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Macrophages play important roles in tissue homeostasis and inflammation. Recent

studies have revealed that macrophages are dispersed in the inner ear and may

play essential roles in eliciting an immune response. Autoinflammatory diseases

comprise a family of immune-mediated diseases, some of which involve sensorineural

hearing loss, indicating that similar mechanisms may underlie the pathogenesis of

immune-mediated hearing loss. Autoimmune inner ear disease (AIED) is an idiopathic

disorder characterized by unexpected hearing loss. Tissue macrophages in the inner ear

represent a potential target for modulation of the local immune response in patients with

AIED/autoinflammatory diseases. In this review, we describe the relationship between

cochlear macrophages and the pathophysiology of AIED/autoinflammatory disease.

Keywords: macrophages, monocytes, heterogeneity, autoimmune inner ear diseases, autoinflammatory diseases,

colony-stimulating factor 1

INTRODUCTION

The functional mechanisms of resident macrophages (Mϕs) in the inner ear remain largely
unknown, in both the context of normal tissue physiology and disease development. Several recent
reviews have discussed the importance of tissue-residentMϕs in the systemic and local regulation of
inner ear homeostasis and disease pathology that improve our understanding of inner ear-resident
Mϕs (1–6).

In the United States, over 30 million adults, or approximately 15% of the entire population, are
affected by hearing loss (7, 8). Research has indicated an expansion of the populations affected by
sensorineural hearing loss, which impacts the conversion of mechanical sound to the neuroelectric
indicators in the inner ear that relay signals to the auditory nerve (7, 8). Sensorineural hearing
loss exerts a life-changing impact on affected patients; moreover, the current treatment modalities
for sensorineural hearing loss are limited to the use of either cochlear implants or hearing aids.
Cochlear implants directly stimulate the cochlear nerve by bypassing the damaged organ of Corti,
which is most frequently affected by sensorineural hearing loss (9). Cochlear implants are among
the artificial organs with the highest success rates; however, there is a social demand for more
fundamental therapeutic options for sensorineural hearing loss.

Autoimmune inner ear disease (AIED) represents much fewer than 1% of all cases of sudden
sensorineural hearing loss (10, 11), generally presenting as subacute, swiftly progressing, frequently
fluctuating, bilateral, and asymmetrical sensorineural hearing loss (9–14). AIED can be labeled
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as primary AIED, in which the inner ear is the most affected
organ, or secondary AIED (15–30% of cases), which develops
in association with a systemic autoimmune disease (12), such
as autoimmune hepatitis (15), systemic lupus erythematosus
(SLE) (16), multiple sclerosis (MS) (17), rheumatoid arthritis
(18), inflammatory bowel disease (IBD) (19), or antiphospholipid
syndrome (14, 20).

Collectively, current evidence indicates that aberrant events
in the early innate immune response play critical roles in
the development and manifestation of autoimmune hearing
loss (10, 11). As with most autoimmune diseases, it has been
postulated that a misdirected assault on the self-organs, mainly
inner ear proteins in AIED, activates the pro-inflammatory T-
cell response and autoantibody formation; this represents the
basic pathophysiology of AIED and other autoimmune diseases.
Autoinflammatory diseases fall within the family of immune-
mediated diseases, many of which induce sensorineural hearing
loss, suggesting that similar mechanisms are involved in the
pathogenesis of AIED (21). In the autoinflammatory disorder-
related hearing loss, genetic mutations or polymorphisms
inherited in an autosomal dominant manner result in a gain-of-
function mutation within the gene for nod-like receptor (NLR)
family pyrin domain 3 (NLRP3), leading to excessive interleukin
(IL)-1β release, sensorineural hearing loss, systemic amyloidosis,
and/or transient skin rashes. Muckle–Wells syndrome (MWS)
and neonatal-onset multisystem inflammatory sickness belong
to a family of autoinflammatory diseases known as a cryopyrin-
related periodic syndrome, which also involves sensorineural
hearing loss (22, 23). However, the role of Mϕs in AIED
and autoinflammatory diseases has not been well-documented
thus far.

Although 70% of patients with AIED initially respond to
corticosteroids (11), understanding the role of Mϕs in the
pathophysiology of progressive hearing loss is critical for
the development of improved therapies. In this review, we
discuss recent findings related to the development of immune-
competent cells within the inner ear (24, 25), thereby clarifying
the role of inner ear-resident Mϕs in inner ear homeostasis
and pathological processes. We also cover a wide range of
research areas involving tissue-resident Mϕs that include those
related to recent advances in antigen differentiation, gene
expression patterns, and the clinical features and pathology of
AIED/autoinflammatory diseases.

