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Abstract

Glucose is the predominant fuel supporting brain function. If the brain’s entire glucose sup-

ply is consumed by oxidative phosphorylation, the molar ratio of oxygen to glucose con-

sumption (OGI) is equal to 6. An OGI of less than 6 is evidence of non-oxidative glucose

metabolism. Several studies have reported that the OGI in the resting human brain is less

than 6.0, but the exact value remains uncertain. Additionally, it is not clear if lactate efflux

accounts for the difference between OGI and its theoretical value of 6.0. To address these

issues, we conducted a meta-analysis of OGI and oxygen-to-carbohydrate (glucose +

0.5*lactate; OCI) ratios in healthy young and middle-aged adults. We identified 47 studies

that measured at least one of these ratios using arterio-venous differences of glucose, lac-

tate, and oxygen. Using a Bayesian random effects model, the population median OGI was

5.46 95% credible interval (5.25–5.66), indicating that approximately 9% of the brain’s glu-

cose metabolism is non-oxidative. The population median OCI was 5.60 (5.36–5.84), sug-

gesting that lactate efflux does not account for all non-oxidative glucose consumption.

Significant heterogeneity across studies was observed, which implies that further work is

needed to characterize how demographic and methodological factors influence measured

cerebral metabolic ratios.

Introduction

Glucose and oxygen consumption are tightly coupled in the brain at rest, with the majority of

glucose undergoing complete oxidative phosphorlyation[1]. Furthermore, the ratio of carbon

dioxide production to oxygen consumption is very close to one[2], indicating that nearly all of

oxygen consumption is used for carbohydrates. The standard measure of coupling between

oxygen and glucose utilization is the oxygen-to-glucose index (OGI), which is the molar ratio

of oxygen to glucose consumption. An OGI of 6 indicates that all glucose is consumed via oxi-

dative pathways.

PLOS ONE | https://doi.org/10.1371/journal.pone.0204242 September 24, 2018 1 / 14

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPENACCESS

Citation: Blazey T, Snyder AZ, Goyal MS,

Vlassenko AG, Raichle ME (2018) A systematic

meta-analysis of oxygen-to-glucose and oxygen-

to-carbohydrate ratios in the resting human brain.

PLoS ONE 13(9): e0204242. https://doi.org/

10.1371/journal.pone.0204242

Editor: Pei-Ning Wang, Taipei Veterans General

Hospital, TAIWAN

Received: March 12, 2018

Accepted: September 4, 2018

Published: September 24, 2018

Copyright: © 2018 Blazey et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: All the R scripts and

data necessary to reproduce the figures and

analysis in this report can be found at: http://www.

github.com/tblazey/ogiMeta.

Funding: This work was supported by National

Institutes of Health (https://www.nih.gov/) grants

P01NS080675 (MER), 1R01AG053503 (AGV and

MER) and R0101AG057536 (AGV and MSG). The

funders had no role in study design, data collection

and analysis, decision to publish, or preparation of

the manuscript.

http://orcid.org/0000-0002-3402-0654
https://doi.org/10.1371/journal.pone.0204242
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0204242&domain=pdf&date_stamp=2018-09-24
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0204242&domain=pdf&date_stamp=2018-09-24
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0204242&domain=pdf&date_stamp=2018-09-24
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0204242&domain=pdf&date_stamp=2018-09-24
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0204242&domain=pdf&date_stamp=2018-09-24
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0204242&domain=pdf&date_stamp=2018-09-24
https://doi.org/10.1371/journal.pone.0204242
https://doi.org/10.1371/journal.pone.0204242
http://creativecommons.org/licenses/by/4.0/
http://www.github.com/tblazey/ogiMeta
http://www.github.com/tblazey/ogiMeta
https://www.nih.gov/


The measurement of cerebral arterio-venous differences of oxygen and glucose is regarded

as the gold-standard technique for obtaining OGI. With this method, arterial samples are col-

lected from a peripheral artery (e.g. radial or brachial artery) and venous samples from the

internal jugular vein at the jugular bulb. The primary assumption of this technique is that the

venous blood in the jugular bulb comes solely from the brain. If blood from other sources is

present, than the arterio-venous difference is no longer only the result of cerebral metabolism.

This bias is likely to be small, however, as it has been estimated that 97.4% of the blood in the

jugular bulb comes from cerebral sources[3].

