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Abstract

Escherichia coli is the leading cause of Gram-negative neonatal septicemia in the United

States. Invasion and passage across the neonatal gut after ingestion of maternal E. coli

strains produce bacteremia. In this study, we compared the virulence properties of the neo-

natal E. coli bacteremia clinical isolate SCB34 with the archetypal neonatal E. coli meningitis

strain RS218. Whole-genome sequencing data was used to compare the protein coding

sequences among these clinical isolates and 33 other representative E. coli strains. Oral

inoculation of newborn animals with either strain produced septicemia, whereas intraperito-

neal injection caused septicemia only in pups infected with RS218 but not in those injected

with SCB34. In addition to being virulent only through the oral route, SCB34 demonstrated

significantly greater invasion and transcytosis of polarized intestinal epithelial cells in vitro

as compared to RS218. Protein coding sequences comparisons highlighted the presence of

known virulence factors that are shared among several of these isolates, and revealed the

existence of proteins exclusively encoded in SCB34, many of which remain uncharacter-

ized. Our study demonstrates that oral acquisition is crucial for the virulence properties of

the neonatal bacteremia clinical isolate SCB34. This characteristic, along with its enhanced

ability to invade and transcytose intestinal epithelium are likely determined by the specific

virulence factors that predominate in this strain.

Introduction

Escherichia coli is the most common Gram-negative bacterium causing neonatal sepsis in the

United States. E. coli now surpasses group B streptococcus as the most common cause of neo-

natal bacteremia in premature newborns and in otherwise normal febrile infants [1–3]. Mor-

tality in newborns with E. coli bacteremia is as high as 40% [4], and meningitis is often a

devastating consequence associated with severe neurodevelopmental disabilities in survivors
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[5]. There is currently no vaccine or any other preventive strategy to control neonatal E. coli
sepsis. The incidence of this disease continues to increase and rising antibiotic resistance rates

are a public health concern as well since this drastically limits treatment options [6].

The pathogenesis of E. coli bacteremia in newborns is not well understood. Bacterial passage

across the neonatal gut after ingestion of maternal E. coli strains around the time of delivery

likely is an early step in pathogenesis, as it has been demonstrated in animal models [7, 8].

Neonatal E. coli strains invade and transcytose intestinal epithelial cells prior to septicemia [9,

10]. Although several E. coli virulence factors important for invasion of the blood-brain barrier

have been characterized, including the K1 capsule, OmpA, IbeA, Cnf1, and NlpI [11–14],

those that contribute to intestinal translocation and neonatal septicemia prior to, or in the

absence of meningitis, have not been studied in detail.

We have recently compared the in vitro intestinal invasion ability of several neonatal E. coli
bacteremia isolates and demonstrated that some strains invaded intestinal epithelium signifi-

cantly better than others [15]. Strains that belonged to the increasingly prevalent multi-locus

sequence type (ST) 131 were significantly more invasive than those within other STs. Clinical

isolate SCB34 was identified among the high invasive ST131 group. Here, we have focused on

this contemporary, non-K1 strain and investigated its virulence in newborn animals, its ability

to transcytose across polarized intestinal epithelium, and compared its genome to the arche-

typal meningitic strain RS218. Our results provide evidence that the virulence of SCB34 is

dependent on the oral route of inoculation. This is in contrast to RS218, which is fully virulent

following introduction into neonatal rats by either oral or intraperitoneal inoculation. Interest-

ingly, SCB34 also was found to be significantly more efficient in traversing polarized intestinal

epithelium by transcytosis than strain RS218. Finally, a comparison of the genomes between

SCB34 and RS218 revealed the presence of candidate virulence factors in SCB34 not found in

RS218 that may be related to the specific virulence properties and increased invasiveness after

oral inoculation of this unique clinical isolate.

Materials and methods

E. coli strains and intestinal epithelial cells

SCB34 is a neonatal bacteremia E. coli clinical isolate recovered from a septic newborn as pre-

viously described, which was formerly referred to as strain 10 in a prior study [15]. SCB34 is

an ST 131 H30 strain that demonstrated resistance to multiple antibiotics including ciprofloxa-

cin and gentamicin, and a high invasion phenotype [16]. RS218 is an archetypal E. coli K1

strain that was isolated from the cerebrospinal fluid of a neonate with meningitis [17]. E. coli
laboratory strain DH5α has been described [18]. T84 intestinal epithelial cells were obtained

from the American Type Culture Collection (cell line CCL-248). T84 cells were maintained in

a 1:1 mixture of Dulbecco’s modified Eagle’s medium and Ham’s F-12 medium (Gibco, Invi-

trogen; Carlsbad, CA) and 100 U/ml penicillin, 100 μg/ml streptomycin supplemented with

5% (v/v) fetal bovine serum, and incubated at 37˚C, 5% CO2. Upon full confluency, T84 cells

develop tight junctions and differentiate into polarized monolayers when grown in vitro. The

development of T84 epithelial polarization was determined by an increase of transepithelial

electrical resistance as described [19].

