þ

where D, X, E, and T total denote the observed data matrix,
reconstructed data matrix, motion error matrix, and the rigid
transformation matrix. Given these definitions, the observed
data matrix D can be described as D = T total∙X + E. The
motion error matrix E is mainly caused by misaligned slices.
The misaligned slices can cause the inaccurate reconstructed
volume, and we want to exclude the stack which has many
misaligned slices. However, we cannot directly calculate the
amount of stack motions for the observed data matrix D,
but a low-rank approximation D∗ as surrogate estimate can
be used to evaluate the stack motion indirectly [16]. It has
been shown that D∗ provides the best approximation to D
[31]. The difference value between D∗ and D measures the
motion error E. The smaller difference value indicates that
the stack has fewer motions. To provide the low-rank
approximation, the singular value decomposition is used to
decompose the data matrix D as Dm×k =Um×kSk×kV

T
k×k. The

singular value decomposition of D produces three matrices
U , S, and V . U and V are both orthogonal matrices, and S
is the diagonal matrix containing the singular values on the
diagonal. And the singular value decomposition of D∗ is the
first r singular values of the original matrix D, i.e., D∗

m×k =
U∗

m×rS
∗
r×rV

∗T
r×k, r = 1,⋯, k. U∗ and V∗ are the first r columns

of U and V , and S∗ is the top left r × r submatrix of S. The
relative error based on the Frobenius norm kD −D∗k is used
to measure the approximation between D∗ and D, i.e. δr =
kD −D∗

r k/kDk. For the different values of r = 1,⋯, k, we
can find the minimal rank r for each stack that satisfies the
given threshold β, i.e., arg minrfδr < βg. Combining δr and
r, the surrogate estimate for the amount of motion is given
by μr = δr∙r.

Based on the low-rank decomposition method, we can
choose one stack with minimal motion as the target template
and first perform the 3D rigid volumetric registration
between the target template and the other stacks (stack to

template registration). During the first registration, we can
get the corresponding rigid global transformation matrix
Tglobal. Then, second, the 3D rigid volumetric registration
between the reconstructed volume and all slices (slice to
reconstructed volume registration) can produce local trans-
formation matrix T local. The prerequisite for two registra-
tions is that all stacks and reconstructed volume should
be mapped to the world coordinates. Thus, we need to
define two transformations to map each pixel in the 2D
slice and each voxel in the reconstructed volume to a con-
tinuous location in the world coordinates. The first one is
world transformation Ws = ½θw1 ,⋯, θwk � that transforms the
discrete coordinates of a pixel ps = ½i, j, 0, 1�T ∈ Isj in the
acquired slice to the continuous local world coordinates.

The second one is world transformation Wr = ½θw′
1 ,⋯, θw′

k �
that transforms the discrete coordinates of a voxel pr =
½x, y, z, 1�T ∈ X in the reconstructed volume to the continu-
ous local world coordinates. Meanwhile, the mapping and
registrations can be combined and formulated as Equation
(4). Thus, Figure 1 illustrates the whole transformation pro-
cess from the pixels in the sparse slice to voxels in the 3D
reconstructed volume.

pr = W−1
r ⋅ T total ⋅Ws

� �
⋅ ps = W−1

r ⋅ Tglobal ⋅ T local
� �

⋅Ws
� �

⋅ ps:

ð4Þ

2.2. PSF-Based Volume Update. To model the actual appear-
ance of sampling data points in physical space, the point
spread functions (PSFs) are used to make the exact estima-
tion for every voxel value in the reconstructed target volume.
For the MRI ssFSE sequence in this paper, the exact shape of
the PSF has been measured using a phantom and rotating
imaging encoding gradient in [14]. The resulting shapes of
the PSF in in-plane and in through-slice are given by a sinc
function and the slice profile, respectively. Since the ideal
rectangle profile has the very dense and inefficient spatial
sampling, Kuklisova-Murgasova et al. [28] have proposed
to use the 3D Gaussian function with the full width at half
maximum (FWHM) equal to the slice thickness as an
approximation for the sinc function. The PSF function based
on 3D Gaussian profile is used to approximately model the
SSFSE sequence and is expressed as follows:

PSFG = exp −dx2

2σ2x
+ −dy2

2σ2y
+ −dz2

2σ2z

 !
, ð5Þ

where dx, dy, and dz are the offsets from the center of a
reconstructed voxel, σx and σy are the full width at half max-
imum (FWHM) in the in-plane x - and y -directions, and the
σz equals to the slice thickness in the through-plane direc-
tion. For each pixel in the sampled slice, the PSFG is applied
to obtain the corresponding PSF coefficient matrix. Since
every sampling pixel (i.e., ps) does not perfectly align itself
with the reconstructed voxel (i.e., pr), one ps contributes to
more than one pr. To model this, every voxel is sampled
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around its local surrounding neighbor in the reconstructed
volume to make sure that it has at least one correspond-
ing pixel in the acquired slices. Then, the PSF coefficients
are used to weigh the pixel’s contribution during thenth
iteration.