Although the arterio-venous technique has been used to study whole-brain OGI for over

sixty years[4], there remains some uncertainty as to the exact value. Individual studies using

arterio-venous differences in humans at rest have reported values ranging from 4.6[5] to 7.5

[6]. In 1957, Kety reviewed sixteen studies of both healthy and diseased populations and

reported a mean value of 5.54[4]. A more recent meta-analysis of eight studies of metabolism

during exercise found a whole-brain OGI of 5.1[7]. These two reviews suggest that anywhere

from 8 to 15% of the brain’s glucose uptake is consumed via non-oxidative metabolism. Thus,

the value of cerebral OGI in resting, healthy humans is known only approximately.

The fate of glucose consumed by non-oxidative pathways is also a matter of some debate. It

has been suggested that lactate efflux to venous blood may completely account for non-oxida-

tive glucose metabolism[8]. Two more recent reviews have reported conflicting results[7,9].

Both studies performed a meta-analysis of the oxygen-to-carbohydrate index (OCI), also

referred to as the cerebral metabolic ratio (CMR). The OCI is computed as the molar ratio of

the arterio-venous difference of oxygen to glucose plus ½ lactate. (The factor of ½ arises

because each mole of glucose theoretically yields two moles of lactate). If lactate efflux to

venous blood completely accounts for an OGI less than 6, then the OCI should equal 6 or

greater. Alternatively, an OCI less than 6 indicates that lactate efflux to venous blood does not

alone account for all of non-oxidative glucose metabolism. Consistent with the original finding

of Siesjö[8], Quistroff et al. reported that the population mean OCI from eight studies is

approximately 6. However, Rasmussen et al., in a partially overlapping sample of eight studies,

reported that the resting OCI was 5.3. Thus, it remains unclear whether lactate fully accounts

for non-oxidative glucose metabolism in the resting human brain.

To provide a more accurate estimate of both OGI and OCI in the healthy human brain at

rest, we conducted a systematic meta-analysis[10] of studies reporting arterio-venous differ-

ences for glucose, oxygen, and lactate. We identified 40 studies with OGI data and 37 partially

overlapping studies with OCI data. We then performed a random effects Bayesian meta-analy-

sis[11] to determine the population average OGI and OCI ratios and their credible intervals

(CI s).

Results

Included studies

Our searches of PUBMED (see methods) and our own archives identified 927 potential rec-

ords (Fig 1). After reviewing the titles, and if necessary, abstracts of all 927 records, 810 were

discarded from further consideration. Records were discarded at this step if they were clearly

irrelevant for our purposes (e.g. animal studies). The remaining 117 papers were then sub-

jected to a critical full text review. This review resulted in the rejection of 65 papers (S1 Table).

The majority of papers were rejected because they did not acquire the data necessary to calcu-

late OGI/OCI (n = 38) or because they reported values only in experimental states (n = 17).

For OGI, we found 52 papers that met our requirements for inclusion, 34 of which reported

OGI. In addition, we sent 19 requests for data to authors of studies that had the data necessary
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to report OGI but did not do so. We received data from 6 of these authors, resulting in a total

of 40 studies. For OCI, 43 papers met our inclusion requirements. Of these, 32 papers reported

the required data, and data requests were sent for the remaining 11. After receiving data from

5 authors, our final OCI dataset contained 37 studies. A summary of the characteristics for the

included studies is in S2 Table. A total of 30 studies measured both OGI and OCI.

Fig 1. Modified PRISMA flow diagram. Included studies were selected using the indicated selection criteria.

https://doi.org/10.1371/journal.pone.0204242.g001
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Population average OGI and OCI

Forest plots for OGI and OCI are shown in Figs 2 and 3, respectively. Note that the random

effects models effectively decrease the weight of studies with high standard errors. The popula-

tion average OGI was 5.46 with a 95% CI of 5.25 to 5.66. As the CI does not overlap 6.0, we can

infer that there is significant non-oxidative glucose consumption at rest. The population aver-

age OCI was 5.60 with a 95% CI of 5.36 to 5.84. The fact that the credible intervals do not

Fig 2. Forest plot for OGI meta-analysis. Blue squares represent the reported mean OGI for each study. Black lines represent 95% confidence

intervals. Numeric values for these quantities are also listed. The blue diamond is the population average from the Bayesian random effects meta-

analysis. Error bars/values for the population mean are 95% CIs (n = 40).

https://doi.org/10.1371/journal.pone.0204242.g002
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contain 6 indicates that a significant portion of the brain’s glucose consumption is non-oxida-

tive and cannot be accounted for by lactate efflux to the blood.