Newborn rat models of bacteremia

Two distinct models were used to compare the virulence properties of SCB34 and RS218 in

newborn animals. DH5α was used as a control nonpathogenic strain. Outbred pregnant

Sprague-Dawley rats with timed conception (Charles River Laboratories International Inc.,

Wilmington, MA) gave birth 7–9 days after arrival in our vivarium. For oral inoculation
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experiments, newborn (22 to 26 hour-old pups) were randomly cross-fostered among litters

prior to receiving each 105 CFU of mid-log bacteria grown in lysogeny broth (LB) medium.

The inoculum was mixed in a 10 μL aliquot of PBS/0.1% gelatin and was administered orally

with a sterile micropipette in a nontraumatic manner, allowing the pup to actively suck and

swallow. Pups were assessed twice daily for signs of illness, and for up to seven days post-infec-

tion (p.i.). Humane endpoints were used in these animal experiments, and pups were moni-

tored for possible signs of rapid progression of bacteremia which included: Labored breathing,

hypothermia to touch, lethargy, gross weight loss or poor feeding, immobility/loss of righting

reflex, or severe tremor. If any of these signs were present, pups were humanely euthanized

prior to 7 days. Any mortality was recorded throughout the experiment, and on day 7 p.i.

blood was collected to determine the presence of bacteremia. For intraperitoneal experiments,

pups of similar age as above were injected with 102 CFU of each strain intraperitoneally (IP).

The inoculum was grown in identical fashion and was mixed in a 50 μL PBS/0.1% gelatin ali-

quot that was injected IP. Identical humane endpoints were also used for the IP animal experi-

ments. The pups were observed twice daily for up to 3 days p.i., and 50 μL of blood was then

collected for determination of bacteremia prior to euthanasia after this observation period. In

both models, groups of 10 pups per strain were tested. All animals were anesthetized with

inhaled isoflurane prior to blood collection to minimize suffering. Humane euthanasia was

performed by CO2 inhalation. No unexpected deaths occurred, as all deaths were attributed to

bacteremia. The proportion of mortality or bacteremia in each group was compared using the

chi-square or Fisher’s test as appropriate; a p value <0.05 was considered significant. All ani-

mal experiments were performed with the approval and in strict accordance with the recom-

mendations of the University of Oklahoma Institutional Animal Care and Use Committee

(IACUC), under protocol number 15-099-I.

Intestinal epithelial cell invasion assays

To confirm the ability of SCB34 and RS218 to invade intestinal epithelium in vitro, invasion

assays were performed similarly to previously described [15], using a modified gentamicin

protection assay. The modifications were done taking into account SCB34’s resistance to gen-

tamicin but susceptibility to amikacin, and to improve the efficiency of our methods. Briefly,

T84 intestinal epithelial cells were grown to 75 to 80% confluence in 24-well tissue culture

plates. Prior to infection, antibiotic-free tissue culture media was substituted overnight. Each

E. coli strain was grown to mid-logarithmic phase in tissue culture media (TCM) and 106 CFU

of each E. coli isolate were used to infect triplicate wells for an approximate multiplicity of

infection of 10 per well. After centrifugation at 800 xg for 5 minutes at 4˚C, the infected epithe-

lial monolayers were incubated for 1 hour at 37˚C, 5% CO2, to allow bacteria to invade. The

monolayers were then washed and treated with amikacin at a concentration of 200 μg/mL

(Sigma-Aldrich; St. Louis, MO) for two additional hours to kill extracellular bacteria. After

antibiotic treatment, the T84 cells were washed, lysed with 0.1% Triton X-100, and the recov-

ered intracellular bacteria were quantified. The percent invasion was calculated as follows:

(CFU recovered/CFU inoculated) x 100. Mean invasion percent was compared among the

strains using one-way ANOVA comparisons; a p value <0.05 was considered significant.

In vitro bacterial transcytosis assay

A transcytosis assay was used to assess the ability of the clinical isolates to translocate across

polarized T84 cells. T84 cells (104, passage 7–10) were seeded onto 0.3-cm2 growth area semi-

permeable filter supports with 3.0 μm pores (Corning; Corning, NY). Cells were cultured for

7–14 days until becoming fully confluent and polarized, showing a transepithelial electrical
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resistance (TEER) of� 1000 Ohm�cm2 measured by a voltmeter and companion electrodes

(World Precision Instruments; Sarasota, FL) [20]. Inserts with polarized T84 cells were trans-

ferred to antibiotic-free TCM overnight and then were infected on the apical side with 105

mid-log CFU E. coli per insert mixed in antibiotic-free TCM containing 1 mg/mL of fluores-

cein isothiocyanate (FITC)-dextran 4000Da (FD4) (Sigma-Aldrich; St. Louis, MO) [21]. Non-

infected inserts were included as additional controls. The inserts were maintained at 37˚C, 5%

CO2 throughout the experiment. At 30-minute intervals, the inserts were transferred to col-

lecting wells containing fresh sterile antibiotic-free TCM, and the collecting well TCM from

the previous time point was retrieved for CFU quantification on LB agar plates. After the last

time point at 6 hours p.i., FD4 concentrations were also determined using the Tecan Infinite1