pr = W−1
r ⋅ T total ⋅W

� �
⋅ ps

� 	
, eps = W−1

r ⋅ T total ⋅W
� �−1

pr,

X pn+1r
� �

= PSF ps − eps� �
⋅ Sj′ ⋅ exp −Bj

� �
⋅ Iij psð Þ + X pnrð Þ,

ð6Þ

where b∙c is the operation that finds the nearest voxel center in
the space of the reconstructed volume. The reconstructed
volume X is updated iteratively through the PSF-based data
sampling model, and every voxel of X is filled at an arbi-
trarily chosen voxel size.

2.3. Robust Outlier Removal. Once the target volume is
updated based on the Gaussian PSF, the simulated slices Iss

= ½Iss1 ,⋯, Issk � ∈ Rn×h can be generated from the updated
reconstructed volume. Then, the misaligned error e∗ between
the corrected acquired sparse slices I ′ and simulated slices Iss

can be computed as

E e∗ð Þ = I ′ psð Þ − Iss psð Þ: ð7Þ

In [28], an EM model-based robust statistics approach
was proposed to classify each slice pixel into two classes:
inliers and outliers. Specially, the probability density function
(PDF) for the inlier class is modeled as a zero-mean Gaussian
distribution with variance σ2: E ~Nð0, σ2Þ, and the PDF for
the outlier class is modeled as a uniform distribution with
constant density, which is a reciprocal of the range ½a, b�
: E ~Uða, bÞ. Then, the likelihood of the observing error e∗

can be expressed as

P e∗ ∣ σ, cð Þ = c ⋅Nσ e∗ð Þ + 1 − cð Þ ⋅U , ð8Þ

where c is a mixing proportion of inliers representing the cor-
rectly matched voxels. Then, the posterior probability of a
voxel being an inlier can be computed using the expectation
step as

pij =
c ⋅Nσ e∗ij

� �
c ⋅Nσ e∗ij

� �
+ 1 − cð Þ ⋅U

: ð9Þ

The variables σ and c are updated by the following max-
imization step:

σ =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑pij ⋅ e∗ij

� �2
∑pij

vuuut ,

c =
∑pij
∑Nj

,

ð10Þ

whereN is the number of the pixels in the slice. By constantly
iterating, we can get the best parameters σ and c. The inlier
probability can be used to weigh the PSF-based volume
update. By the same way, each slice is classified into inlier
and outlier as well using the EM algorithm. The probability

of an inlier slice is defined as pslicej =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑ip

2
ij/Nj

q
. The slices

inferred to be an outlier are excluded from the PSF-based vol-
ume update to remove artifacts of motion corruption and
misregistration.

�e sparse slices
Template

Reconstructed volume

�e world coordinates

�e image coordinates �e target coordinates

Stack

Tglobal Tlocal

Wr

WS

p′r

pr

ps

p′s

Figure 1: The illustration of the whole transformation process from pixels ps to voxel pr.
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The purpose of the outlier removal is to make the frame-
work more robust by rejecting the outlier slices. The outlier
removal module is adopted directly from the cited previous
work [16], where the accuracy of the motion recognition
and outlier removal has been evaluated in detail by simulat-
ing the slice motion at a variety of amplitudes and comparing
the known motion amplitude to the surrogate measure pro-
vided through rank approximation. They have shown that
there was strong correlation between the amplitude of the
known motion and the values of μr derived from the stack
data matrices.

2.4. Steering Kernel Regression-Based Volume Update. For
sparse reconstruction, it is experimentally found that the
reconstructed volume still remains unallocated or inaccurate
voxels after PSF-based volume update and the reconstructed
result is noise as shown in Figure 2.

In [32], the kernel regression can make better nonpara-
metric estimation for the empty pixels. In this paper, the
steering kernel regression approach [29] is introduced to
update the voxels for the previous sparse volume data. The
model for the kernel regression is expressed as

Yi = r Xið Þ + εi, i = 1,⋯,M, ð11Þ

where rð∙Þ is the function of kernel regression, Xi = ðxi, yi, ziÞ
is the 3D coordinate of the voxel, εi is a zero-mean Gaussian
noise with variance σ2