ORIGINS AND THE DIVERSIFICATION OF
TISSUE-RESIDENT
MACROPHAGES—IDENTIFICATION
THROUGH DIFFERENTIATION OF
ANTIGENS, FATE-MAPPING, AND GENE
EXPRESSION PATTERNS

Macrophages are present in all vertebrate tissues, emerging
earlier than any other blood cell type from mid-gestation and
are distributed in almost every organ and tissue in the body
throughout life (26, 27). In addition to their role in regulating

tissue development and regeneration, Mϕs aid in maintaining
local homeostasis by responding to internal and external
stimuli, appearing as phagocytes that protect against microbes.
Furthermore, they participate in the clearance of useless and
senescent cells and act as sentinels with trophic, regulatory, and
repair functions. Heterogeneous Mϕ phenotypes are observed
in different tissue environments that highlight their organ-
specific capabilities in developmental processes and normal
physiology (28–30) (Figure 1). In addition, Mϕs exhibit diverse
tissue-specific functions, integrating cues from the external
surroundings and their microenvironment. Hence, tissue-
resident Mϕs represent an appealing target for therapeutics
given their implication in various pathological processes that
include those related to atherosclerosis, autoimmune diseases,
neurodegenerative and metabolic disorders, and tumor growth
(13). Elucidating the developmental pathways and characteristics
of Mϕs may aid in the design of novel interventional strategies,
which focused on the tissue-specific microenvironment.

Researchers have debated whether resident Mϕs are
constantly and predominantly repopulated via the delivery
of blood-circulating monocytes, which derive from progenitors
inside the bone marrow (BM). However, recent studies have
demonstrated that specific Mϕ populations are independent
of circulating monocytes and even adult BM hematopoiesis
(1, 2, 24, 31). These tissue-resident Mϕs are derived from the
sequential seeding of tissues by means of various precursors
during embryonic development. Primitive Mϕs are generated
from early erythro-myeloid progenitors (EMPs) inside the yolk
sac (YS) that bypass monocytic intermediates and give rise to
microglia via the transcription element c-Myb. Ultimately, fetal
monocytes are generated from c-Myb+ EMPs that begin to seed
the fetal liver (FL), giving rise to various types of mature Mϕs.
Hence, hematopoietic stem cell-impartial embryonic precursors
transiently are present in the YS and FL represents the origin of
long-lasting, self-renewing Mϕ populations with organ-specific
functions (1, 26) (Figure 1).

The percentage of resident Mϕs varies according to their
origin, the developmental stage of the organism, and the tissue
type. For instance, most of the microglia in the brain originate
fromYS-derivedMϕs, whereasMϕs from the FL and BMprovide
a negligible contribution to microglia during all stages of life (6,
10). In contrast, resident Mϕs in the gut are derived from the YS
at some point during early embryonic development. Monocytes
derived from the FL give rise to most of the resident Mϕs in the
intestine at birth; however, throughout adulthood, most resident
Mϕs originate from the BM (5, 27).

When compared with other tissue-resident populations of
Mϕs, the cellular expression profiles of cochlear Mϕs and the
markers that can be used to visualize these cells have been
poorly documented. The dynamics of Mϕ populations in the
developing cochlea have been characterized most appreciably
in mice and are summarized in Figure 2 (24, 31, 32). Colony-
stimulating factor 1 (Csf1) signaling controls the seeding
of the larger Mϕ population within the cochlea throughout
development (24, 25). A second populace derived from the
FL, which is Csf1 receptor-independent, is observed in the
modiolus and the intraluminal surface of the perilymphatic
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FIGURE 1 | Origins and renewal of tissue-resident macrophages. The latest destiny-mapping studies in mice imply that Mϕs derived from the YS during early

embryogenesis contribute to pools of mature tissue Mϕs that include Langerhans cells and microglia. Further seeding in different tissues occurs following definitive

hematopoiesis in the FL or BM. Proliferative local expansion of tissue Mϕs within the neonatal period, followed by low-level self-renewal throughout adulthood, appears

sufficient for maintaining many tissue-resident Mϕ populations. By helping to resolve acute inflammation, local proliferation may contribute to restoring homeostatic

tissue-resident Mϕ populations. Although the exact contribution of BM-derived inflammatory Mϕs to these tissue-resident pools remains unclear, it nonetheless

appears to take place, perhaps in a tissue-specific manner. YS, yolk sac; FL, fetal liver; BM, bone marrow; EMP, erythro-myeloid progenitor; Mϕ, macrophage.