Bias and heterogeneity

Within-study bias was assessed in four separate categories: study population, waiting period

between catheterization and measurement, experimental manipulations, and fasting state (S3

Table). The most frequent bias in study population was the use of all male subjects. Nineteen

studies included only male subjects. No study included only female subjects. The majority of

Fig 3. Forest plot for OCI meta-analysis. Same convention as in Fig 2 (n = 37).

https://doi.org/10.1371/journal.pone.0204242.g003
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studies consisted of younger subjects (S3 Table). Across all studies that reported an average

age, the mean age was 27.2 with a standard deviation (SD) of 4.6. Only five studies specifically

mentioned including subjects over the age of 40[12–16]. A few other studies included only

hospital patients (e.g. Scheinberg et al., 1949, Takeshita et al., 1972) or competitive athletes

(e.g., Voliantis et al., 2008 and Bain et al., 2016). More than half (24/47) of studies included no

mention of a waiting period between catheterization and blood sampling. Blood sampling was

performed in a variety of positions, the two most common being supine (13) and semi-supine

(20). The majority of measurements were performed in the absence of any overt experimental

manipulation, however a few studies did include the injection of labeled compounds (e.g.,

Boyle et al., 1994 and Glenn et al., 2015) or saline (Hasselbalch et al., 1996 and Volianitis et al.,

2011). Finally, the requirement for fasting subjects was mixed, with 19 requiring at least some

fasting period, 20 including no mention of performing measurements in a fasting state, and

the remaining 8 studies assessed subjects in a post-absorptive state.

To assess bias across studies, funnel plots were constructed for both OGI (Fig 4A) and OCI

(Fig 4B). No asymmetry was apparent in either plot. This impression was quantified with a

regression test for asymmetry[17]. No significant evidence for asymmetry was found for either

OGI (p = 0.2013) or OCI (p = 0.1948). The lack of asymmetry suggests the absence of reporting

bias in our sample. There was, however, substantial horizontal scatter around the population

averages, indicating heterogeneity across studies. To further assess this heterogeneity, we com-

puted posterior predictive intervals for a new random study for each ratio. Both ratios showed

considerable variability, with the 95% posterior predictive interval for OGI spanning 4.35 to

6.60 and from 4.32 to 6.91 for OCI. Furthermore, the I2 values were consistent with substantial

between study heterogeneity. An estimated 85.03% [95 CI 75.88–91.35] of the total variance in

the OGI meta-analysis was due to study heterogeneity. A similar value of 84.96% [95 CI 75.09–

91.60] was found in the OCI analysis.

Fig 4. Funnel plots for OGI (A) and OCI (B). In each plot, the reported study mean is plotted against its standard error. The population average is the dashed black

line, its 95% percent CI is in dark gray, and its 95% prediction interval is in light gray. The lack of any asymmetry is evidence against substantial publication bias. The

wide scatter around the population average, however, suggests that there is substantial heterogeneity between studies.

https://doi.org/10.1371/journal.pone.0204242.g004
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Discussion

Our meta-analyses of OGI and OCI reveals that both measures are significantly less than 6.

The fact that OGI is less than 6 indicates that a proportion of glucose consumption is non-oxi-

dative, while OCI being less than 6 shows that not all of non-oxidative metabolism can be

accounted for by lactate efflux to venous blood. Expressed in terms of percentages non-oxida-

tive metabolism accounts for 9.0% 95 CI [5.67–12.5] and of glucose consumption and 6.7% 95

CI [2.67–10.67] of carbohydrate metabolism Our estimates of the population average OGI

(5.46 95% CI [5.25–5.66], and OCI (5.60 with a 95% CI [5.36–5.84]) are based on a much

larger set of studies than previous reviews, and are therefore more likely to accurately reflect

the true population means. It is of some interest to note the close agreement between our pop-

ulation average OGI and the value of 5.54 originally reported by Kety[4].