0 as X ~Nð0, σ2
0Þ, and Yi is the voxel

after PSF-based Gaussian volume update.
Assuming that the voxel Xi is close to the known voxel X

in the reconstructed volume, we have the following approxi-

mation for rðXiÞ using the N-term-order Taylor series:

r Xið Þ ≈ r Xð Þ + ∇r Xð Þf gT Xi − Xð Þ
+ 1
2! Xi − Xð ÞT Ηr Xð Þf g Xi − Xð Þ+⋯

= β0 + βT1 Xi − Xð Þ + βT2 vech
� Xi − Xð Þ Xi − Xð ÞT
n o

+⋯,

ð12Þ

where ∇ and Η are, respectively, the gradient (3 × 1) and
Hessian ð3 × 3Þ operators; β0 = rðXÞ, which is the voxel value
of interest; and the vectors β1 and β2 are defined as

β1 = Gx,Gy,Gz

� �T = ∂r Xð Þ
∂x

, ∂r Xð Þ
∂y

, ∂r Xð Þ
∂z

� �T
, ð13Þ

β2 =
1
2

"
∂2r Xð Þ
∂x2

, 2 ∂
2r Xð Þ
∂x∂y

, 2 ∂
2r Xð Þ
∂x∂z

,

∂2r Xð Þ
∂y2

, 2 ∂
2r Xð Þ
∂y∂z

, ∂
2r Xð Þ
∂z2

#T
:

ð14Þ

vechð∙Þ is the half-vectorization operator that transforms the
upper triangular portion of a symmetric matrix into a
column-stacked vector, i.e.,

vech
a b c

b d e

c e f

2664
3775

0BB@
1CCA = a b c d e f½ �T : ð15Þ

Based on the least-squares formula, we can optimize
Equation (12) as

min
βnf gNn=0

〠
L

i=1

�
Yi − β0 − β1 Xi − Xð Þ

− β2 Xi − Xð Þ2−⋯�2 ⋅ 1
h
K

Xi − X
h


 �
,

ð16Þ

where L is the number of known voxels within the neighbor-
hood window, Kð∙Þ is the distance-weighted kernel function
which penalizes distance away from the local position, and h
is the smoothing parameter that controls the strength of the
penalty. The kernel function is chosen as the exponential
function, Gaussian function, or other functions which satisfy
the following conditions:

ð
tK tð Þdt = 0,ð
t2K tð Þdt = c:

ð17Þ

For the computation simplicity, the Gaussian-based

Figure 2: The reconstructed volume after PSF-based volume
update.
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kernel function is chosen in the steering kernel regression
[33]. The steering kernel adapts locally to image structures
(e.g., edges, flat, and texture areas), which are captured by
the kernel footprint. For example, the kernel footprint is large
in the flat areas, elongated in edge areas, and compact in tex-
ture areas. The 3D steering kernel function takes from

Ks Xi − Xð Þ =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
det Cið Þp
2πh2

exp −
1
2h2

C1/2
i Xi − Xð Þ�� ��2

2

� �
,

ð18Þ

where k∙k22 is the L2 norm and Ci is the symmetric covariance
matrix. Since the local image structure is highly related to the
gradient covariance, we can make the data-dependent

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 5: The original and spare slices: (a) the typical 30th original slice; (b–j) the corresponding simulated sparse slice by removing once
every 10% proportion pixels ranging from 10% to 90%.

Steering kernel
regression

No

𝛽1(0)

𝛽0(iter)

𝛽1(iter) = [Gx (iter), Gy (iter),Gz (iter)]T

C(iter) Yes
Converged?

Smoothing matrix
estimtion

Initial gradient
estimtion Final 3D volume

Figure 4: The iterative steering kernel regression.

Stacks to template
registration PSF based volume update Robust outlier

removal

Steering kernel regression
volume update

No

No

YesYes

Converged?

Converged?
Slice to volume

registration

Evaluation for
stack motion

Multiple MRT
sparse stacks

�e final 3D volume

Figure 3: Flowchart of the proposed algorithm.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 6: Continued.
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covariance matrix estimation utilizing the local edge gradi- ents:

Ĉi ≈

〠
Xiϵw

Gx Xið ÞGx Xið Þ 〠
Xiϵw

Gx Xið ÞGy Xið Þ 〠
Xiϵw

Gx Xið ÞGz Xið Þ

〠
Xiϵw

Gx Xið ÞGy Xið Þ 〠
Xiϵw

Gy Xið ÞGy Xið Þ 〠
Xiϵw

Gy Xið ÞGz Xið Þ

〠
Xiϵw

Gx Xið ÞGz Xið Þ 〠
Xiϵw

Gy Xið ÞGz Xið Þ 〠
Xiϵw

Gz Xið ÞGz Xið Þ

266666664

377777775
,

ð19Þ

(m) (n) (o)

(p) (q) (r)

(s) (t)

