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Abstract: Temperature rise during Raman spectroscopy can induce chemical alterations of the
material under analysis and seriously affect its characterization. Thus, such photothermal side effects
can represent a serious problem to be carefully controlled in order to safeguard the integrity of the
material and its spectral features. In this work, an innovative probe for thermally controlled portable
Raman spectroscopy (exc. 785 nm) equipped with infrared sensing lines was developed. It included
an infrared source and two thermopile sensors, which allowed to perform real-time measurements of
the local emissivity of the material surface under laser excitation. The emissivity, which is needed in
order to monitor the temperature of the irradiated surface through infrared radiation measurements,
represents the complementary component of the reflectance in the radiative energy balance. Thus,
total reflectance, temperature measurements and Raman spectroscopy were integrated in the present
probe. After independently assessing the reliability of the former in order to derive the emissivity of
variety of materials, the probe was successfully applied on pigments, paint layers, and a painting on
canvas. The results achieved evidence the significant exploitation potential of the novel tool.

Keywords: laser heating; emissivity; Raman spectroscopy; pigment; IR sensor

1. Introduction

Raman spectroscopy is a widespread technique in archaeometry, conservation of
cultural heritage (see for example) [1], and many other fields. In particular, it is often
used to analyze paint layers in order to collect information on the execution techniques,
authenticity, and the state of conservation of a given artefact, as well as to define and assess
the result of conservation treatments, such as those based on laser ablation [2,3]. However,
extensive applications on easel and mural painting including many measurements are
rarely carried out because of intrinsic risks of damage associate to the high operative laser
intensities and total radiant exposures.

Although Raman spectroscopy is generally considered a non-destructive technique,
laser heating represents a crucial issue for materials with high optical absorption at the
excitation wavelength and low critical temperatures. Laser heating may produce band
broadening and shifting, background increase, and even sample damage [4]. Phase transi-
tions, discolorations, or photo-degradation of the samples can be induced by laser irradia-
tion at the typical intensities and total radiant exposure of Raman spectroscopy [5–7]. The
measurement and control of the laser induced temperature rise can allow avoiding data
misinterpretation and undesired alterations.

It is well known that temperature affects the distribution of the population of the
ground and excited vibrational states, so it can be found out from the ratio of Stokes
and anti-Stokes lines intensities [8,9]. However, the anti-Stokes bands for many materials
are very weak so it is not trivial to achieve reliable temperature using their intensities.
Moreover, this method is expensive because it requires the use of a Super-Notch filter and
it is not suitable for in situ measurements [10,11].
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In the present work, we introduce a novel, non-contact temperature monitoring and
then control method based on the measurement of the surface emissivity and its infrared
(IR) emission. Emissivity (ε) is defined as the ratio of the radiant emittance of the sample
and that of the black body, as recorded at the same temperature. It is a dimensionless
number and it varies from zero (perfect reflector) to one (black body). This parameter,
which represents the efficiency with which a material radiates the absorbed energy, must
be known or preliminarily determined whenever approaching non-contact temperature
measurements based on IR sensors [12–14].

Various setups and instruments have been developed and demonstrated, which allow
measuring the emissivity. The main experimental techniques used are based on calorime-
try [15,16], radiometry [17,18], or thermography [19–21], usually referred to as direct
methods, and on the measurement of spectral reflectance, usually referred to as indirect
method [12,22]. The latter is straightly derived from the energy balance for a diffusing
sample under irradiation: Ei = Ea + ER + ET. Since the absorbed energy, Ea, equals the
emitted energy, Ee, (ET and ER do not contribute to the latter), the energy balance can be
rewritten as Ei = Ee + ER + ET or also as 1 = ε + R + T, where R and T are the reflectance
and transmittance, respectively. Furthermore, T is negligible in the IR region for most solid
samples, thus usually: 1 = ε + R, which corresponds to the complementarity between ε and
R (emissivity increases when the reflectance decreases).

