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Abstract

Species co-existence depends on how organisms utilize their environment and resources.

When two sympatric species are similar in some ecological requirements, their coexistence

may arise from differences in resource use over time and/or space. Interactions among

coexisting marsupials remain poorly understood, especially in the Neotropics. Here we

combine spatial niche measurements, individual-resource networks, and isotopic niche

approaches, to investigate the ecological strategies used by the Neotropical marsupials

Didelphis aurita and Metachirus nudicaudatus to co-occur in an area of Serra do Mar State

Park (southeast of Brazil). Both individual-resource networks and isotopic niche approaches

indicate similar patterns of omnivory for both species. Isotopic analysis showed the species’

trophic niche to be similar, with 52% of overlap, and no differences between proportional

contributions of each resource to their diets. Moreover, individual-resource network analysis

found no evidence of diet nestedness or segregation. The trophic niche overlap observed

was associated with spatial segregation between species. Despite using the same area

over the year, D. aurita and M. nudicaudatus exhibited spatial segregation among seasons.

These results illustrate that the detection of spatial segregation is scale-dependent and

must be carefully considered. In conclusion, our findings provide a new perspective on the

ecology of these two Neotropical marsupials by illustrating how the association of distinct

but complementary methods can be applied to reach a more complete understanding of

resource partitioning and species coexistence.

Introduction

Species co-existence partly depends on how organisms utilize their resources and environ-

ment. All resources and conditions required by an organism to survive and reproduce are
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encompassed by the niche concept, which describes an n-dimensional hypervolume where

dimensions represents distinct ecological requirement [1]. Hence, one way to analyze how spe-

cies coexistence takes place is by measuring niche parameters and comparing them among

species [2,3]. When two sympatric species have similar ecological requirements, there is niche

overlap—which is the region of niche space shared by two or more species [4,5]. However, if

niche dimensions of two species overlap completely, one species will probably supplant the

other, leading to its local extinction (i.e. Gause’s competitive exclusion principle [6]). There-

fore, coexistence may arise from niche shifts, for example, through partitioning resources

along time and/or space [7,8].

The most tractable and frequently studied component of niche space is trophic niche width,

often evaluated using dietary diversity [9]. Sympatric species can segregate trophic niches

using different strategies, such as food type [10], foraging mode [11], spatial segregation [12],

or circadian activity pattern [13]. A species’ diet can also respond to resource seasonality; thus,

changes in food consumption across seasons can match fluctuations in food availability [14].

When resources are abundant, interspecific competition decreases and a higher trophic niche

overlap is enabled [15]. However, diet overlap can also be observed when the demand for

resources exceeds supply and species need to expand their trophic niche in order to make up

for their nutritional demands [16]. A high degree of niche overlap may lead to competitive

interactions [17, 18], leading to species displacement [19]. Therefore, other mechanisms of

niche partitioning (e.g., spatial and/or time segregation) could allow co-existence among spe-

cies with similar ecological requirements [20].

To investigate the structure of trophic relationships there are a variety of different

approaches, such as individual-resource networks [21,22,23] and isotopic niche approaches

[24,25]. Individual-resource networks are represented by two sets of nodes: one representing

individuals of a population and one of food resource items or categories (ca. those found in

fecal samples). The link between nodes represents the consumption of a given resource by an

individual. Network structure can be investigated through metrics that characterize observed

patterns of interactions [26]. There are some advantages associated with individual-resource

networks based on fecal samples data, such as low costs and the possibility of collecting data

from recaptured animals. Despite all the applicability, there are some inherent potential limita-

tions associated to fecal samples data. For example, some items have different rates of digestion

[27], thus, a sample may not contain traces from all items previously consumed. Besides that,

the consumption of species without hard parts will probably not be tracked in the feces, biasing

diet results. Food resource identification is not an accurate procedure as specific parts of the

digested animals’ body are needed for reliable taxonomic identification. Those parts some-

times break down after digestion, leading to them being underrated in diet composition. Com-

plementarily, some of these limitations can be remedied by using stable isotope signatures to

provide a quantitative diet description [24,28].