Figure 6: Reconstruction results of different data removal ratio by Kainz et al. method (2015) and our proposed method. (a), (c), (e), (g), (i),
(k), (m), (o), (q), (s) are the reconstructed results by Kainz et al. method for the sparsely sampled dataset with once every 10% data removal
ratio ranging from 0% to 90% respectively. (b), (d), (f), (h), (j), (l), (n), (p), (r), (t) are the reconstructed results by the proposed methodfor the
sparsely sampled dataset with once every 10% data removal ratio ranging from 0% to 90%, respectively. The red rectangle points to the
obvious difference, which appears as artifacts in the reconstructed image if no steering kernel regression volume updated is used.
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where w is a local analysis window and Gxð∙Þ, Gyð∙Þ, and
Gzð∙Þ are the gradients along the x-, y-, and z-directions.

Equation (16) can be expressed in the matrix form as

B̂ =min
b

Y −XFBk k2W =min
b

Y −XFBð ÞTW Y −XFBð Þ, ð20Þ

where Y = ½Y1, Y2,⋯, YL�T is the vector set of all known vox-

els, B = ½β0, βT
1 ,⋯, βT

N �
T
is the vector set of all estimated

parameters, W = diag ½KsðX0 − XÞ, KsðX1 − XÞ,⋯, KsðXL −
XÞ� is the diagonal matrix whose elements on the diagonal
are the value of Ksð∙Þ, and the other elements are zero.
According to the least-squares method, we have the following
solution:

B̂ = XT
FWXF

� �−1XT
FWY, ð21Þ

where B = ½β0, βT
1 ,⋯, βT

N �
T
, r̂ðXiÞ = bβ0 = eT1 ðXT

FWXFÞ−1XT
F

WY is the voxel value estimated by the steering kernel regres-

sion, bβ1 = ½Gx,Gy ,Gz�T is applied for computing the symmet-

ric covariance matrix Ĉi+1 iteratively, and XF is a coordinate
matrix expressed as follows:

XF =

1 X0 − Xð ÞT vechT X0 − Xð Þ X0 − Xð ÞT
n o

⋯

1 X1 − Xð ÞT vechT X1 − Xð Þ X1 − Xð ÞT
n o

⋯

: : : ⋯

: : : ⋯

1 XL − Xð ÞT vechT XL − Xð Þ XL − Xð ÞT
n o

⋯

266666666664

377777777775
: ð22Þ

Once the reconstructed volume is updated based on the
steering kernel regression, we update the simulated slices Iss

and the misaligned error Eðe∗Þ according to Equation (7).
To remove artifacts caused by motion corruption and mis-
registration and enhance image edges, we further update

the reconstructed volume using the following equation:

X pn+1r
� �

= PSF ps − eps� �
⋅ pslicej ⋅ pij ⋅ E e∗ð Þ + X pnrð Þ: ð23Þ

3. Implementation

The experiment computer is equipped with Intel Core i5
2.6GHz CPU, and the operating system is Windows 7 64
bit. We have implemented the proposed algorithm using
the Microsoft Visual Studio 2012 and Image Registration
Toolkit (IRTK) software package which includes many useful
methods to do registration, transformation, and other image
processing. In this section, we discuss the key implementa-
tion details. The diagram of the total algorithm is expressed
in Figure 3.

The first step is to evaluate the stack motion according to
the method of low-rank decomposition. We estimate the
amount of the stack motion by the surrogate μr = δr∙r and
choose the stack with the minimum amount of stack motion
as the template. The second step is to perform the global reg-
istration, which calculates the matrix of global transforma-
tion Tglobal from the other stacks to the template. The third
step is the iterative registration-based volume reconstruction,
which consists of the outer registration step and the inner
reconstruction step. The outer loop step includes the PSF-
based volume update, robust outlier removal, steering kernel
regression-based volume update, and slice to volume regis-
tration. The PSF-based volume update step makes the initial
estimation of the reconstructed volume based on Equation
(6). Then, the simulated slices are created and used for the
robust misaligned error calculation between the simulated
slices and the acquired slices as described in Section 2.3.
The robust statistic calculation achieves the classification of
outlier slices and inlier slices. The outlier slices are excluded
to remove artifacts of motion corruption and misregistration.
The slice to volume registration is to calculate the local trans-
formation T local from slices to reconstructed volume. The
whole transformation process is described by Equation (4).
The volume update based on the adaptive steering kernel
regression is aimed at reconstructing the accurate volume iter-

atively as shown in Figure 4. The initial gradients bβ1ð0Þ =
½Gxð0Þ,Gyð0Þ,Gzð0Þ�T are estimated by the classical kernel
regression. Then, the gradient information is used to calcu-
late the covariance smoothing matrix ĈðiterÞ (i.e., Equation
(19)). We use smoothing matrix to update the voxel valuebβ0ðiterÞ and its corresponding gradients bβ1ðiterÞ according
to Equation (21), respectively. To obtain a more reliable voxel
estimation, the process is iterated three times in our
experiment.