In this work, we report an innovative IR sensing setup allowing for carefully mapping
the emissivity of a material surface, as derived from reflectance measurements, and then
to monitor and control the temperature rise during compositional mapping using Raman
spectroscopy. The setup included an integrating sphere with four radiation channels for the
measurement of the total reflectance by means of IR radiation source and sensor channels, of
the thermal radiation from the laser excited area, and of the Raman spectrum, respectively.
The demonstration of its effectiveness and reliability along with the small sizes of its
components make the thermal control channels here developed suitable for integration
with a variety of portable as well as laboratory Raman instruments. Furthermore, such an
approach to the measurement of the CW laser induced heating could also be useful in laser
material processing and other.

2. Experimental Set-Up
2.1. Emissivity Measurement

Different materials of known emissivity (ε) ranges were selected, according to the
literature data [23–27], in order to cover the whole interval between 0–1 through suitable
sample preparation phases. The set of materials included metals (Al, Cu, Pb, Fe, and
steel with different surface textures), plywood, gypsum, glass, marble, paper, PVC tape,
and limestone.

The respective values of ε, which depends on the specific surface features, were directly
measured using a setup including Peltier cell, digital contact-thermometer equipped with
K type thermocouple (Fluke, Seaway, WA, USA), and indirectly derived through an IR
sensor based on a thermopile (TPR) with detection range 6–14 µm (Phidgets Inc., Calgary,
AB, Canada). The latter is provided with a blackbody calibration (ε = 1), digital reader,
and app allowing to set any emissivity value between 0–1 and to plot the temperature
time evolution.

Each sample was then placed on a small aluminum slab in strict thermal contact
with the heated face (76 ◦C) of the Peltier cell and a thermocouple, which measured its
temperature. When the sample reached the thermal equilibrium, its temperature was
registered and, simultaneously, the corresponding IR emission was detected by the TPT
sensor (a thermopile similar to TPR). Thus, the emissivity of the sample surface was
derived by suitably setting its value in the app of the sensor in order to achieve the same
temperature as that directly measured by the thermocouple.

Following several preliminary tests, a probe terminated by an integrating sphere
equipped with four radiation channels and allowing for indirect emissivity and temperature
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measurements along with Raman spectroscopy was developed (Figure 1). The internal
surface of the sphere was coated with a reflecting aluminum film providing a homogeneous
distribution of the IR radiation within the sphere itself during the measurement of the
reflectance, R, of the samples under investigation. The latter was carried out using a
partially collimated IR source (EOT, Pordenone, ITA) focused onto the sample surface
through a ZnSe lens L1 (f 1 = 15 mm) and the thermopile sensor, TPR.
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Figure 1. Schematic setup of the thermally controlled Raman probe including emissivity and tem-
perature measurements channels (see the text). The four radiation channels were housed in the
integrating sphere shown in the inset.

The IR emission produced by the laser heating of the sample during Raman ex-
citation was collected in a confocal configuration and imaged onto the active area of
the thermopile, TPT (same specs as those of TPR) using a ZnSe lens L2 (f 2 = 15 mm,
magnification factor = 3).

A LabVIEW™ virtual machine was developed for controlling the IR source and
the thermopile sensors, deriving the reflectance and emissivity values, and performing
Raman spectroscopy through a dedicated graphic user interface (GUI). To derive the total
reflectance, R, the IR radiation scattered by the sample was compared with that scattered
by a Cu sample, as derived through the contact thermal measurement described above:
RCu = 1 − εCu. The sample temperature was detected in both IR source ON (T) and OFF
(T0) conditions for removing the room temperature background. Moreover, the thermal
contribution of the sphere, as measured with the IR source switched ON without the target
(background component due to the radiation scattering of the entrance and exit apertures)
was subtracted (Tsp). R was hence calculated according to the following formula:

R =
T4 −

(
T4

0 + Tsp
4)

T4
Cu −

(
T4

0 + Tsp4
)RCu, (1)

where TCu is the recorded temperature for the Cu reference sample and RCu is the cor-
responding reflectance, while the fourth powers of the temperatures come from the re-
lation between the emittance and the temperature given by the Stefan-Boltzmann law.
Equation (1) allowed to indirectly derive the emissivity as εR = 1 − R.