area inside the embryonic cochlea (24). Cochlear Mϕs and
perivascular macrophage-like melanocytes (PVM/Ms) lie close to
blood vessels in the adult cochlea (33)—such as in the cochlear
modiolus, supporting cells, spiral ganglion neurons (SGNs),
stria vascularis (SV), and spiral ligament (SLi)—under normal
conditions (4, 24, 25, 31, 32, 34–36) (Figure 3).

The inner ear is responsible for auditory sensation and
the perception of acceleration/rotation, and it is difficult to
restore the population of sensory cells in the inner ear after
degeneration due to acute or chronic inner ear injuries, such
as those related to Meniere’s disease and sudden sensorineural
hearing loss. This is partly because, in humans, hair cells in the
inner ear are terminally differentiated, losing their potential for
self-renewal following significant damage after birth (33). SGNs,
which mediate synaptic connections among the hair cells and
the neurons of the cochlear nucleus, also undergo damage and
degeneration, while damage or atrophy of the SV and SLi disrupts

cochlear function. Repeated exposure of the auditory system to
insults causes harm to these structures, resulting in functional
impairments that lead to progressive hearing loss (7).

Cochlear Mϕs persist from the early post-natal stages and
renew or preserve their populace via the infiltration of circulating
monocytes (34, 37, 38). PVM/Ms are found adjacent to the
blood vessels in the SV and support cells in the cochlea (35, 39).
PVM/Ms have a turnover time of several months in mice and are
maintained via the migration of monocytes that originate from
the BM into the cochlea (36). Functionally, PVM/Ms contribute
to restoring the endocochlear potential, which is crucial for
the activation of auditory hair cells (40, 41). Interestingly,
Mϕ heterogeneity results in distinct phenotypes and, more
importantly, completely exceptional organic functions in other
tissues (28). Therefore, future studies should aim to elucidate the
roles of tissue-resident and BM-derived Mϕs in the initiation,
progression, and termination of inner ear diseases.
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FIGURE 2 | Schematic representation of the origins and distribution of resident macrophages in embryonic and adult cochleae. Two subtypes of resident Mϕs are

present within the embryonic cochlea: Csf1r-dependent Mϕs that originate from the YS and Csf1r-independent Mϕs that migrate from the FL via systemic circulation.

A large proportion of the cochlear-resident Mϕ population is derived from the YS given that Mϕs expressing Iba1 reside in the mesenchyme surrounding the otocyst

as early as E10.5. These Mϕs are distributed within the SGN and SLi at E17.5. However, Csf1r-independent Mϕs expressing CD11b migrate as early as E14.5 and

reside only in specific components of the cochlea, consisting of the mesenchyme of the cochlear modiolus or the intraluminal floor of the perilymphatic area at E17.5.

In the adult cochlea, the density of Mϕs expressing Iba1 regularly decreases, whereas that of Mϕs expressing CD11b increases, suggesting that the FL and BM

contribute to the repopulation of cochlear-resident Mϕs. YS, yolk sac; FL, fetal liver; BM, bone marrow; Mϕ, macrophage; Csf1r, Colony-stimulating factor-1 receptor;

SGN, spiral ganglia neurons; SLi, spiral ligament; EMP, erythro-myeloid progenitor.

MACROPHAGES AND AUTOIMMUNE
DISEASES

Monocytes and Mϕs can secrete a wealth of cytokines and
chemokines, which further stimulate other forms of immune
cells, thereby leading to inflammation (33, 42). The presence
of autoantibodies and autoreactive B and T cells in most
autoimmune diseases indicates that the adaptive immune
system is essential for their pathogenesis; however, this cannot
completely account for the resolution and development of those
diseases, and studies have indicated that the innate immune
response may also play necessary and irreplaceable roles in the
pathogenesis of the autoimmune disease (33, 43, 44).