200 PRO Microplate Fluorescence Reader (Tecan; Männedorf, Switzerland). FD4 measure-

ments allowed us to compare the permeability to this small molecule of the polarized infected

T84 cells to that of non-infected monolayers. Baseline and post-infection TEER values were

also obtained. Each strain was tested in groups of 5–6 inserts per experiment, in 3 separate

experiments. The amount of transcytosed CFU after infection with each strain was analyzed

using a mixed-distribution Bayesian model to account for the presence of zeroes, and the vari-

able number of inserts per experiment. An adapted repeated measures, zero-inflation Poisson

(ZIP) model [22] fit the data best. The initial, structural zeroes from the ZIP model were ana-

lyzed using a discrete-time logistic regression model predicting time until first translocation,

and all subsequent well outputs were analyzed using a generalized linear model predicting

piece-wise growth for a Poisson outcome. Models were fit using MCMC estimation in Win-

BUGS [23]. A log-transformation was applied to sum of one plus each data observation. Bayes-

ian 95% confidence intervals were used to determine statistical significance (i.e., intervals for

significant contrasts did not contain zero).

Growth curve comparisons in lysogeny broth (LB) and tissue culture

media

Growth was compared between SCB34 and RS218 in the two different media that were used in

the in vitro and in vivo experiments described above. A single colony from each strain grown

overnight on LB agar was used to inoculate 5 mL of either LB or TCM that were incubated

overnight at 37˚C with shaking at 250 rpm. A 1:100 dilution of these overnight cultures was

incubated in either LB or TCM for 2 hours at 37˚C, 250 rpm. The two-hour cultures were pel-

leted by centrifugation and resuspended to an optical density (OD) at 605 nm of 0.7 using LB

or TCM as appropriate before inoculating fresh LB or TCM (0.1% v/v). Growth curves were

performed in 300 μL volumes with five replicates for each growth condition in each individual

experiment. OD measurements were taken at 600 nm at thirty-minute intervals with the Biosc-

reen C Microbiology Reader (Oy Growth Curves AB Ltd.; Helsinki, Finland) set to incubate at

37˚C with constant shaking (machine setting “low”). In addition to OD measurements, growth

curves in either LB or TCM were performed for each isolate by CFU plate quantification at

30-min intervals. One-way repeated measures ANOVA was used to compare OD values

between the strains. A p value <0.05 was considered significant.

Sequence analysis and comparison among E. coli isolates

To identify and compare the gene content of SCB34 and RS218, we first performed whole-

genome sequencing of these two isolates on an Illumina MiSeq using a 250-bp paired-end

library. The paired end reads were assembled de novo using the A5 assembly pipeline and

annotation was performed using RAST or the National Center for Biotechnology Information

(NCBI) Prokaryotic Genomes Annotation Pipeline, respectively [16, 24]. We then compiled a
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database of SCB34, RS218 and the annotated genomes from 33 phylogenetically diverse strains

representative of all E. coli strains deposited in GenBank. Clusters of putative orthologous

proteins were generated for all strains examined using CD-hit [25]. The sequence identity

threshold utilized was 80% across 80% of the total protein length while all other parameters

remained at the default values on CD-hit. From the CD-hit output, a database was generated

that contained 22,084 clusters including between 1 and 35 genomes per cluster. Using python

scripts, the orthologous protein cluster results from CD-hit were organized into a genome ver-

sus protein cluster tables in which the presence or absence of an ortholog in a given genome is

identified with either a 1 or 0, respectively. Heatmaps were created from comparison tables

using the gplots package in R (version 2.17.0 [http://CRAN.R-project.org/package=gplots]),

employing hierarchical clustering to compare rows and columns and to construct the dendro-

grams. The list of the 22,438 clusters that were included in the CD-hit output, and their respec-

tive accession numbers are detailed in S1 Table.

Cluster sequences identified with CD-hit were manually curated by searching the NCBI

Microbial Genomes database using the Basic Local Assignment Search Tool (BLAST) and que-

rying all representative genomes, optimizing for highly similar sequences (Megablast).

Results

Clinical E. coli isolates SCB34 and RS218 display unique oral and

intraperitoneal virulence phenotypes

To compare the virulence of SCB34 and RS218 in newborn animals, individual groups of neo-

natal rats were inoculated orally with either clinical isolate, or the nonpathogenic DH5α strain

(Fig 1). Oral inoculation with SCB34 or RS218 resulted in comparable mortality of 30% and

40%, respectively, which was significantly higher than in animals inoculated with DH5α, which

demonstrated no illness (Fig 1A). Among surviving animals on day 7 after oral inoculation,

Fig 1. Virulence in newborn rats after inoculation with neonatal E. coli isolates SCB34 or RS218. 1A. Animals were inoculated orally and survival

post-inoculation is shown (data from three separate experiments, n = 10 animals per group, per experiment). *p<0.05 SCB34 vs. DH5α, **p<0.03