Isotopic composition of animal tissues often contains a “signature” of the process that cre-

ated it [29]. For example, stable carbon isotope ratios (δ13C) vary mostly according to the pho-

tosynthetic metabolism of plants and can be very effective tracers of different carbon sources

[24]. The stable isotope commonly utilized to trace protein sources is nitrogen (δ15N). There-

fore, the δ space (δ13C versus δ15N) is referred as the “isotopic niche” and has been comparable

to the Hutchinson’s n-dimensional niche concept [1,29]. However, potential drawbacks in

using this approach are: the unknown rate at which isotopic values from a given resource is

assimilated by the tissues of the consumer, making it difficult to compare different tissues;

the impossibility of using tissue samples for isotopic analyses from recaptured animals when

bait is used; and, the challenge of accessing the isotopic signature of each consumed species.
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Therefore, using stable isotopes and fecal samples in conjunction provides a more complete

representation of an individual or species’ dietary habit.

Here we combine spatial niche measurements, individual-resource networks analysis, and

isotopic niche approaches to investigate the ecological strategies of two sympatric Neotropical

marsupials (Didelphis aurita Wied-Neuwied, 1826 and Metachirus nudicaudatus (É. Geoffroy,

1803)) which co-occur in several Tropical Rainforest communities. Whereas M. nudicaudatus
has a broad geographical range, D. aurita is restricted to Atlantic Rainforest biome [30].

Didelphis aurita is about three times larger than M. nudicaudatus [31], which makes the first a

stronger competitor, as it is able to actively defend food resource [32,33]. Despite their mor-

phological and behavioral differences, these two species are considered to be apparent compet-

itors [34]. However, the processes underlying the coexistence of such species remain largely

unknown.

As both, D. aurita and M. nudicaudatus, are mainly terrestrial, nocturnal, solitary, and feed

on similar resources [35,36,37,38], strategies such as low trophic niche overlap or differential

use of the space is expected, in order to promote their co-existence. Here, we investigated tro-

phic niche overlap using both the isotopic approach [28] and analyzing the individual-resource

network structure based on fecal samples. If, as suggested by literature [38], D. aurita is more

generalist and M. nudicaudatus is predominantly insectivore, M. nudicaudatus’s diet would

represent a subset of the broader diet of the generalist D. aurita. In this case, we would expect

to find a nested structure for individual-resource network of both species [21,22] and overlap-

ping isotopic niches. Alternatively, if individuals use distinct subsets of the available resources,

we would expect a modular network structure, i.e. groups of individuals of the same species

feeding on a subset of food items different than those exploited by the other species [39,22],

with distinct isotopic niches.

Materials and methods

Study area

The study was conducted in Serra do Mar State Park, southeast Brazil (São Paulo State coast).

Serra do Mar State Park comprises more than 300,000 ha of well-preserved rainforest—it is the

largest protected Atlantic Rainforest remnant in Brazil [40]. The studied area is located 35 km

northbound from the urban area of Ubatuba city, and 2 km from an isolated village (Sertão da
Fazenda) (23˚20’S and 44˚50’W). The forest is characterized as lowland tropical evergreen, fol-

lowing Veloso et al. (1991) [41]. For a full description of the forest classification and structure,

see Alves et al. (2010) [42] and Eisenlohr et al. (2013) [43]. The altitudes range from 43 to 89 m

above sea level [43]. The regional climate is Tropical Humid, with hot summers and no dry

season (Af/Cfa). Average annual precipitation is 2,500 mm, and monthly average temperature

is 22˚C [44].

Collection and preparation of samples

From May 2013 to April 2015, trapping sessions of four consecutive nights were conducted

every month. Tomahawk traps (45×16×16 cm) were used to capture animals, baited with

banana, peanut butter and bacon. Traps were placed 20 m apart from each other, compound-

ing a rectangular grid of 3.4 ha (fifteen lines with seven traps each, 280 m x 120 m). Such spac-

ing represents the average distance used in previous studies [36,45], and allows to caught

individuals to be sampled and released readly early in the morning, at the day after the trap-

ping. This is particularly important as frequent rain and temperature changes may lead to

termoregulatory imbalances and death of individuals trapped for long time. In addition, a

Sherman trap (10 x 11 x 38 cm) fixed on tree branch, and a Tomahawk trap (45 x 16 x 16 cm)

Diet overlap and spatial segregation between two neotropical marsupials
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were fixed with L-bracket method (according to Graipel et al. (2003) [46]) were place at each

field station during the first six months of study. However, both methods presented low cap-

ture success (only 4 individuals caught in 6 months); therefore, we settled the traps in the forest

understory in order to reduce the time between each sample station, and to arrive more readily

at stations with captured animals. [47]. Five sample stations were excluded because of hard

access. Thus, we worked with one hundred traps total, summing up 9600 trapping nights of

sampling effort. Traps were placed on a hardboard platform to minimize the contamination of

feces with litter contents. After the second night of trapping, all baits were replaced with new

ones. Individuals captured were marked in each ear with a 1-g monel ear tag (National Band

and Tag Co.1), weighed, identified as to sex and age (according to Tyndale-Biscoe and Mac-

Kenzie (1976) [48]); the sample station was also recorded.