A monocyte or Mϕ infiltration is typically observed in
most autoimmune diseases (33). The regulatory mechanisms
that involve monocytes and/or Mϕs in the development of the
autoimmune disease have not been fully elucidated; nevertheless,
the consensus appears to signify that their atypical activation
plays a key role in the abovementioned mechanisms. Mϕs exhibit
shifts in polarization primarily based on diverse stimuli produced
with the aid of cytokines, microbes, microbial products, and

other modulators in vitro (45). However, in an in vivo study,
alterations in arginine metabolism following lipopolysaccharide
(LPS) injection were found to elicit different phenotypes of
Mϕs in C57BL/6J and Balb/c mice (46). C57BL/6J peritoneal
Mϕs promoted inducible nitric oxide synthase (iNOS) activity,
resulting in nitric oxide expression and a T-helper 1 (Th1) CD4+
T cell response. In contrast, Mϕs from Balb/c mice triggered
arginase activity, resulting in an ornithine and Th2 response.
Analogous to Th1 and Th2, these Mϕs have been termed M1 and
M2 (46). Generally, M1-polarized Mϕs are pro-inflammatory
and secrete IL-12 and tumor necrosis factor (TNF)-α, which
contribute to local irritation, while M2-polarized Mϕs produce
IL-4 and IL-10, which play roles in immunomodulation, wound
repair, and tissue remodeling (43, 47).

Within tissues of the central nervous system (CNS),
particularly in patients with progressive MS, infection is
characterized by the massive activation of mononuclear
phagocytes that include both monocyte-derived Mϕs and
resident microglia (48). The staging of MS lesions can be
determined based totally on the presence of CD68-nice Mϕs and
human leukocyte antigens, together with the extent of myelin
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FIGURE 3 | Distribution of tissue macrophages in the cochlea. The distribution of tissue Mϕs is shown in a schematic cross-sectional view of the cochlea. Tissue Mϕ

are distributed in the SGN, SLi, SV, and cochlear modiolus. Cochlear Mϕs also exhibit spindle-shaped cell bodies and dendritic cell processes under steady-state

conditions, as observed in microglia in the central nervous system. SGN, spiral ganglion neurons; SLi, spiral ligament; SV, stria vascularis; OC, Organ of Corti;

Mϕ, macrophage.

loss (49). Findings obtained using the experimental autoimmune
encephalomyelitis (EAE) model, an animal model of MS, have
indicated that Mϕs play crucial roles in triggering adaptive
immune responses. For example, the Mϕ NLRP3 inflammasome
plays key role in inducing autoreactive T cell migration
into the CNS in EAE (50). Mϕs also produce several key
cytokines (IL-1β, IL-6, and IL-23) that promote the generation
and maintenance of Th17 cells, an important cell subset
mediating CNS autoimmunity in EAE (51). For this reason,
accumulating evidence suggests that Mϕs play divergent roles
in the pathogenesis of MS, exacerbating tissue damage despite
their outstanding growth-promoting and neuroprotective effects
(52). As predicted, this dual role of Mϕs in MS may be defined
by their polarization state. Indeed, both M1 and M2 subsets
are found in MS lesions. The unexpected pro-inflammatory
M1 reaction is maintained at sites of CNS damage, while the
immunoregulatory M2 response is comparatively weaker and
more transient (52). Yamasaki et al. demonstrated that resident
macroglia are associated with particle clearance. In the context
of MS, these cells exhibit global suppression of metabolism
throughout disease initiation, whereas monocyte-derived Mϕs

become exceptionally phagocytic and inflammatory, actively
participating in the initiation of demyelination (53).

Monocytes/Mϕs contribute to the pathogenesis of SLE by
modulating the adaptive immune response in the kidney.
Defective Mϕ phagocytosis has also been thought to contribute
to autoimmunity in SLE. The phagocytic potential of Mϕs is vital
for the clearance of dead cells and debris, which otherwise may
be critical sources of autoantigens. Accumulating evidence from
in vitro studies and murine models illustrates that ineffective
clearance of apoptotic cells by Mϕs may represent a critical
trigger of the autoimmune response in SLE (33). In lupus-
inclined NZB/W and NZW/BXSB mice, resident nephritic Mϕs
exhibit decreases in arginase and iNOS production despite
treatment with M1- or M2 Mϕ-inducing cytokines, regardless of
their health status (54). Instead, these Mϕs exhibit a combined
pro- and anti-inflammatory phenotype throughout the course
of lupus-related nephritis. The authors argued that monocyte-
derived Mϕs in these mice are poorly responsive to the cytokine
stimulation that enables the transition to the corresponding M1
or M2 type (54). In addition to these phenotypic differences,
functional analysis has confirmed that resident kidney Mϕs
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FIGURE 4 | The hypothesis of autoimmune and autoinflammatory diseases in the inner ear. Genetic and/or environmental factors increase both systemic stress and

local stress in the inner ear (e.g., MS, SLE, autoimmune uveitis, MWS, and IBD). Resident cochlear Mϕs may be activated to a pro-inflammatory state.