RS218 vs. DH5α. 1B. Survival after intraperitoneal inoculation (data from two separate experiments, n = 10 animals per group, per experiment). ‡p <
.001 RS218 vs. SCB34 or RS218 vs. DH5α.

https://doi.org/10.1371/journal.pone.0189032.g001
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bacteremia was present in 14% and 39% of those infected with SCB34 or RS218, respectively

(p = ns,S7 Table), and in none infected orally with DH5α. In contrast, IP infection of neonatal

pups with SCB34 or DH5α produced no mortality, whereas IP inoculation with RS218 killed all

animals within two days (Fig 1B). Bacteremia in survivors 3 days after IP inoculation with

SCB34 or DH5α was not significantly different (S7 Table).

Invasion of intestinal epithelial cells in vitro by neonatal E. coli clinical

isolates

We next examined the invasion capacity of SCB34 as compared to RS218. The non-pathogenic

laboratory strain DH5α was used as a negative control. In contrast to the results of the viru-

lence assays above, strain SCB34 was significantly more invasive compared to the pathogenic

RS218 strain (p�0.03) and also more invasive than the DH5α laboratory strain (p<0.001) (Fig

2). As expected, RS218 was more invasive than the nonpathogenic DH5α (p<0.01).

Transcytosis comparisons of neonatal E. coli clinical isolates across

polarized intestinal epithelial cells

SCB34 and RS218 were compared regarding their in vitro ability to transcytose polarized intes-

tinal epithelium. Polarized T84 cells grown on permeable inserts were inoculated with both

isolates and the number of bacteria recovered in the collecting wells was compared over time.

Fig 3 shows the calculated cumulative number of CFU at each 30-min time point after apical

Fig 2. Invasion of intestinal T84 epithelial cells by SCB34 and RS218. The nonpathogenic laboratory strain DH5α
was used as control. SCB34 demonstrated the highest invasion ability among the three strains. *SCB34 vs. RS218

(p�0.03); **SCB34 vs. and DH5α (p<0.001); and ***RS218 vs. DH5α (p<0.01).

https://doi.org/10.1371/journal.pone.0189032.g002
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inoculation of polarized T84 cells with each strain. Significantly greater numbers of cumulative

CFU were recovered from collecting wells of polarized epithelia infected with RS218 or SCB34,

starting at 0.5 and 1 hrs. p.i., respectively, as compared to the noninfectious control strain

DH5α. When comparing SCB34 and RS218, significantly greater cumulative amounts of CFU

transcytosed from SCB34 infected inserts starting at 5 hrs. p.i.. The amount of FD4 recovered

at the end of the 6 h incubation in the collecting wells of inserts infected with each E. coli strain

was no different compared to non-infected inserts, which indicates that the paracellular per-

meability of the polarized epithelium did not increase after infection. These results suggest that

the bacteria recovered from all inserts passed across the polarized intestinal cell barrier via the

transcellular (not the paracellular) route. The integrity of the polarized monolayers throughout

the infection process was further corroborated by measuring TEER values at the end of the 6 h

incubation, which were maintained through this time point p.i..

Growth curves of neonatal E. coli isolates

The animal experiments, and tissue culture assays were performed with bacteria from mid-log-

arithmic phase cultivated in either LB or TCM, respectively. We confirmed that the rate and

Fig 3. Transcytosis of E. coli clinical isolates across polarized intestinal epithelial cells. *p<0.05 RS218 vs. DH5−α; † p<0.05 SCB34 vs. DH5−α;

‡ p<0.05 SCB34 vs. RS218. Model−calculated mean of cumulative loge (CFU+1) values over time are shown. Error bars reflect 95% Bayesian

confidence intervals. Points were jittered to improve clarity (combined data from three separate experiments).

https://doi.org/10.1371/journal.pone.0189032.g003
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extent of growth of SCB34 and RS218 was indistinguishable, when measured either by viable

count (Fig 4A and 4B) or by optical density, indicating that the differences observed in inva-

sion, virulence, and transcytosis were not likely the result of differences in growth rates among

the strains examined.

Fig 4. Growth curves of neonatal E. coli clinical isolates RS218 and SCB34. Growth curves performed in

(4A) LB media and (4B) tissue culture media (TCM) by plate counts. Each plot shows mean CFU values in

triplicate samples per time point of each individual clinical isolates. Error bars represent one standard

deviation.

https://doi.org/10.1371/journal.pone.0189032.g004
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Whole-genome comparisons between SCB34, RS218 and other

representative E. coli isolates

To begin to understand the basis for the phenotypic differences between SCB34 and RS218, we

compared the protein coding sequences of these two strains [16, 24] using DH5α as a non-

pathogen for comparison. The rationale for this comparison is that the protein coding capacity

within each genome largely represents the biologically functional capacity for each strain

(regulatory RNAs and non-coding regulatory sequences notwithstanding). Fig 5 displays a

comparison of all protein coding sequences found in SCB34, RS218, and DH5α in a Venn dia-

gram. Surprisingly, the number of protein coding sequences unique to strain SCB34 (1,107)

was almost twice the number unique to either RS218 (676) or DH5α (697), and so this com-

parison suggested a greater functional complexity of SCB34 compared to the archetypal neona-

tal isolate RS218.