2.2. Temperature Control

The Raman system was a commercial fiber coupled portable spectrometer (i-Raman,
B&W Tek, Township, NJ, USA) extensively used in archaeometry and conservation [28,29].
Its laser excitation beam (785 nm) was focused onto the sample at an angle of 30◦ (with
respect to the normal) through a plano-convex lens L3 (Figure 1) with a focal length
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f3 = 20 mm. The scattered light was collected through the same lens and sent to a spectrom-
eter providing a spectral resolution of about 8 cm−1.

The sizes of the focal spot were measured using a digital microscope (Dino-Lite,
AnMo Electronics Co., New Taipei City, Taiwan) at high magnification (500×). The laser
spot showed an elliptical shape (Figure 2a) with enough regular transverse (blue) and
longitudinal (black) profiles (Figure 2b), respectively.
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Figure 2. (a) Image of the focal spot of the laser excitation beam (500×). (b) Transverse (blue line)
and longitudinal (black line) section of the focal spot and corresponding best fit (orange and red line)
using super-Gaussian functions.

The best fit of the curve was achieved through a super-Gaussian function with index
1.2 (Figure 2b). The semi-major and semi-minor axis corresponding to 77% of the total area
were about 215 and 168 µm, respectively. Thus, the mean diameter of the focal spot was
about 383 µm.

The temperature was calculated using the following formula derived from Stefan-
Boltzmann black body law (see for example [30]) by taking into account the environmen-
tal contribution and the fact that the laser spot covered only a part of the field of view
(FoV) area [6]:

T =
4

√
T4

s − (1 − ε)·RA·T4
0 ·θ − (1 − RA)·T4

0
ε·RA·θ

(2)

where Ts is the apparent blackbody temperature (ε = 1) provided by the thermopile sensor
TPT, RA = laser spot area/FoV area, and θ the lens transmissivity (0.95 in the present setup).

Equation (2) represents the recalibration of the thermal sensor according to the specific
setup and material understudy, whose emissivity, ε, was measured as described above. The
areal ratio RA in Equation (2) was experimentally determined by moving a thin metallic
wire across the laser spot, along the Y and X axis, respectively. The wire was heated at
a constant temperature (70 ◦C) with a suitable electric current and for each position, two
temperatures were measured: with the laser switched OFF and ON, respectively. The
detected temperature rises ∆T(X) and ∆T(Y) with the laser OFF shown in Figure 3 (blue
and black lines, respectively) provided the FoV of the sensor TPT. The same scans with the
laser ON (red and green lines, respectively) provided an estimation of the diameter of the
wire (180 µm) and an alternative measurement of the diameter of the laser focal spot (about
380 µm). Furthermore, the measurement also allowed to verify the good alignment of the
sensor TPT.
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ON (red).

By considering the area of the laser spot, as measured using the beam analyzer
(Figure 2), and the FoV area, as derived from FWHMs of the curves of Figure 3, the
areal ratio to be used in Equation (2) was RA = 0.14.

3. Results

As mentioned above, various material samples were formerly investigated. The
measurement of their emissivity according to the direct (εT) and indirect (εR) method,
respectively, are listed in Table 1, along with some related literature data (εref).

Table 1. Emissivity of various material samples, as measured according to the direct (εT) and indirect
(εR) method, respectively, and corresponding literature data (εref).