Pro-inflammatory macrophages release cytokines that recruit monocytes into the cochlea. These infiltrating monocytes differentiate into macrophages within the

cochlea, following which they participate in phagocytosis, inflammatory mediator production, and antigen presentation. Excessive autoantigen and cytokine release

may cause cochlear autoinflammation and sensorineural hearing loss. MS, multiple sclerosis; SLE, systemic lupus erythematosus; MWS, Muckle–Wells syndrome;

IBD, inflammatory bowel disease; Mϕ, macrophage, BM, bone marrow; TNF, tumor necrosis factor; IL, interleukin.

exhibit greater antigen-producing and phagocytotic effects than
monocyte-derived kidney Mϕs (33, 54).

Autoimmune uveitis, which occurs in several diseases that
include Behçet’s disease, sarcoidosis, and Vogt–Koyanagi–
Harada disease, is a sight-threatening ocular inflammatory
disorder (55). Immunization with interphotoreceptor retinoid-
binding protein and extra adjuvants leads to the priming of
autoreactive CD4+ T cells in peripheral lymphoid organs and
their polarization into pathogenic Th1 and Th17 cells. Once
activated, Th cells in the eye induce the breakdown of the
blood–retinal barrier, an immune barrier that protects the eyes
from unfavorable inflammation through tight junctions between
endothelial cells in blood vessels; these tight junctions block
circulating leukocyte extravasation into the retina (56). Okunuki
et al. suggested that retinal microglia constitute the essential
cellular populace within the retina that enables entry of the
autoreactive cells required for the initiation of autoimmune
uveitis; however, systemic exposure to an autoantigen is in all
likelihood the cause of autoimmunity in this disorder (55).

Taken together, these findings highlight the proposed
relationship between monocytes/Mϕs and the development of
autoimmune diseases in the CNS, kidneys, and eyes. It is
well-known that monocytes/Mϕs are the key components of
the innate immune system that underlie the amplification
and suppression of inflammation (42). Increasing evidence
indicates that these cells participate in the pathogenesis
of autoimmune diseases mainly via their remarkably pro-
inflammatory or fibrogenic functions (42, 57). As discussed

above, the heterogeneity of monocyte/Mϕ subpopulations
varies dramatically in different autoimmune diseases, and
their polarization profiles generally play key roles in diseases
progression. However, for several autoimmune diseases, the
phenotypic and functional characteristics of monocytes/Mϕs
remain poorly categorized, as many pro-inflammatory M1-
polarized monocytes/Mϕs concurrently express M2-associated
markers or showcase immunomodulatory features (33).

THE ROLE OF INNER EAR
MACROPHAGES IN AIED

The inner ear is fully able to mount an immune response
following the invasion of outside antigens. Consequently,
numerous mechanisms have been proposed to underlie
cochlear damage that include antibody–antigen reactions
with autoantibody enhancement (type II immune responses),
complement machine activation, immune-complicated depletion
(type III immune responses), direct damage mediated via
cytotoxic T-cells crossing the blood–labyrinth barrier and
reaching the endolymphatic sac, vasculitis, micro-thrombosis,
and electrochemical reactions (type IV immune responses)
(10, 12, 14, 20, 58). Antigen recognition by the innate immune
cells of the inner ear (neutrophils, Mϕs, and dendritic cells)
stimulates the release of IL-1β, which in turn triggers a
series of adaptive immune responses. The recruitment of
immunocompetent cells and the promotion of an adaptive
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immune response occur in the presence of immune mediators,
such as IL-1β, IL-2, and TNFα (13, 20). Studies have suggested
an association between sudden sensorineural hearing loss and
the presence of vestibulocochlear antibodies against inner ear
antigens, such as heat shock protein 70, cochlin, β-tectorin, and
types II and IX collagen (12, 20, 59–61).