Given the large number of differences observed among these three strains, we next com-

pared the protein coding capacity of SCB34 to that of a representative group of 33 E. coli strains

with the goal to focus on the unique biological potential of strain SCB34. The list of all strains

and their respective phenotype included in this comparison is included in S4 Table. Informa-

tive clusters of orthologous proteins genes (COGs), excluding clusters unique to each genome

and core clusters common to all genomes, were used in the analysis to identify patterns be-

tween these genomes that might be responsible for the variability in biological activity between

strains. These comparisons are summarized in the heat map shown in Fig 6.

Fig 5. Comparison of gene distribution among SCB34, RS218, and DH5α. The Venn diagram shows genes that are

common or unique genes in each isolate. The unique proteins have been determined by comparison between the 3 strains.

https://doi.org/10.1371/journal.pone.0189032.g005
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In this heat map, red and black blocks represent the presence and absence, respectively, of a

cluster member in a given genome. Surprisingly, the hierarchical clustering of these strains by

protein sequence similarity suggested that SCB34 appears to have a functionally different pro-

tein coding capacity than strain RS218. RS218 showed close similarity to E. coli intestinal iso-

lates SE15, a commensal strain isolated from the feces of a healthy adult [26], and to NRG857c,

an adherent-invasive O83:H1 E. coli recovered from a patient with Crohn’s disease [27]. Strain

SCB34, on the other hand, appears to be most similar to a small clade of strains that includes

E. coli CFT073, a prototypic extra-intestinal pathogenic E. coli (ExPEC) isolate recovered from

a bacteremic woman with pyelonephritis [28], and to E. coli 07798, an O157:H39 atypical

Fig 6. Heat map comparing clusters of genes present (red) or absent (black) in each E. coli genome. SCB34 and RS218 are highlighted by the

arrows, among 33 additional representative E. coli strains. The dotted-line boxes highlight the clade that includes SCB34, and the names of the two

additional E. coli strains with the most similar protein-coding sequences within the clade. A hierarchical clustering of the genes found in all genomes is found

at the left of the heat map, while a tree based on hierarchical clustering of genomes is shown at the top of the heat map.

https://doi.org/10.1371/journal.pone.0189032.g006
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enteropathogenic (aEPEC) strain isolated from a patient with diarrhea [29]. Among the pro-

tein coding sequences that are shared by SCB34, CFT073, and 07798, and that show no simi-

larity to RS218, are some proteins encoded by a fim gene cluster, which encode elements of

type 1 fimbriae. The FimF protein in this cluster (accession number KDN05313.1) shows 98%

similarity to corresponding coding sequences in CFT073 and 07798, and no similar sequence

in RS218. In addition, FimD (accession number KDN05314.1) in SCB34 shows 99% similarity

with sequences present in both CFT073 and 07798, but these sequences share less than 67%

similarity to those encoding this protein in RS218. Another protein coding sequence shared

among SCB34, CFT073, and 07798 is sequence KDN05904.1, which is 98% similar to antitoxin

HigA present in both CFT073 and 07798. This toxin-antitoxin system is not found in RS218.

Furthermore, SCB34 encodes a serine protease autotransporter enterotoxin EspC (accession

number KDN06139.1), whose beta-barrel domain is similar to the C-terminus domain of the

Pic serine protease precursor also present in CFT073 (WP_001045652.1), and to the C-termi-

nus domain of the SepA autotransporter encoded by 07798 (EKI44969.1) (S1 Fig). This

domain is only 67% similar to a sequence annotated as a “disrupted peptidase” present in

RS218.

In addition to identifying the above similarities between SCB34 and representative E. coli
genomes, the CD-hit analysis also suggested that 282 protein coding genes that were unique to

SCB34 (S2 Table). These 282 unique genes include 147 genes that encode hypothetical pro-

teins, and 135 genes with known function. Several of these genes identified as unique based

on the thresholds used by CD-hit (80% identity, covering 80% of the sequence), were closely

similar to sequences in some of the comparison strains included, e.g., some showed 100%

identity to<80% sequence coverage. Therefore, manual curation of the CD-hit generated list

was performed using BLASTn as described in Methods section in order to identify the subset

of sequences with zero identity to those in strains included in our initial comparison. This

additional analysis yielded 58 of such sequences which are presented in S3 Table. Among these

58 SCB34 unique genes with known function we found those encoding a L-lactate permease

(KDN05013.1), and a zinc peptidase (KDN08838.1). Another unique sequence in SCB34

encodes an altronate hydrolase, a component of the pathway for the degradation of hexuro-

nates, which are utilized by some intestinal E. coli strains during growth in intestinal mucus

[30]. Additional unique protein coding sequences found in SCB34 are those of an O-antigen

synthesis cluster that is not present in any strain included in our comparisons. This region

encompasses sequences highly similar to those encoding O25b antigens in ST131 strains [31],

and includes a dTDP-4-dehydrorhamnose 3, 5-epimerase, several glycosyltransferases, and a

Wxz flippase involved in the membrane translocation of O-antigen. We also identified a tran-

scriptional regulator of the Ic1R family (KDN04846.1).