4. Experimental Results and Evaluation

4.1. Evaluation of Image Quality. In the experimental evalua-
tion, we used the datasets from the fetal MRI datasets [16],
which were acquired by a Philips Achieva 3T MR scanner.
During the experiment, the volunteers were lying at a 20° tilt
on the left side to avoid the pressure on the inferior vena cava.

Table 1: The RMSE and SSIM value comparison of fetal brain
reconstruction with different removal proportions, respectively.

Different
removal
proportions

RMSE MSSIM
Kainz et al.’s
method (2015)

Our
method

Kainz et al.’s
method (2015)

Our
method

0% 19.096 19.096 1 1

10% 32.578 29.120 0.9752 0.9759

20% 38.043 33.947 0.9690 0.9691

30% 43.171 36.790 0.9591 0.9608

40% 49.194 41.027 0.9478 0.9458

50% 55.894 45.480 0.9202 0.9366

60% 67.053 53.305 0.9063 0.9271

70% 81.522 62.964 0.8667 0.8993

80% 111.917 78.886 0.7862 0.8449

90% 180.483 112.249 0.6338 0.7407
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The volunteer’s womb was scanned with single-shot fast spin
echo (SSFSE) T2-weighted sequence. Three stacks of images
from axial, coronal, and sagittal orientation are used to con-
struct the final high-resolution volume. To obtain the sparse
stacks, we randomly remove different proportions of pixels of
the stack once every 10% proportion ranging from 10% to
90%. The different removal proportions control the removal
number of pixels. The typical 30th slice of the collected stack
and its corresponding simulated spare slices are illustrated in
Figure 5.

For different data removal ratios, the sparse stacks are
used to reconstruct the high-resolution 3D fetal brain MRI
volume with the method of Kainz et al. [16] (SVR with super-
resolution) and our proposed method. Figure 6 shows the
reconstructed results by Kainz et al.’s method and the pro-
posed method for the sparsely sampled dataset with once
every 10% data removal ratio ranging from 0% to 90%,
respectively. In Figure 6, we can observe that as the removal
ratio increases, the reconstructed results by Kainz et al.
method have muchmore noise for the sparse sampled dataset
compared with our proposed method. On the other hand, the
proposed method is capable of reconstructing high-

resolution images without obvious artifacts even for the
90% data removal ratio.

For the sake of quantitative evaluation, the image quality
assessment index of root mean square error (RMSE) [9] and
mean structure similarity (MSSIM) [34] is introduced to
quantitatively assess the algorithms under different removal
ratios. The RMSE score can be computed by the following
equation:

RMSE =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N
〠
N

i=1
z ið Þ − g ið Þð Þ2

vuut , ð24Þ

Table 2: The running time comparison of the adaptive kernel regression method for fetal brain reconstruction based on CPU and GPU,
respectively.

Processor
Single-threaded

CPU
Multithreaded

CPU
GPU

Single-threaded
CPU vs. GPU

Multithreaded
CPU vs. GPU

Gradient information (s) 416.960 108.762 5.047 82.62 21.55

Covariance smoothing matrix (s) 46.082 48.902 0.580 79.45 84.31

Steering kernel regression (s) 1402.727 887.629 15.091 92.95 58.82

Total time (s) 1865.769 1045.293 20.718 90.06 50.45

Table 3: The RMSE and MSSIM values and running time comparison of fetal brain reconstruction with different window sizes ranging from
3 × 3 × 3 to 9 × 9 × 9, respectively.

Window size w w = 3 w = 5 w = 7 w = 9
RMSE 125.061 125.869 129.298 126.929

MSSIM 0.6796 0.6663 0.6606 0.6763

TIME (s)
7:056 = 4:810 + 0:534 +ð

1:712Þ
10:268 = 4:822 + 3:714 +ð

1:732Þ
124:678 = 4:801 + 118:211∗ +ð

1:666Þ
222:353 = 4:798 + 215:888∗ +ð

1:667Þ
Note: TIME denotes the time caused only by running the adaptive kernel regression method. T = ðA + B + CÞ: A is the time to calculate the gradient
information. B is the time to calculate the covariance smoothing matrix. C is the time to calculate steering kernel regression function. T is the sum of A, B,
and C. ∗ indicates that CPU is chosen as the running processor for the covariance matrix calculation due to the limitation of GPU kernel memory for the
large window size.