Over two-years of capture-mark-recapture, we trapped 68 individuals of D. aurita (334

captures) and 34 individuals of M. nudicaudatus (127 captures). Samples for diet analysis

were collected along the first year of the study and only from adults. For isotopic analysis we

sampled 11 males and 8 females of D. aurita, and 6 females and 7 males of M. nudicaudatus.

For fecal analysis we sampled 9 females and 9 males of D. aurita, and 5 females and 10 males

of M. nudicaudatus. The first time an individual was captured, we would cut a nail sample

off each finger from the left-hind foot for analysis of stable isotope ratios of C (δ13C) and N

(δ15N). Only the free margin (distal edge) of the nail was cutted. As there are no nerve end-

ings at this part, anaesthesia was not needed. Nails are keratin based and the turnover of ele-

ments in such tissues are slower, therefore being considered metabolically inert tissues [49].

As stable isotopes are allocated into the keratin structure during growth, the dietary infor-

mation for the period during which the tissue was synthesized is preserved [50]. However,

the rate with which animals incorporate the isotopic values of the resources they consume

can vary between individuals and tissue types [51]. Since these rates are still unknown for

Neotropical marsupials, we decided to not collect and analyze nails from recaptured individ-

uals, thus preventing bias from bait consumption. Given that D. aurita and M. nudicaudatus
are close relatives (i.e. same subfamily [52], we assumed that their nails integrate diet over

similar amounts of time. Under a stereoscope, nail samples were gently cleaned in a petri

dish with water, then with alcohol 70%, and again with water. After cleansing, samples

were oven dried at 60˚C for 48 hours, and weighed up to ~1 mg into tin capsules for isotopic

analyses.

We also collected samples of available diet sources for isotopic analysis, based on the litera-

ture about the species’ diet. Source samples were divided into six categories: small vertebrates

(reptiles and rodents), fruits, and four different guilds of arthropods (herbivores, predators,

omnivores and detritivores). Although we might miss some diet items that can be eventually

consumed, those six categories encompass the main food resources used by D. aurita and M.

nudicaudatus [35,36,37,45,53,54,55,56,57]. Fruits were collected opportunistically, and to col-

lect small vertebrates and arthropods we used three lines with eight pitfalls each (pitfall volume

of 60 liters). The source samples were oven dried at 60˚C for 48 hours, and weighed up to ~1

mg into tin capsules for isotopic analyses.

Fecal samples were collected from the bottom of the traps where the animal spent the night.

In order to avoid potential influences of baits on the detection and identification of the feeding

items (e.g. via differential digestive efficiency after bait ingestion) and also keep comparable

sampling effort among all individuals caught, we did not consider feces from recaptured indi-

viduals during the same trapping season. A total of 70 fecal samples were collected from 9

females and 9 males of D. aurita, and 5 females and 10 males of M. nudicaudatus. Samples

were frozen until analyzed. After thawing, they were dissolved in water, and then filtered

through a 1 mm mesh screen sieve under running tap water. The material retained on the
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sieve was dried at environment temperature and analyzed with a stereoscope. The taxonomic

identification of prey items was validated by specialists.

The spatial use of this grid, for each species, was analyzed by the percentage of spatial over-

lap, calculated through Morisita’s Index of Overlap [2]. For this analysis, we considered all cap-

tures during the two years of the study (334 captures of 68 individuals of D. aurita and 127

captures of 34 individuals of M. nudicaudatus). In order to avoid any odoriferous interference

of a species in the probability of forthcoming captures, cages were cleaned after each capture

with alcohol 50%.

Isotopic analyses

All isotopic analyses were conducted in the Stable Isotope Facility of the University of Califor-

nia, Davis, California, USA, using an online elemental analyzer (PDZ Europa ANCA-GSL, Ser-

con Ltd., Cheshire, UK) interfaced to a continuous-flow isotope ratio mass spectrometer (PDZ

Europa 20–20).