Material εT εR = 1 − R εref

Al, polished 0.04 0.04 0.04–0.06 [23]
Cu, burnished 0.05 0.05 0.07 [23]

Pb, shiny 0.07 0.13 0.08 [23]
Fe, unoxidized 0.1 0.05 0.05 [24]

AISI 316 0.17 0.16 0.14 [25]
Pb, rough 0.51 0.49 0.43 [24]

Cu, oxidized 0.71 0.70 0.60–0.70 [23]
Plywood 0.76 0.88 0.83 [26]
Gypsum 0.87 0.92 0.80–0.90 [23]

Glass, smooth 0.88 0.89 0.92–0.94 [24]
White marble 0.89 0.93 0.95 [24]
White paper 0.90 0.91 0.70–0.90 [23]
Black tape 0.92 0.93 0.90 [27]
Limestone 0.97 0.97 0.88–0.95 [24]

As shown, an overall satisfactory agreement was achieved, which evidenced, in
particular, the reliability of the indirect method using the integrating sphere shown in the
inset of Figure 1. This is also clearly evidenced in Figure 4, showing the congruence with
the physical relation between reflectance and emissivity in the approximation of opaque
materials [23]. Thus, such a comparison demonstrated the functionality and reliability
of the setup of Figure 1 and of the associated reflectance method for the samples listed
in Table 1.
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As mentioned above, one of the main potential applications of the present innovative
thermally controlled Raman probe concerns the field of archaeometry and conservation of
cultural heritage. Thus, following the assessment of the effectiveness of the present thermal
monitoring approach, the novel probe (Figure 1) was tested on a set of pigments in linseed
oil binder applied on glass slides. The samples and the corresponding emissivity values, as
measured using the direct method (εT) or the indirect method based on reflectance (εR), are
reported in Table 2.

Table 2. Emissivity of pigments (powder) and paint layers with linseed oil binder using the direct
(εT) and indirect (εR = 1 − R) method, respectively.

Pigment εT εR = 1 − R

Cinnabar 0.55 0.69
Massicot 0.63 0.53

Pb red 0.67 0.76
Cd yellow 0.79 0.90

Co blue 0.80 0.83
Cr green 0.84 0.86
Ti white 0.87 0.90
Zn white 0.84 0.88

Paint layer

Linseed oil 0.88 0.96
Cinnabar 0.85 0.83

Pb red 0.93 0.93
Cd yellow 0.87 0.91

Co blue 0.92 0.97
Cr green 0.90 0.96
Ti white 0.90 0.96
Zn white 0.89 0.95

The comparison confirmed the congruence between the two independent methods,
with maximum differences of about 0.1 for pigment and a bit less for paint layers. The
emissivity of the painted samples was generally higher than that of the corresponding
pigment because of the higher emissivity of the linseed oil matrix. The pigment: binder
ratio was 65 wt%:35 wt%, which corresponds to a pigment volume concentration fraction
of 17–30% for the actual pigments. Thus, a certain variation is expected in practical cases of
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interest, due to the different ratio between pigment and binder, as well as to the presence of
two or more pigments in the paint mix.

The emissivity measured for the various samples was used to recalibrate the tempera-
ture sensor TPT and implement the temperature control during Raman spectroscopy. As an
example, in Figure 5, the case of cinnabar, a red pigment with high photothermal instability,
is reported. Figure 5a displays the Raman spectra achieved at eight different laser powers
with an integration time of 12 s and Figure 5b shows the respective temperature profiles.
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Figure 5. Raman spectra (a) obtained for cinnabar powder at different laser power and corresponding
temperature temporal profiles (b). In the inset, the trend of temperature measured at 11.6 s as function
of the laser power.