Although the relationship between AIED/autoinflammatory
diseases and cochlear monocytes/Mϕs remains largely unknown,
previous studies have indicated that cochlear Mϕs play crucial
roles in the onset and progression of infection after insults
to the cochlear sensory epithelium. Such insults include noise
or drug exposure and mechanical or surgical injury to the
cochlea, such as that occurring during cochlear implantation
(5, 31, 34, 62–72). These signals activate resident cochlear Mϕs,
switching them to a pro-inflammatory state and causing them
to release cytokines that recruit monocytes into the cochlea (34,
62). Infiltrating monocytes then differentiate into macrophages
within the cochlea, following which they exert phagocytotic
functions (69, 73), produce inflammatory mediators, and play
roles in antigen presentation (34). In some patients with
Ménière’s disease, high levels of IL-1β and TNF-α suggested that
it was a chronic inflammatory disorder (74). In addition, several
reports suggested an association between the immune responses
caused by Mϕs and Ménière’s disease (75–80).

As described above, monocytes/Mϕs are key components
of the innate immune system in the pathogenesis of systemic
autoimmune diseases and are involved in amplifying and
suppressing inflammation (33, 42), mainly through their
remarkably pro-inflammatory or fibrogenic properties (33, 42,
57). Nakanishi et al. suggested that monocytes are the primary
regulators of IL-1 release in MWS, which is caused by a
mutation in the NLRP3 gene that leads to excessive IL-1β
production (81). Gattorneo et al. also reported that monocytes
from patients with MWS released a minute amount of IL-1
when compared with control monocytes, but that patients were
extremely responsive to anakinra use (IL-1 inhibition) (82).
Additionally, Nakanishi et al. indicated that LPS stimulation can
activate the NLRP3 inflammasome in monocyte/Mϕ-like cells
(CX3CR1-superb cells) in wild-type C57BL/6J mouse cochleae
(81). These findings support the notion that local cochlear
activation of the NLRP3 inflammasome in monocytes/Mϕs can
result in cochlear autoinflammation and sensorineural hearing
loss (83). Vambutas et al. demonstrated that patients with steroid-
resistant AIED are clinically sensitive to IL-1 inhibition; however,
relative to those in individuals with steroid-sensitive AIED and
controls, these monocytes synthesize greater but release much
less IL-1 (84).

Previous studies have revealed that 46–57% of adult patients
with IBD present with sensorineural hearing loss as an
extraintestinal manifestation (85, 86); however, few reports
have mentioned the roles of monocytes/Mϕs. Dettmer et al.
reported that the temporal bones of patients with IBD exhibited
mild chronic inflammation, poorly defined granulomas, and
CD68-positive Mϕ infiltration (87). IBD may also be associated
with Cogan’s syndrome, a rare disorder characterized by
eye and inner ear inflammation manifesting as interstitial
keratitis and audiovestibular dysfunction, respectively (88). The

mechanisms associated with eye and inner ear disorders in
Cogan’s syndrome are unknown; however, the authors of one
autopsy case reported histopathologic evidence of vasculitis
and an infiltration of CD45-positive inflammatory cells that
include Mϕs in both the cochlear and peripheral vestibular
systems (89). Moreover, a few studies have suggested that
the disease is a result of inner ear autoimmunity (90, 91).
Aberrantly activated intestinal Mϕs in patients with IBD
produce diverse cytokines (IL-1β, IL-6, IL-23, TNF-α, and TNF-
like protein 1A) required for T-cell differentiation, especially
those related to the generation of Th1 and Th17 cells (92).
Furthermore, in those with IBD, intestinal Mϕs cause an
abnormally fast breakdown of pro-inflammatory cytokines
due to faster lysosomal degradation, whereas cytokine mRNA
expression remains stable and within the normal range (93).
This has been shown to elicit an impaired neutrophil response,
leading to dysfunction in bacterial clearance and thereby
boosting the formation of granulomas. Within the pathology
of IBD, Mϕs are hyperpolarized toward the M2 profile, as
demonstrated in numerous studies. In various mouse models
of IBD, inhibition of the pro-inflammatory activities of M1
Mϕs or induction of tissue-repairing/immunomodulatory M2
Mϕs results in attenuated experimental IBD (94, 95). Similar
mechanisms are speculated to occur in the inner ear in patients
with IBD.