(a) (b) (c) (d)

Figure 7: Reconstructed results of the MRI data with different window sizes w: (a) w = 3, (b) w = 5, (c) w = 7, and (d) w = 9.

Table 4: The RMSE and MSSIM value comparison of fetal brain
reconstruction with different structure sensitivities α ranging from
0.1 to 0.5, respectively.

Structure sensitivity α = 0:1 α = 0:2 α = 0:3 α = 0:4 α = 0:5
RMSE 125.06 112.10 99.927 91.073 97.556

MSSIM 0.6823 0.7117 0.7584 0.7712 0.7523
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where zð∙Þ is the reconstructed result, gð∙Þ is the ground-
truth volume, and N is the number of voxels. A good recon-
struction method is capable of estimating the removal data
very close to the original data. Given zð∙Þ and gð∙Þ, a low
RMSE value represents that the estimated result is satisfying
while a high RMSE means that the interpolation accuracy is
poor.

The structure similarity (SSIM) index explores the struc-
tural information for image quality assessment based on the
main idea that the pixels have strong interdependency when
they are spatially close. The SSIM metric is calculated based
on the intensity, contrast, and structure and is computed as

SSIM z, gð Þ =
2μzμg + c1
� �

2σzg + c2
� �

μ2z + μ2g + c1
� �

σ2z + σ2g + c2
� � , ð25Þ

where μz , μg, σz , σg, and σzg denote the mean, variance, and
covariance on square window, which moves pixel by pixel in
images zðiÞ and gðiÞ, respectively. The two variables c1 = k1L
and c2 = k2L are used to stabilize the division with weak
denominator. Here, L is the dynamic range of pixel value
(e.g., 255 for 8-bit grayscale image), with k1 = 0:01 and k1 =
0:03 by default. Since the SSIM metric is calculated on vari-
ous windows of a volume image, the mean SSIM (MSSIM)
index is used in this experiment to assess the overall image
quality:

MSSIM z, gð Þ = 1
M

〠
M

i=1
SSIM zi, gið Þ, ð26Þ

where M is the number of local windows in the image.
MSSIMðz, gÞ ∈ ½0, 1�; the higher MSSIM indicates better
structural similarity between two images.

For the clinical datasets, it is impractical to obtain the
ground-truth volume in advance. For the sake of fair com-
parison among different methods, the quantitative evaluation
is performed based on an average reconstructed volume. We
first use the original stacks without data removal to recon-
struct a complete volume by Kainz et al.’s method (2015)
and our method (e.g., Figures 6(a) and 6(b)), respectively.
Both volumes are adopted to create an average volume as
the ground truth. Table 1 shows the quantitative results of
the RMSE and MSSIM values with different data removal

ratios for each method. As can be seen, the results of Kainz
et al.’s method produce the highest RMSE scores and lowest
scores for all sampling rates. Both the high RMSE value and
low MSSIM value for Kainz et al.’s method indicate poor
image quality because of the artifacts and noise. For all levels
of sampling rate, the proposed method performs better than
the Kainz et al.’s method. More importantly, both of the dif-
ference of the RMSE and MSSIM index between Kainz et al.’s
method and our method increase while the data removal
ratio increases, indicating that our method outperforms
much more compared with the Kainz et al.’s method when
the data removal ratio increases.

4.2. Evaluation of Computational Efficiency. Our approach is
capable of reconstructing the accurate volume from the
highly sparse sampling dataset, but it requires largely compu-
tational burden as well due to the iterative kernel regression
estimation. To reduce the long processing time of the adap-
tive kernel regression, the proposed method is accelerated
by the GPU-based parallel implementation based on the
NVIDIA GeForce GTX 1080 and CUDA 8.0 libraries. In
the experiment, we make the evaluation of the computational
efficiency of the adaptive kernel regression method, including
the computation of the gradient information, the covariance
smoothing matrix, and the steering kernel regression. The
computational efficiency of the other modules (i.e., motion
estimation, stack-to-template registration, PSF-based volume
update, robust outlier removal, and slice-to-volume registra-
tion) has been evaluated in detail in [16]. The comparisons
are based on the single-threaded CPU, multithreaded CPU,
and GPU for the dataset of 80% data removal ratio under
the parameter setting as the kernel size kc = 5 and the
smoothing parameter hc = 2:0 in the initial gradient estima-
tion step based on the classical kernel regression, the steering
kernel size ks = 7 and the steering smoothing parameter hs

(a) (b) (c) (d)

Figure 8: Reconstructed results of the MRI data with different structure sensitivities α: (a) α = 0:2, (b) α = 0:3, (c) α = 0:4, and (d) α = 0:5.

Table 5: The RMSE and MSSIM value comparison of fetal brain
reconstruction with the regularization parameter λ ranging from
0.1 to 2.0, respectively.