The Raman signal gradually increased up to 86 mW (yellow line), whereas above
this power, drastically decreased (dark yellow line). In addition to the previous spectral
feature, even a significant variation in the temperature temporal profile was observed at
laser power higher than 86 mW. In particular, at 88 mW, the slope of the temperature profile
changed drastically at 11 s, and 1 s later it increased from about 200 ◦C to about 325 ◦C. In
the inset of Figure 5b, the temperature recorded at 11.6 s as a function of the laser power
is reported. Temperature values were very reproducible, as assed through 30 consecutive
measurements, which returned a standard deviation of 1–2 ◦C (within the square symbol
of Figure 5). As shown, the linear increasing trend had an abrupt change of slope at 86 mW
(160 ◦C). This variation was associated with the darkening of the irradiated area. According
to the literature [31], such a darkening effect and associated metallic appearance were
attributed to a photothermal reduction effect occurring at the vaporization of mercury
(357 ◦C). The corresponding experimental critical temperature was lower than the nominal
one likely because of the fast rise, which cannot be detected by the sensor (response
time of 1.3 s) and of the associated material removal, which produce a cooling effect [6].
Nevertheless, the present thermal sensing line allowed to determine quite precisely the
alteration threshold, as well as to foresee the damage through the lack of saturation of
the temperature profile. Thus, in all the cases the maximum temperature of the irradiated
sample surface along with a maximum slope of the temperature temporal profile, after its
former leading edge, can represent two control parameters that can be suitably set through
the dedicated GUI in order to optimize the signal detection and prevent possible alterations.

As highlighted in the literature, the alteration intensity strongly depends on the laser
spot diameter [5,32]. For example, we previously found about 600 W/cm2 for a spot size
of 105 µm, against the present 76 W/cm2 for about 380 µm spot diameter. This general
behavior should be taken into account along with other features of the laser damage
nucleation, which extends beyond the subject of this paper.
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Critical temperature and alteration intensities of a paint layer are expected to be
significantly lower than those of the inorganic pigments that it contains, because of the
thermal sensitivity of the organic components (binder, dye), but the conceptual approach
of the thermal control described above remains the same: suitable constrains to the thermal
temporal profile can prevent sample alteration.

Figure 6a shows the spectra achieved at different laser emission power on a 10-years
aged paint sample prepared with cinnabar in linseed oil on gypsum primed wooden panel.
Raman spectra were achieved with an integration time of 12 s (100 ms, 120 averages). In
Figure 6b the respective temperature profiles are reported. The temperature rise induced by
the laser irradiation increased linearly with the laser power (see the inset) and the sample
didn’t show any alteration. This can be attributed to the higher optical penetration depth
of the paint film with respect to the pure pigment.
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Figure 6. Cinnabar in linseed oil paint layer: (a) Raman spectra (exc. wav. 785 nm) achieved with
12 s integration time at different laser power; (b) corresponding temperature profiles and temperature
dependence on power at 11.6 s (inset).

A further application of the present innovative probe was carried out on Prussian blue,
which is another known photothermally sensitive pigment. It is an iron (III) hexacyanofer-
rate (II) complex and its color is correlated with the iron (II) and iron (III) charge transfer
via a cyano group.

Figure 7 shows the dependence of the Raman spectrum (integration time of 65 s) and
associated temperature profile on laser power of Prussian blue in linseed oil paint film.
No alteration was observed over the indicated power range (27–103 mW). In addition to
band and background amplitude variations increasing red shift of the CN stretching band
(≈2150 cm−1) was observed at increasing laser power. This is clearly observable in the
detail of Figure 8a showing the baseline subtracted spectra between 2105–2180 cm−1. No
other shift was observed. A Gaussian fit of the mentioned band was executed in order to
extract its central wavenumber for each spectrum. A red shift of 4 cm−1 was observed
when changing the irradiation power from 27 mW to 103 mW laser power. Such an effect
was previously reported [33,34] and it was attributed to the reduction of Fe (III) to Fe (II) in
absence of charge transfer process. Here, we correlate it to the laser induced temperature
rise (Figure 8b).
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In order to validate the novel probe in real operative conditions tests were carried
out on a modern oil painting on canvas. It was a female portrait by anonymous, which
was overpainted and partially uncovered in the past at its bottom part (Figure 9). The
original painting (below the dotted line) was extensively overpainted using green, yellow,
and brown hue paint. This artwork was previously analyzed using optical and ESEM-EDX
microscopy and uncovering laser ablation tests were carried out [35].