Although we did not find any evidence for publication bias, we did find considerable het-

erogeneity across studies. We computed I2 for each ratio, which indicated that ~85% of the

total variance is attributable to study heterogeneity. Substantial methodical differences (S4

Table) may account for the variability in measured OGI and OCI values. Many studies

included only males and there is evidence of differences in metabolism between males and

females[18]. Thus, it is likely that our population averages are more representative of male

metabolic ratios. Similarly, our population averages are weighted towards the predominantly

young adult samples included in our meta-analysis. Many studies also did not specify if they

included a waiting period between catheterization and measurement. This may have influ-

enced the reported values, as metabolic ratios have been shown to decrease during arousal[19].

Finally, not all investigators insured that measurements were performed while subjects were in

a basal metabolic state. A few studies infused labeled carbohydrates, and many studies did

require that subjects be in a fasting state. Either factor could have affected the published results.

For example, OGI is known to increase during hypoglycemia[16]. More direct studies are

clearly needed to quantify the sources of heterogeneity in studies measuring OGI and OCI.

There is no clear consensus concerning the role of non-oxidative glucose metabolism in the

brain[20]. It has been variously proposed that non-oxidative glucose consumption (i) allows

for the rapid creation of ATP for the Na+/K+ ATPase in astrocytes[21], (ii) regulates cellular

redox potentials[22], (iii) is a by-product of glycogen breakdown during increased neuronal

activation[23], (iv) is necessary for the degradation of glutamate by astrocytes[24], (v) reduces

oxidative stress, particularly during periods of cellular growth[25], or (vi) is used to fuel bio-

synthetic processes[26,27]. Part of the difficulty here is the uncertainty regarding the ultimate

fate of glucose that enters non-oxidative pathways. It was traditionally thought that lactate pro-

duction, and subsequent efflux to venous blood, could completely account for any non-oxida-

tive glucose use[8]. The results of our meta-analysis are not consistent with this idea. The fact

that the population average OCI was greater than the average OGI does show that some glu-

cose is converted to lactate and leaves the brain via the venous system. The OCI was less than

6, however, which means this route does not account for all non-oxidative glucose use.

One potential explanation for the OCI being less than 6 is that resting arterio-venous differ-

ences simply underestimate the amount of lactate that leaves the brain. Brain lactate concen-

tration has been shown to decrease during sleep[28], suggesting that measurements taken

during conscious rest do not fully account for all of lactate efflux. Alternatively, lactate may

leave the brain via routes that bypass the sampling sites used for arterio-venous differences.

This idea is supported by a study by Ball et al., who found that injection of radiolabeled glucose

and lactate into the inferior colliculus labeled the meninges[29]. Subsequent tracer experi-

ments identified a potential perivascular clearance pathway from the inferior colliculus to the

cervical lymph nodes[29]. More recently, components of the glymphatic system have been
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shown in mice to regulate lactate efflux as well as the concentration of lactate in cervical lymph

nodes[28]. Neither of these experiments, however, quantified the proportion of lactate efflux

that occurs via these pathways. Furthermore, if perivascular/glymphatic clearance does play a

role in lactate removal, it is not clear what impact it would have on arterio-venous difference

measurements. In sheep, rats, and rabbits approximately half of CSF is cleared through lym-

phatic pathways[30]. The other half enters the venous sinuses through the arachnoid villi, and

therefore would presumably be accounted for by venous samples taken at the level of the jugu-

lar bulb. Although exact proportions are not available, it has been proposed that the arachnoid

pathway plays a much a larger role in humans[30]. If true, this would suggest that perivascu-

lar/glymphatic clearance cannot fully account for the OCI being less than 6. Direct experimen-

tal approaches are clearly needed to address this question.

An alternative possibility is that the carbon from non-oxidative glucose metabolism leaves

the brain as metabolites other than CO2 or lactate. Although pyruvate is well-known to have a

net efflux from the brain, it is unlikely to account for much of the unexplained fraction, as net

pyruvate efflux is nearly an order of magnitude less than that of lactate[31]. Numerous other

carbon-containing compounds, however, have also been shown to leave the brain. For exam-

ple, there is a small net efflux of glutamine from the brain[32,33]. In addition, peptides and

proteins are known to exit the brain via the CSF[34]. The most well-studied of these are amy-

loid-beta[35,36] and tau[37], which are both markers of Alzheimer’s disease[38]. Other mole-

cules, such as leptin[39] and cholesterol[40], have also been shown to leave the brain in small

amounts. Future experiments with labeled compounds are needed to elucidate how, and in

what proportions, glucose derived carbon leaves the brain.