In order to confirm that our analysis reliably identifies unique factors relevant in various E.

coli pathotypes, we performed an additional CD-hit comparison that focused on 16 strains

among our initial group of 35 for which experimental data exist that confirm the role of some

of their individual virulence factors in determining their pathotype. We also included in this

additional comparison three of the commensal strains and the laboratory strain selected in our

initial analysis (Table 1). This analysis showed that the number of unique genes in each of

these 16 strains, when compared to the initial group of 35, is variable. For example, we found

197 and 846 unique genes in each of the AIEC we included, respectively, and a range from 135

to 544 unique genes in UPEC strains. Commensal strains showed a range from 73 to 370

unique genes. The lowest number of unique genes was found in laboratory strain MG1655.

Although the total number of unique genes in each of these 16 strains did not consistently

associate with a particular pathotype, this analysis confirmed that our comparisons can distin-

guish individual virulence factors that are known to be characteristic of specific pathotypes.
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Examples of this include the presence of unique genes encoding colicins in strain NRG857c,

type II and III secretions system proteins in strain Sakai, agg and aat genes in strain O104:H4

str. 2011C-3493, espC and efa1 in strain E2348/69, tibA in strain ETEC H10407, and unique

enterobactin synthesis genes in CFT073. S5 Table contains all the unique protein coding

sequences found by CD-hit comparisons in each of these 16 strains compared to the larger

group of 35 E. coli strains.

To further understand the phenotypic differences between SCB34 and RS218, we per-

formed an additional analysis to identify unique genes in these two invasive neonatal isolates,

compared to the focused group of 16 strains. The CD-hit comparison among these 18 strains

demonstrated 471 unique genes in SCB34 and 206 in RS218, thus corroborating the greater

complexity of the SCB34 compared to RS218. Moreover, we also confirmed the presence of

unique protein coding sequences in RS218 such as those encoding three unique glycotrans-

ferases likely involved in the synthesis of O antigen, a fimbrial protein (AJM73146.1), and sev-

eral membrane proteins including AJM73951.1, AJM73684.1, and AJM73683.1. The unique

SCB34 and RS218 genes obtained from the CD-hit comparison are presented in S6 Table.

SCB34 and RS218 belong to phylogroup B2, which is overrepresented among E. coli isolates

producing extra-intestinal infections. However, despite sharing the same phylogroup, these two

neonatal isolates possess unique genotypic characteristics that are likely to determine their indi-

vidual phenotypes and that distinguish them from each other. This is highlighted in the heatmap

shown in Fig 7 which shows a comparison of only the B2 strains among those in Table 1.

Discussion

In this study we have demonstrated that both SCB34 and RS218, two E. coli strains that pro-

duced neonatal bacteremia in humans, possess a high invasion ability into intestinal epithelial

cells in vitro, and cause septicemia after oral acquisition in newborn animals. E. coli strains

Table 1. Representative pathotypes and number of unique genes in 16 strains selected among all

strains included in Fig 6.

E. coli Strain Pathotype Unique genes (n)

NRG857c AIEC 197

541–15 AIEC 846

O104:H4 str. 2011C-3493 EAEC 236

Sakai EHEC 489

48 EHEC 560

E2348/69 EPEC 288

07798 aEPEC 545

ETEC H10407 ETEC 252

CFT073 UPEC 544

IAI39 UPEC 135

UMN026 UPEC 212

KTE33 UPEC 504

ED1a Commensal 370

SE15 Commensal 73

SE11 Commensal 294

MG1655 Laboratory strain 68

AIEC, Adherent invasive E. coli; EAEC, enteroaggregative E. coli; EHEC, enterohemorrhagic E. coli; EPEC,

enteropathogenic E. coli; aEPEC, atypical enteropathogenic E. coli; ETEC, enterotoxigenic E. coli; UPEC,

uropathogenic E. coli.

https://doi.org/10.1371/journal.pone.0189032.t001
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Fig 7. Heatmap demonstrating the relationship of E. coli strains belonging to phylogroup B2, including SCB34 and RS218.

https://doi.org/10.1371/journal.pone.0189032.g007
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belonging to different pathotypes, and other invasive Gram-negative bacteria such as Shigella
and Salmonella have shown variable invasion rates of epithelial cells [32, 33]. Our in vitro inva-

sion studies produced comparable results to previous experiments that evaluated the invasion

ability of T84 epithelial cells by RS218 and demonstrated a significantly greater invasion by

RS218 compared to the nonpathogenic HB101 strain [9].