For the present purposes, the Raman spectra along with emissivity and temperature
measurements were achieved on the reddish dress (sites A and B) and the green overpaint
(site C). After some preliminary tests, the laser power was set at 47 mW and the integration
time at 25 s (500 ms, 50 averages) for the site A (Figure 10a) and 22 mW and 80 s (200 ms,
400 averages) for site B (Figure 10b). The intensity of the latter measurement was reduced
since the temperature induced by the former has to be considered too high for safeguarding
the oil binder. The emissivity was measured in situ and resulted to be 0.91 for site A and
0.87 for site B. Site A (orange zone) shows the red lead characteristic peaks (222, 306, 386,
and 541 cm−1), and in site B (red zone) besides these the Raman bands of the quinacridone
(1273, 1356, 1382, 1486, and 1576 cm−1) were also detected.
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Figure 10. Raman spectra (exc. wav. 785 nm) of light red ((a) orange line) and red ((b) wine line)
shaded zones (sites A and B, respectively) using 47 mW (a) and 22 mW (b), respectively. Blue
wavenumbers correspond to red lead bands while black wavenumbers highlight the quinacridone
bands. The insets show the corresponding temperature profiles, based on measured emissivity of
0.91 (a) and 0.87 (b), respectively.

The spectra and temperature rise of the green overpaint (site C) were finally mea-
sured using a laser power of 22 mW (Figure 11) and an integration time of 40 s (800 ms,
50 averages). The Raman characteristic bands of the green phthalocyanine were recognized
(680, 738, 1208, 1286, and 1532 cm−1). The Signal/Noise level of this spectrum could be
raised up using higher laser power, although the induced temperature rises could not be
compatible with such a fully organic site (organic pigment and binder).

These examples show the monitoring of the temperature allowed to evaluate and
then control the level of risk of the measurement. In particular, literature data report the
evaporation of VOCs contained in oil matrix represent the early alteration of oil paint,
which starts to occur over a large temperature range around 100 ◦C, according to the specify
features. Thus, if this temperature has to be reached in order to acquire a good spectrum,
the time exposure should be limited. The measurements carried out on the painting of
Figure 9 involved maximum temperature rises between 75–90 ◦C, which did not evidence
any anomalous behavior, although it would be safer to further limit the heating.
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Figure 11. (a) Figure shows phthalocyanine Raman spectrum collected from the site C using 22 mW;
(b) Temperature profile based on a measured emissivity of 0.92.

4. Conclusions

Here, we extended the technology and method of the remote temperature control
during Raman spectroscopy previously introduced. A novel portable probe was developed
allowing to derive the emissivity from reflectance measurement and then to use this
parameter to monitor the temperature of the irradiated sample surface during Raman
spectroscopy. The effectiveness and reliability of the indirect measurement of the emissivity
based on IR reflectance measurement was formerly demonstrated on a variety of material
samples including metals, stones, and other, the work focused on pigments and paint
layers. The latter were selected as an example application, where the thermal control
during Raman spectroscopy can represent the solution of a practical need because of the
high photothermal sensitivity of most of the pigments and binders typically encountered in
artwork material characterizations. These material systems easily undergo alteration during
Raman spectroscopy, which can be prevented by implementing an online temperature
control. At the same time, it is evident that the present approach can also be exploited in
other fields of application, whenever the knowledge of the temperature during CW laser
irradiation can be of interest. One case of particular interest is the study of the dependence
of the Raman spectral features on the temperature, such as for example the red shift of
Prussian blue discussed above, where the contribution of the laser irradiation should be
carefully taken into account and measured.
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