Although we are not aware of any studies directly linking non-oxidative glucose consump-

tion with the synthesis, and subsequence efflux, of specific glucose metabolites, there is evi-

dence linking non-oxidative metabolism with biosynthesis more generally. Madsen et al.,

found that OGI was depressed after the performance of the Wisconsin Card Sorting task,

while lactate efflux returned to baseline values[41]. Similarly, our group recently reported that,

hours after the performance of a covert motor learning task, non-oxidative glucose use was

elevated in Brodmann Area 44[42]. Moreover, the change in non-oxidative glucose use was

positively correlated with performance during the learning task. Both of these studies are con-

sistent with the hypothesis that glucose is used in a non-oxidative manner to support learning-

induced synaptic plasticity. Extending these findings to other learning paradigms (e.g. episodic

memory) would provide additional evidence along these lines.

A prior meta-analysis from our group found that non-oxidative glucose use is markedly ele-

vated during early childhood[27], a period of brain growth[43]. This finding was recently sup-

ported by Segarra-Mondejar et al., who found that glucose consumption is necessary for

neurite outgrowth in vitro and in vivo [44]. Interestingly, the findings of Segarra-Mondejar

et al. also suggest that at least a part of the glucose necessary for neurite outgrowth is directly

incorporated into newly synthesized lipids [44]. Finally, regional differences in non-oxidative

metabolism[26,45] have shown to correlate positively with expression of genes related to syn-

aptic plasticity and development[27]. Taken together, these findings strongly suggest that non-

oxidative glucose consumption contributes to biosynthetic processes in the brain. Quantifying

the contribution of non-oxidative glucose metabolism to biosynthesis will be an important

topic for future studies. Combining a PET marker of protein synthesis[46], such as L-[1-11C]-

leucine PET[47,48] with measures of non-oxidative glucose use during a learning task could

provide further evidence that learning is accompanied by increases in biosynthesis and non-

oxidative glucose metabolism. 13C magnetic resonance spectroscopy could also be used to

measure the movement of glucose and other carbohydrates through different metabolic path-

ways [49,50].
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In summary, on the basis of a meta-analysis of 47 studies, we estimated that non-oxidative

processes account for 9% of glucose metabolism in the brain, a significant portion of which

cannot be accounted for by lactate efflux to the blood. We also found substantial heterogeneity

across studies, likely attributable to differences in methodology. Future studies are needed to

determine both the function of non-oxidative metabolism and the ultimate fate of glucose con-

sumed in the brain.

Methods

Study design

Our meta-analysis was conducted using the Preferred Reports Items for Systematic Reviews

and Meta-Analyses (PRISMA) guidelines[10]. Fig 1 shows a flow diagram of the study proce-

dures. S4 Table contains the PRISMA checklist. We did not complete or register an a priori
study protocol.

Eligibility criteria

We included studies that reported mean OGI and/or OCI along with either SD or standard

error of the mean (SE), or the data necessary to estimate the mean and SE. Only studies that

used arterio-venous differences to measure whole-brain OGI and/or OCI were included. OGI

and OGI data were typically taken from text or tables, but were extracted from figures if neces-

sary. S2 Table lists the data source for each study. If a study did not report either ratio but con-

tained the necessary arterio-venous data, we contacted the corresponding author via the listed

email address and requested the required data. Although positron emission tomography

(PET) can be used to measure whole-brain OGI[51,52], we chose to exclude these studies

because of uncertainty in the value of the lumped constant for 18F-[FDG][53]. We did not

include studies from older adult cohorts or from diseased populations (e.g., cardiac, neurologi-

cal, or mental disorders).

Study identification

We searched the PUBMED database with several combinations of the terms “Arterial”,

“Arterio”, “Brain”, “Carbohydrate”, “Cerebral”, “Glucose”, “Index”, “OCI”, “OGI”, “Oxygen”,

“Ratio”, and “Venous” (S5 Table). In total, we performed 24 separate search queries. All

searches were constrained to articles published between 1900 and August 10th, 2017. To limit

the amount of animal model studies returned by our searches, we added the Medical Subject

Heading (MeSH) keyword “Human” to every search. In addition, the first author (TB) con-

ducted a search of his personal archives for any papers that included measures of cerebral oxy-

gen, glucose, and lactate metabolism. The papers in the final dataset that were only found in

the first authors archives are listed in S2 Table.