For the statistical analyses, we used the convex hull (TA) approach to represent the overall

dispersion within isotope niche space of D. aurita and M. nudicaudatus [25]. In order to ana-

lyze dietary similarity between the species, we compared the standard ellipse areas of the isoto-

pic niches (SEA). SEA is estimated using Bayesian methods, which allow robust statistical

comparisons between populations with unequal sample sizes, and contain the core mean of

the population’s isotopic niche (40% of 10000 randomizations, [3]. Due to the small sample

size, we employed a corrected sample size version of the SEA (SEAc, [3]). The overlap of SEAc

was calculated as a measure of trophic niche overlap [28]. The relative contribution of each

resource in D. aurita and M. nudicaudatus diets were estimated by the Bayesian mixing model

SIAR [58].

Intra-population variation in diets was analyzed using two quantitative metrics originally

developed by Layman et al. (2007) [25] and then adapted for a Bayesian inference by Jackson

et al. [28]: a) mean distance to centroid (CDb) infers the population’s trophic diversity; b) stan-
dard deviation of nearest neighbor distance (SDNNDb) infers the population’s trophic evenness.

All metrics were calculated using the software package SIAR v4.2.2 [59] in R programming

environment [60].

Network analysis

We described the trophic interactions of D. aurita and M. nudicaudatus with their feeding

items as a bipartite individual-resource network, consisting of two groups: captured individu-

als and the resources they consumed [22]. For such, we defined an incidence matrix where

rows (i) correspond to individuals, and columns (j) correspond to each food resource found in

fecal samples. For the network analysis, food resources were not divided into categories (as for

isotopic analyses), but were considered all items found on feces, identified to the most accurate

taxonomic level as possible. Each element (aij) of the matrix corresponds to whether the con-

sumption of a resource was recorded (aij = 1) or not (aij = 0). In order to account for potential

biases caused by recaptures of the same individuals, we grouped into the same line food items

consumed by each individual within a season. To evaluate the potential bias arisen from this

choice, we also recalculated the network metrics using the raw data, i.e. without grouping

recaptures, and found the results to be consistent regardless of the choice (S4 Table).

We searched for nestedness and modularity into this network to test whether individuals of

a species exploit a subset of resources used by individuals of another (nested network struc-

ture) or whether individuals of both species exploit distinct subset of resources (modules coin-

cident with species should be detected). We used the NODF metric, based on overlap and

Diet overlap and spatial segregation between two neotropical marsupials
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decreasing fill for both lines and columns of the matrix [61], and the modularity index (Q)

with the optimization algorithm QuanBiMo, which searches for subsets of individual–resource

in the network, yielding the largest degree of modularity [62]. Despite that Q was developed to

explore quantitative networks (see [62]), it is also suitable for binary networks. To access met-

ric significances, we compared the observed NODF and Q values to those obtained by 1,000

and 100 null model randomizations, respectively. The null model used was shuffle.web, which

rearranges interactions randomly inside the matrix but keeps the dimensions of the observed

matrix [63]. Due to the large computational time required by the algorithm QuanBiMo, we

used less randomizations for modularity. Due to the stochastic optimization technique associ-

ated to this algorithm (i.e. simulated annealing), Q values can be slightly different among runs.

Thus, for each network we chose the higher values from five independent runs set to 107 swaps

[63]. As the algorithm aims to find the highest modularity, getting the higher value among

runs is a suitable procedure, as done by previous studies (e.g. [64]). The same was done for the

null models in which we chose the higher Qs among five runs for each of the 100 randomiza-

tions. Metrics were considered significant when the observed value fell outside the 95% confi-

dence interval expected by the null models (i.e. 1000 and 100 randomizations for NODF and

Q, respectively). In order to evaluate temporal variation in the dietary structure, we split the

network data into four seasons and repeated the analyses above to search for nestedness and

modularity within a season. All analyses were run in R-package bipartite [65].

Results

Arthropods were the main diet items found in scats of both mammal species (Fig 1; Support-

ing Information, S1 Table). Coleoptera and Crustacea were the items most frequently found in

D. aurita scats and Hymenoptera and Coleoptera for M. nudicaudatus. Vertebrates were found

more frequently in D. aurita scats than in M. nudicaudatus, which presented only reptile

traces. A wider diversity of seeds was found in D. aurita scats and in a higher frequency than

in M. nudicaudatus. Despite these differences, isotopic analyses showed that D. aurita and M.

nudicaudatus feed in the same proportions for each food resource category. Mean values of

δ15N for D. aurita and M. nudicaudatus were 9.18 (±0.10 SE) and 9.32 (±0.16 SE), respectively;

and, mean values of δ13C were -23.58 (±0.10 SE) and -23.64 (±0.08 SE) for D. aurita and M.

nudicaudatus, respectively. Standard ellipse areas for isotopic niches of D. aurita (SEAc = 0.95)

and M. nudicaudatus (SEAc = 0.56) were similar (p = 0.34), and both species showed high tro-

phic niche overlap (Fig 2). Population-level metrics for trophic structures were also similar for

both species (Table 1).