In summary, cumulative and progressive sensory cell
degeneration and death, caused by chronic inflammation, end
in the activation of resident Mϕs, with little infiltration of
circulating monocytes (62), which parallels the innate immune
response observed in chronic diseases. The activated resident
Mϕs adopt either a pro- or anti-inflammatory profile. Pro-
inflammatory Mϕs produce and release pro-inflammatory
mediators—such as IL-1β, TNF-α, and IL-6—which send
signals to nearby cells, leading to further inflammation and
cellular damage/apoptosis (34, 96, 97) (Figure 4). However,
to date, no study has clarified which cells in the inner ear are
targeted by Mϕs, and the precise differences in phenotype
and activity among newly recruited monocytes/Mϕs and
resident Mϕs remain to be determined. Across autoimmune
disorders, the heterogeneity of monocyte/Mϕ subpopulations
varies dramatically; furthermore, their polarization profile
usually plays a key role in disease development (33).
Further research is required to elucidate the specific roles
of cochlear monocytes/Mϕs in the pathophysiology of
autoimmune-mediated hearing loss.

FUTURE DIRECTIONS

Numerous research groups have proposed Mϕ-targeted
treatment options for inflammatory diseases. Among the most
investigated strategies is the facilitation of Mϕ phagocytosis
via nanoparticle targeting, which then passively targets the
inflammatory site due to the mounting immune response
(98, 99). The modulation and reprogramming of Mϕs are also
considered promising anti-tumor strategies (69–71). Using
genetically modified monocytes or Mϕs as vectors may aid
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in the development of therapeutic strategies that promote
regeneration or regrowth of particular structures inside the
inner ear (6, 61, 100). This idea is especially well-suited for
secreted paracrine or endocrine factors, such as hormones or
growth factors. Because the inner ear includes three fluid-filled
compartments, secreted elements derived from genetically
modified Mϕs may reach the central cells via diffusion through
the inner ear without the involvement of the blood or lymphatic
circulation. The transplantation of genetically engineered cells
that can secrete particular metabolic or humoral cues may help
to augment pharmacologic immune modulation inside the
inner ear; however, the delivery of genetically modified cells
into the inner ear may be challenging due to its anatomical
characteristics. Given that monocytes and Mϕs can migrate
into the inner ear in both pathological and physiological
states (6, 32, 61, 69), the human monocyte lineage can be
extracted, cultured ex vivo, genetically manipulated, and
reimplanted locally or systemically. Intravenous management
of genetically modified monocytes should permit them to
reach the inner ear despite challenges related to tissue or
organ specificity.

Extending studies to identify and establish the set of markers
expressed by cochlear Mϕs to include multiplex and comparative
transcriptomic studies may improve our ability to identify sub-
populations and roles and to compare the profiles of resident
Mϕs in different organs. To better understand the roles of
these cells, numerous processes that permit source- and area-
(cochlear sub-structure) specific Mϕ analysis are required.
Such techniques can also be used to identify remote cells or
tissue indicators in situ. For example, in the brain, infiltrating
monocytes have been shown to exhibit functional variations
and contribute to disease pathology via multiple mechanisms
following ischemic stroke and MS (53, 101). To develop
therapeutic strategies for AIED and autoinflammation, it is first
necessary to understand the effects of targeting cochlear Mϕs.
Furthermore, as hearing loss fluctuates in patients with AIED
and autoinflammation, the timing of intravenous administration
of genetically modified monocytes may represent a potential
problem in clinical applications.

CONCLUSION

In this review, we discussed the latest advances and evidence
regarding the connection between tissue-resident Mϕs
and AIED/autoinflammatory diseases. Three subtypes of
cochlear-resident Mϕs are found in exclusive components of
the cochlea, and each subtype may play distinct roles in the
abovementioned diseases. Furthermore, the dynamics and
molecules expressed in tissue Mϕs in the inner ear are gradually
being elucidated. However, several aspects remain unclear. In
particular, the role of tissue Mϕs in the pathology of AIED is
not well-understood, in part due to restrictions on the collection
of human inner ear tissue. Moreover, additional research is
required to compare the pathophysiology of such diseases in
mouse models and humans. Despite the need for extensive
research, the future of inner ear immunology and treatment
for sensorineural hearing loss remains promising. Developing
a greater understanding of monocyte/Mϕ-associated activities
within the cochlea may be essential for developing new biological
and therapeutic strategies for related diseases.
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