Statistics

A random effects Bayesian meta-analysis[11] was performed to calculate the population aver-

age OGI and OCI. A random effects model accounts for differing variance in each study’s esti-

mates of OGI and OCI, while simultaneously allowing for heterogeneity between studies.

Separate models were run for OGI and OCI. If a study reported multiple values for OGI or

OCI, a fixed effects meta-analysis was performed to calculate an overall estimate[54]. Our

model assumed that each study’s estimate, yi, is a random sample from a normal distribution:

yi � Nðmþ ui; siÞ; ð1Þ
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where μ is the population mean, ui is random offset for study i, and σi is the study standard

deviation. No covariates or other explanatory factors were included in the model. We assume

that σi is equal to each study’s standard error. The random offsets for each study were also

assumed to follow a normal distribution:

ui � Nð0; tÞ; ð2Þ

where τ is the random effects standard deviation, which reflects the heterogeneity across

studies.

The model parameters, μ, ui, and τ were estimated using Hamilton Markov Chain Monte

Carlo (MCMC) implemented in Stan[55]. The population mean, μ, was given a broad normal

prior with a mean of 6 and standard deviation of 2. The random effects standard deviation, τ,

was given a uniform prior with a lower limit of 0. Eight randomly initialized chains of 20,000

samples were run for each model. The first 10,000 samples of each chain were discarded as

warm-up. Sample autocorrelation was minimized by only considering every 5th sample. As a

result, all inferences are based upon 16,000 posterior samples. Convergence was assessed using

the Gelman and Rubin potential reduction statistic, R̂ [56,57]. R̂ is the ratio of within chain

variance to the pooled between chain variance. At convergence, R̂ should be equal to one. For

both models, R̂ was with within 10−3 of 1 for every parameter. All results are summarized with

medians and 95% equal-tailed credible intervals.

The primary parameters of interest where the population means, μ, for OGI and OCI. We

also computed the percent of glucose metabolism that is entirely non-oxidative. This was done

by assuming a 6:1 stoichiometric ratio: 100 � (1 − OGI/6.0). Replacing OGI in this expression

with OCI gives the percent of carbohydrate metabolism that is non-oxidative.

Assessment of bias and heterogeneity

Risk of bias within studies was assessed by considering four factors: study population, interval

between catheterization and measurement, the presence of experimental manipulations, and

fasting state. Bias assessment was not a factor in the random effects meta-analysis, and no sub-

group analyses are reported. The possibility for bias across studies was assessed using funnel

plots[17]. A funnel plot is used to determine if there is any relationship between the reported

OGI/OCI value and its standard error. If a meta-analysis is free from publication bias and het-

erogeneity, the plot should resemble a funnel with the studies with the smallest standard errors

clustered around the population average. An asymmetric funnel plot can be an indication of

reporting bias or study heterogeneity[58]. To test for funnel plot asymmetry, we used the

method recommended by Egger et al.[17,59], which involves a regression model with effect

size as the dependent variable and standard error as the independent variable. Our regression

model, implemented in the R metafor package[54], also estimated a random effect for each

study.

The possibility of study heterogeneity was further quantified using posterior predictive

intervals[60] for a random new study. Posterior predictive intervals, which incorporate the

uncertainty in parameter estimates, provide a credible interval in which we would expect a

new study to fall. All posterior predictive intervals were computed using 16,000 random sam-

ples. Finally, we computed the I2 statistic[61,62]:

I2
¼100 �

t̂
2

t̂2 þ ŝ2
ð3Þ

where t̂2 is the estimated between study variance from the random effects model, and ŝ2 is the
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within study variance:

ŝ2 ¼

Pk
i¼1

wiðk � 1Þ

ð
Pk

i¼1
wiÞ

2
�
Pk

i¼1
w2

i

ð4Þ

where k is the number of studies and wi is the precision of the mean for study i: wi ¼ 1=s2
i . We

calculated I2 for each MCMC sample of t̂2 and then computed the median I2 along with its

95% equal-tailed credible intervals. Higher values of I2 indicated a greater relative proportion

of between study variance and thus greater study heterogeneity.

Data sharing

All the R scripts and data necessary to reproduce the Figs and analysis in this report can be

found at: http://www.github.com/tblazey/ogiMeta.
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