Regularization
parameter λ

λ = 0:1 λ = 0:5 λ = 1:0 λ = 1:5 λ = 2:0

RMSE 91.073 91.447 91.276 91.566 91.071

MSSIM 0.7720 0.7710 0.7708 0.7684 0.7732
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= 0:5 in the steering kernel regression step, and the window
size w = 3, the regularization parameter λ = 2:0, and the
structure sensitivity α = 0:4. The practical running time for
the proposed method is shown in Table 2. For single-
threaded CPU, the running time of the adaptive kernel
regression method is 1865.769 s, which includes the compu-
tation of the gradient information in 416.96 s, the covariance
smoothing matrix in 46.082 s, and the steering kernel regres-
sion in 1402.727 s. For the multithreaded CPU, we use 4
threads to run the adaptive kernel regression method and
its computational time is 1045.293 s, indicating less improve-

ment compared with the single-threaded CPUs. The running
time of the GPU implementation is 20.718 s in total. From
Table 2, it can be observed that the GPU-based processing
time has significantly decreased by 98.89% and 98.02%, com-
pared with the single-threaded CPU and the multithreaded
CPU, respectively.

4.3. The Choice of the Adaptive Kernel Regression Parameters.
There are seven parameters which can be adjusted to affect
the reconstructed image quality for the proposed method.
These parameters include the kernel size kc and the smooth-
ing parameter (i.e., the kernel bandwidth) hc in the initial
gradient estimation step based on the classical kernel regres-
sion, the steering kernel size ks and the steering smoothing
parameter hs in the steering kernel regression step, and the
window sizew, the regularization parameter λ, and the struc-
ture sensitivity α (0 ≤ α ≤ 0:5) in the covariance matrix esti-
mation step. In our method, kc and hc are related with the
initial calculation of gradient information and have a negligi-
ble effect in the experiment. For the adaptive sparse

(a) (b) (c) (d)

Figure 9: Reconstructed results of the MRI data with different regularization parameters λ: (a) λ = 0:5, (b) λ = 1:0, (c) λ = 1:5, and (d) λ = 2:0.

Table 6: The RMSE and MSSIM values and running time comparison of fetal brain reconstruction with different steering kernel sizes ks
ranging from 3 × 3 × 3 to 9 × 9 × 9, respectively.

Steering kernel size ks = 3 ks = 5 ks = 7 ks = 9
RMSE 91.07 79.554 79.005 81.502

MSSIM 0.7791 0.7973 0.8054 0.7781

TIME (s)
7:907 = 5:407 + 0:581 +ð

1:919Þ
11:995 = 5:404 + 0:581 +ð

6:010Þ
21:148 = 5:402 + 0:581 +ð

15:165Þ
37:333 = 5:408 + 0:581 +ð

31:344Þ
Note: TIME denotes the time caused only by running the adaptive kernel regression method. T = ðA + B + CÞ: A is the time to calculate the gradient
information. B is the time to calculate the covariance smoothing matrix. C is the time to calculate the steering kernel regression function. T is the sum of A,
B, and C.

(a) (b) (c) (d)

Figure 10: Reconstructed results of the MRI data with different kernel window sizes: (a) ks = 3, (b) ks = 5, (c) ks = 7, and (d) ks = 9.

Table 7: The RMSE and MSSIM value comparison of fetal brain
reconstruction with different steering smoothing parameters hs
ranged from 0.1 to 2.5, respectively.

Steering smoothing
parameter

hs = 0:1 hs = 0:5 hs = 1:0 hs = 1:5 hs = 2:0

RMSE 79.005 78.886 79.230 79.159 82.87

MSSIM 0.7927 0.8092 0.7933 0.7944 0.7946
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reconstruction, covariance matrix estimation and steering
kernel estimation are the two of the important steps and their
parameters (i.e., w, α, λ, ks, and hs) play an important role in
the volume reconstruction and deserve much more
investigation.

With the help of GPU-based fast implementation, we
firstly adjust the parameters (i.e., w, α, and λ) of the covari-
ance matrix estimation one by one. The window size w
decides how many neighbor points in the gradient matrix
are taken for the estimation of the covariance matrix.
Table 3 shows the RMSE and MSSIM values and the running
time for different window sizes. Both of the RMSE and
MSSIM values differ slightly, indicating that the window size
has a negligible influence on the reconstructed image quality,
as shown in Figure 7. However, the running time increases
with the increase of window size. It can be observed that
the window size ofw = 3 is chosen because of its faster imple-
mentation and lower RMSE value.