Other researchers have shown that neonatal invasive E. coli strains produce septicemia in

newborn animals after oral inoculation [7, 8, 10, 34–37]. Most prior studies have investigated

the virulence of neonatal E. coli isolates after oral inoculation in newborn animals using strains

that express the K1 capsule, likely because 70–90% of neonatal meningitis E. coli isolates are

known to possess this virulence factor [38–40]. However, only 30–60% of E. coli strains that

cause bacteremia without meningitis in young infants carry the K1 capsule [15, 38, 41–43].

Although the K1 capsule plays a significant role in the development of (particularly high-

degree) bacteremia, its role is not essential for the development of neonatal sepsis after bacte-

rial oral acquisition as we demonstrated in our experiments performed with SCB34, a non-K1

E. coli neonatal isolate. The K1 capsule and other virulence factors have been identified as rele-

vant in the pathogenesis of neonatal meningitis [13], but the factors that facilitate intestinal

invasion and transcytosis of neonatal E. coli isolates have not been fully ascertained. SCB34, a

non-K1, contemporary ST131 E. coli clinical isolate produced bacteremia in newborn animals

when administered orally but did not after IP injection in our experimental model. In contrast,

RS218 produced neonatal bacteremia when administered via either route. This phenomenon

could be explained by the presence of virulence factors in SCB34 that determine its lethal phe-

notype only when acquired orally, and that are dependent on their interaction with the neona-

tal gut to render this organism fully virulent. Thus, the particular virulence phenotype of

SCB34 provides an opportunity to expand our understanding of the mechanisms that deter-

mine the development of neonatal bacteremia after oral acquisition of E. coli.
Both SCB34 and RS218, belong to phylogroup B2 which is largely represented among E.

coli strains that cause bacteremia in newborns [42, 44]. We speculate that specific virulence

factors relevant to the pathogenesis of neonatal bacteremia are present in phylogroup B2 E. coli
strains that can cause disease through various mechanisms, and that despite the phenotypic

heterogeneity among these isolates, the phylogenetic signal of these strains is not obscured.

Phylogroup assignment is thus relevant for the epidemiological characterization of neonatal

invasive E. coli strains. However, whole-genome sequencing data provides more precise infor-

mation of the content and variation of specific virulence factors involved in the pathogenic

mechanisms utilized by these strains [45].

Only a few virulence factors have been demonstrated in neonatal invasive E. coli strains to

be relevant in the bacterial interaction with intestinal epithelium [46–49]. Oral inoculation

with mutants lacking clbA and clbP, which are genes involved in colibactin synthesis and matu-

ration, respectively, resulted in decreased intestinal colonization and virulence in newborn

animals [37]. These genes are within the pks 54-kb genomic island present in many ExPEC

strains with high virulence characteristics [50]. Interestingly, SCB34 lacks pks-associated

genes, including clbA and clbP. This highlights the existence of additional unknown virulence

factors that are present in neonatal invasive E. coli strains such as SCB34, that are critical in the

process of intestinal translocation that precedes neonatal septicemia. Moreover, and in con-

trast to RS218, SCB34 does not carry a plasmid [16]. The 114 kb plasmid in RS218 encodes sev-

eral virulence factors that are relevant to the in vitro invasion properties of this strain, and to

its ability to cause septicemia and meningitis in newborn rats [51]. In SCB34, all the necessary

virulence factors to cause septicemia after oral infection are on its chromosome.

The cluster analysis revealed that each strain possesses protein compositions that can delin-

eate them from one another, and clustered them with other representative E. coli strains with
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similar proteomes. The distinct genomic characteristics between RS218 and SCB34 likely

determine the phenotypic profile that we observed in our experiments. For example, RS218

carries the neuDBACES genes specific for the K1 capsule, a well-known factor that interferes

with complement-mediated killing and phagocytosis [52]. These genes are not present in

SCB34, or in any of the strains we included in our comparisons, with the exception of IAI39.

This trait would explain at least in part, the ability of RS218 to be pathogenic when injected IP

which is contrast to the phenotype that we observed in SCB34.

We found that RS218 was most similar to E. coli isolates SE15 and NRG857c. SCB34, on the

other hand, was most similar to E. coli strains 07798 and CFT073. Among the virulence factors

shared by SCB34 with CFT073 and 07798, but not with RS218, we found components of type 1

fimbriae, which are known to be relevant in the pathogenesis of urinary tract infections by

contributing to bacterial colonization and invasion of uroepithelium, biofilm formation, and

establishment of intracellular bacterial communities [53, 54]. The distribution of various fim-

brial gene clusters among E. coli is characteristic of particular pathotypes [55]. FimF, for exam-

ple, is a tip fibrillum component that functions as an adaptor and is involved in the adhesive

properties of these structures [56]. FimF is relevant to the epithelial invasion process by E. coli
[57] but its role in the pathogenesis of neonatal bacteremia caused by E. coli intestinal invasion

and transcytosis in the neonatal gut has not been yet investigated.