SIAR dietary mixing model did not detect any significant differences between the propor-

tion that each resource group contributed to D. aurita and M. nudicaudatus diets (isotopic

values for all resource samples are shown in S2 Table). For both species, diets seem split into

three main resource groups (Fig 3, S3 Table). Top food web invertebrates (omnivores and

predators) were crucial resources (~52.5%) while vertebrates and detritivores showed a smaller

but also important proportional contribution (~38%), with vertebrates contributing more

(~21.5%) than detritivores (~0.16%). Sources from the base of the food web (fruits and herbi-

vores) were less important dietary components, with a proportional contribution of 0.02%.

We found no evidence of diet nestedness or segregation between both species (Fig 4), as

there were no differences from observed and expected results by the null model, neither for

the nestedness index (NODF = 51.09, 95% IC = 50.00–54.61) nor modularity (Q = 0.30, 95%

IC = 0.28–0.30) for bipartite matrices. Moreover, their diet remained consistently unstructured

over time as both nestedness and modularity did not differ from the results expected by the

null models for the seasons (S4 Table).
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Fig 1. Occurrence of each food item (%) found in Didelphis aurita (black bars) and Metachirus nudicaudatus (grey bars)

fecal samples.

https://doi.org/10.1371/journal.pone.0181188.g001

Fig 2. Stable isotope bi-plot illustrating the isotopic niche of Didelphis aurita (black) and Metachirus nudicaudatus (red).

Each point represents an individual; solid lines represent the mean core of the population’s isotopic niche (SEAc), and; dotted lines

represent the overall isotopic niche of the population (convex hull).

https://doi.org/10.1371/journal.pone.0181188.g002
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When we merged 24 sampled months for spatial analysis, D. aurita and M. nudicaudatus
overlapped 65% in the use of space. However, when thinner spatial scales were considered, i.e.

seasons, spatial partitioning among the individuals became evident (Table 2). There was com-

plete spatial segregation among individuals during the two springs and in the winter of 2013.

Smaller spatial overlap was observed in the winter of 2014 and both autumns, staying between

14% and 24%. In the summer, individuals of both species had the highest grid use overlap

(36%). There was no association between number of captures and spatial overlap. Higher cap-

ture rates for both species were recorded in the winter of 2013 and 2014, and there was no

overlap of the grid area used (Table 2).

Discussion

Through a combination of isotopic and network analyses, we showed that D. aurita and M.

nudicaudatus present omnivore diets, contradicting previous literature based on fecal samples

data [37,66,67]. Whereas D. aurita has been classified in the literature as the most generalist

marsupial in the Atlantic Rainforest, M. nudicaudatus has been claimed omnivore but pre-

dominantly insectivore [37,66,67]. On the other hand, our findings suggest that M. nudicauda-
tus is in fact generalist, but more than initially thought of, which provides a new perspective to

its ecological role in the community.

Our results support the idea that the use of stable isotopes in conjunction to fecal samples

provides a more complete representation of a species’ dietary habits, and the importance of

considering different arrays of analytical approaches for diet analyses [68]. Both approaches

used to analyze the species’ diet indicate the same pattern of omnivory. Isotopic results also

revealed that D. aurita and M. nudicaudatus diets encompass similar proportions of prey cate-

gories. On the other hand, fecal samples allowed a proper taxonomic identification of some

dietary items [69]. It is worth highlighting that isotopic analysis demonstrated that herbivore

invertebrates (e.g. Coleoptera) and fruits had a small contribution to D. aurita and M. nudicau-
datus diets; whereas, in fecal samples, those were the categories most frequently registered.

This is probably because Coleoptera’s elytra and fruit seeds are more difficult to digest. It is

possible that the proportions of D. aurita and M. nudicaudatus diets change from area to area,

however, our results evidence that these two sympatric marsupials have high trophic niche

overlap and might compete for food resources.

Remarkably, both methodologies used here were not able to distinguish subtle differences

between D. aurita and M. nudicaudatus diets, such as species consumed. Differences in species

consumed might exist due to differences on their climbing ability. Specifically, Didelphis aurita
is a good climber and can be found in all forest strata despite preferring the ground [36,70,71],

whereas M. nudicaudatus has morphological adaptations to a cursorial behavior and is rarely

Table 1. Population metrics of trophic structure for Didelphis aurita and Metachirus nudicaudatus.