Table 4 shows the RMSE and MSSIM values influenced
by the structure sensitivity parameter α, and the lowest
RMSE value and highest MSSIM value are obtained for the
structure sensitivity α = 0:4 indicating the best performance
of the algorithm. Figure 8 shows the corresponding recon-
structed images for different α values. As can be seen, the
result with large structure sensitivity (e.g., α = 0:5) results in
oversmoothing image, while small structure sensitivity
(e.g., α = 0:2) overemphasizes the image edges. The experi-
ment shows that the structure sensitivity α has a significant
influence on the reconstructed volume.

Under different regularization parameter settings, the
RMSE and MSSIM measurements of the reconstructed
results are calculated and shown in Table 5. The illustrative
results are further shown in Figure 9. The regularization
parameter λ is used to suppress the noise. However, the reg-
ularization parameter has negligible influence on the recon-
structed image quality in the experiments.

The next group parameters (i.e., ks and hs) come from the
steering kernel regression for the adaptive voxel value estima-
tion. The kernel window size ks has a great impact on the
processing time for the kernel regression-based algorithm
under different data removal proportions. When the kernel
window increases, the estimation of each voxel involves
more nearby pixels and leads to more computation [32].
The smaller the kernel window size is, the faster our algo-

rithm runs. On the other hand, if the size of the kernel win-
dow is too small, we could obtain the fault result, because
there are not enough samples to make the current voxel
estimation, especially for large data removal proportion.
The larger the data removal proportion is, the sparser the
sampled data will be. The RMSE and MSSIM index and
processing time measurement of the reconstructed results
under different kernel window sizes are shown in Table 6.
With the increase of the kernel window size, the running
time of steering kernel regression function is becoming lon-
ger. The corresponding images of different steering kernel
sizes are shown in Figure 10. The proper kernel window
size (i.e., 7 × 7 × 7) produces a trade-off between the pro-
cessing time and the reconstruction accuracy under differ-
ent removal proportions.

Table 7 shows the RMSE and MSSIM values and run-
ning time with different steering smoothing parameters hs.
As can be seen, the results with the steering smoothing
parameter (i.e., hs = 0:5) achieve the lowest RMSE value
and highest MSSIM value among these settings. The recon-
structed results produced by different steering smoothing
parameters are shown in Figure 11. In [33], it has been given
that the steering smoothing parameter indicates the “foot-
print” of the kernel function. The large footprint of the ker-
nel function could reduce the noise but at the cost of
oversmoothing details, while small footprints are desirable
to preserve the edges. In the experiment, the footprint set-
ting hs = 0:5 is chosen for reaching a trade-off between the
noise reduction and edge preservation. Finally, all parame-
ters of the adaptive steering kernel regression algorithm are
determined as follows: the window size w = 3, the regulariza-
tion parameter λ = 2:0, the structure sensitivity α = 0:4, the
steering kernel size ks = 7, and the steering smoothing
parameter hs = 0:5. Under such parameter setting, the RMSE
value decreases from 126.47 to 78.89, indicating the quality
improvement by 37.62%.

5. Conclusion

In this paper, we proposed an adaptive reconstruction
method to deal with the sparse sampling dataset for fetal
brain MRI. Our method combines the latest SVR framework,
including the stack motion evaluation, PSF-based volume
update, robust outlier removal, slice-to-volume registration,

(a) (b) (c) (d)

Figure 11: Reconstructed results of the MRI data with different steering smoothing parameters: (a) hs = 0:5, (b) hs = 1:0, (c) hs = 1:5, and (d)
hs = 2:0.
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and the proposed adaptive kernel regression-based volume
update. Compared with the existing SVR framework, our
method has advantages of sparse volume reconstruction
and is capable of reconstructing superresolution image even
for 80%~90% data removal. With the capability of sparse
reconstruction, the data sampling time can be greatly short-
ened and thus, the motion artifacts can be reduced indirectly.
To accelerate the voxel estimation, we use the CUDA to
implement the steering kernel regression approach. For the
proposed method, the running times of GPU-based imple-
mentation are speeded up to 90x than that of the CPU. The
GPU-based parallel implementation of the proposed method
is more practical to meet the requirements of fetal brain MRI.
Meanwhile, we make the detailed investigation on the choice
of parameters for the adaptive kernel regression-based vol-
ume reconstruction with the help of GPU-based fast imple-
mentation. To summarize, the structure sensitivity α and
the steering kernel window size ks are two of the important
parameters on sparse kernel regression volume reconstruc-
tion. Meanwhile, the kernel window size has a strong rela-
tionship with the running time. Larger window size
requires longer processing time. Overall, our approach is
used to reconstruct superresolution image from the highly
sparse sampled dataset of fetal brain MRI corrupted with
motion artifacts. One of its potential applications includes
other motion organ MRI reconstruction, such as the heart
MRI with the heart beating motion artifacts.
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