Another protein-coding sequence similar among these three strains that is absent in RS218

is the antitoxin HigA, a component of the HigB-HigA type II toxin-antitoxin module ubiqui-

tously present in bacteria [58]. The higBA loci contribute to bacterial adaptation by the genera-

tion of persisters, individual cells that have entered a dormant state that renders them tolerant

to antibiotics and other environmental stressors [59]. Sequences encoding the beta domain of

an EspC protein in SCB34 were also shared with CFT073, and 07798 but not with RS218. EspC

is secreted by the T5SS and internalized by the T3SS into intestinal epithelial cells where it

causes cytoskeletal damage by cleaving cytoskeleton and focal adhesion proteins [60]. Although

the effector domain was not shared among SCB34, CFT073, and 07798, the common beta-bar-

rel structure in these three strains may be a relevant factor by serving as a translocation domain

for various effectors possibly relevant to virulence in these strains, as the nonspecificity of the

beta domain to a single passenger domain has been suggested [61] Whether these, or other

shared virulence factors present in SCB34 could be relevant to the pathogenesis of E. coli strains

causing neonatal sepsis remains to be investigated.

Our initial CD-hit analysis also identified 282 unique coding sequences in SCB34, and from

this group, manual BLASTn inspection yielded 58 sequences that are absent entirely in all of

the representative strains studied. Another unique sequence in SB34 encodes an altronate

hydrolase. Altronate hydrolases degrade D-galacturonates, which are present in intestinal

mucus and are a nutritional source for pathogenic E. coli strains. Although this degradation

pathway does not appear to be directly involved in intestinal colonization [62], it does confer a

selective growth advantage in the mammalian intestine [63]. Moreover, genes involved in the

metabolism of D-galacturonate were upregulated during growth of pathogenic E. coli in urine,

and human blood [64, 65]. The direct role of this metabolic pathway in the pathogenesis of

neonatal E. coli sepsis has not been investigated. SCB34 is also unique compared to the strains

used in this study in regards to the presence of the O25b antigen, a characteristic common to

ST131 strains that have recently disseminated in populations of all ages worldwide, and are

known for carrying multiple antibiotics resistance and virulence factor genes [66]. The preva-

lence of ST131 strains as a cause of invasive disease in newborns and infants continues to

increase for reasons that are unclear [15, 67]. It has been proposed that ST131-O25b strains

have an enhanced ability to colonize the gut [68]. Colonized hosts by these strains include chil-

dren in day care who may contribute as a reservoir [69]. Specific O antigens are known to
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contribute to E. coli virulence by enhancing the bacterial interaction with epithelial barriers.

The O6 antigen of CFT073 promotes colonization of the urinary tract by this strain [70].

Moreover, restoration of the O16 antigen in strain MG1655 enabled it to colonize the gut and

produce a lethal infection in Caenorhabditis elegans [71]. Whether the O25b antigen present in

ST131 strains such as SCB34 specifically enhances the ability of neonatal E. coli strains to colo-

nize, invade and transcytose intestinal epithelium will need to be elucidated. Among the

unique proteins in SCB34 we also identified an Ic1R transcriptional regulator. The Ic1R family

of regulators controls carbon metabolism and plant virulence in certain enterobacteriaceae,

multidrug resistance, solvent tolerance in Pseudomonas, and inactivation of quorum sensing

signals in Agrobacterium [72]. It is possible that similar mechanisms controlled by this regula-

tor in SCB34 also play a role in the pathogenesis of intestinal invasion and virulence by this iso-

late in newborns. Another unique protein we found in SCB34 is YjbH, an outer membrane

lipoprotein involved in exopolysaccharide synthesis and predicted to have a β-barrel confor-

mation [73]. Exopolysaccharides in E. coli are relevant to its virulence because they are

involved in cell attachment, biofilm formation, and protection against host innate immune

responses. The role of this unique protein as a relevant virulence factor to the pathogenesis of

SCB34 in newborns will need to be investigated.

Our project has identified unique protein coding sequences in SCB34, a neonatal bacter-

emia isolate that requires the interaction with the newborn’s gut to produce septicemia. These

finding are the basis for additional in vitro and in vivo investigations currently undergoing in

our laboratory, aimed at elucidating the role of the unique factors in SCB34 that are relevant to

the pathogenesis of neonatal E. coli septicemia.

Conclusions

In summary, we have demonstrated that the E. coli clinical isolate SCB34 has the distinct ability

to produce neonatal bacteremia after oral inoculation but not after IP injection, and to invade

and transcytose intestinal epithelial cells more efficiently as compared to the archetypal neona-

tal meningitis isolate RS218. The phenotypic characteristics of SCB34, along with the details of

its unique gene repertoire revealed in this study, highlight the existence of several virulence

factors that could participate in the development of septicemia after E. coli oral acquisition in

newborns. In addition to the known virulence factors unique to SCB34, our study identified

147 hypothetical proteins with a potential role in the pathogenesis of neonatal E. coli bacter-

emia. The characterization of these factors is underway in our laboratory. Our results provide

the foundation for an improved understanding of the pathogenesis of neonatal sepsis, and

thus for the development of novel strategies against bacteremia caused by oral route of infec-

tion with E. coli in newborns.
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