Didelphis aurita Metachirus nudicaudatus

Sample size (n) 19 14

CDb 0.47 0.51

MNNDb 0.08 0.12

SDNNDb 0.12 0.14

SEAc 0.95 0.56

TA 2.28 1.27

CDb = mean distance to centroid; MNNDb = mean nearest neighbor distance; SDNNDb = standard

deviation of MNNDb; SEAc = standard ellipse area; TA = total ellipse area

https://doi.org/10.1371/journal.pone.0181188.t001
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captured on other forest strata than ground [72,73]. Therefore, it is possible that D. aurita’s

climbing ability allows the species to consume different prey species from canopy. Besides, M.

nudicaudatus has a longer molar series [74], which can increase the crushing, cutting and

grinding surface, potentially decreasing the probability of finding resource parts in feces that

allow proper identification. Thus, likewise for some other mammals, it is still a challenge to

determine the array of species consumed by M. nudicaudatus and D. aurita [75,76,77,78].

In the studied area, D. aurita and M. nudicaudatus trophic niche overlap was associated to

spatial segregation within seasons. The same pattern has also been described to D. aurita and

D. marsupialis [32] and in other systems, such as for Australian rodents [79] and African

Fig 3. Contributions of potential food sources to the diets of Didelphis aurita (above) and Metachirus nudicaudatus

(below). Boxes illustrate the relative proportions of each food source with 50%, 75% and 95% confidence intervals from dark to light

grey.

https://doi.org/10.1371/journal.pone.0181188.g003

Diet overlap and spatial segregation between two neotropical marsupials

PLOS ONE | https://doi.org/10.1371/journal.pone.0181188 July 12, 2017 9 / 16

https://doi.org/10.1371/journal.pone.0181188.g003
https://doi.org/10.1371/journal.pone.0181188


Fig 4. Individual-resource network for Didelphis aurita and Metachirus nudicaudatus. Links represent

the consumption of a resource (right column) by each individual (left column). Black represents D. aurita and

red M. nudicaudatus individuals.

https://doi.org/10.1371/journal.pone.0181188.g004
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grazers [20]. Our findings reveal that the temporal scale is crucial for the detection of spatial

partitioning among species. Over the two years, D. aurita and M. nudicaudatus were captured

in almost all areas of the grid, indicating that there was no difference in habitat use by both

species. On the other hand, there was a dynamic spatial exclusion between species among

seasons. This is expected as during seasons with more resource availability, such as a regular

summer, interspecific competition for food resources decreases, leading to species potentially

tolerating a higher spatial overlap; and the opposite might be expected for seasons with low

resource availability [7], such as winter. Indeed, our data indicates that in summers there is a

higher spatial overlap while winter has a lower one.

Overall, interactions among marsupials remain poorly understood, especially in the Neo-

tropics. For other mammal species, such as otters [80] and canids [81], feces and urine are

used as visual and olfactory signals. Cougars, for instance, leave scrapes along travel routes as

intraspecific signs [82]. Didelphis aurita and M. nudicaudatus have paracloacal scent glands

that confer a peculiar smell to individuals [83,84] and are likely related to complex multifunc-

tional behaviors [85,86]. The recognition of these olfactory signals in the environment could

be a strategy of M. nudicaudatus to avoid encounters with D. aurita, that is three times bigger

and very aggressive [87]. In this sense, further studies focusing on behavior may be valuable to

better understand how interactions between these species result in the pattern of dietary over-

lap and space usage here described.

In conclusion, our findings provide evidence that both species are similarly omnivores but

presenting preference for feeding on insects, and, despite using the same area over the year,

exhibit spatial segregation among seasons. Therefore, spatial segregation is likely a major

mechanism promoting coexistence by reducing competition for resources between these

marsupials. Importantly, our results illustrate that the detection of spatial segregation is scale

dependent and might be considered carefully. Finally, this paper provides a new perspective

on the ecology of these two Neotropical marsupials, and also illustrates how the association of

distinct but complementary methods can be applied to reach a more complete understanding

of resource partitioning and species coexistence.
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pagos rice rats. Ecology. 2007; 88: 2330–2344. PMID: 17918410
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piais do Brasil: biologia, ecologia e conservação. Campo Grande: Editora UFMS; 2012. pp. 385–406.
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