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Abstract

Monitoring vegetation restoration is challenging because monitoring is

costly, requires long-term funding, and involves monitoring multiple vegeta-

tion variables that are often not linked back to learning about progress

toward objectives. There is a clear need for the development of targeted

monitoring programs that focus on a reduced set of variables that are tied to

specific restoration objectives. In this paper, we present a method to

progress the development of a targeted monitoring program, using a

pre-existing state-and-transition model. We (1) use field data to validate an

expert-derived classification of woodland vegetation states; (2) use these

data to identify which variable(s) help differentiate woodland states; and

(3) identify the target threshold (for the variable) that signifies if the desired

transition has been achieved. The measured vegetation variables from each

site in this study were good predictors of the different states. We show that

by measuring only a few of these variables, it is possible to assign the vegeta-

tion state for a collection of sites, and monitor if and when a transition to

another state has occurred. For this ecosystem and state-and-transition

models, out of nine vegetation variables considered, the density of immature

trees and percentage of exotic understory vegetation cover were the vari-

ables most frequently specified as effective to define a threshold or

transition. We synthesize findings by presenting a decision tree that

provides practical guidance for the development of targeted monitoring

strategies for woodland vegetation.
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INTRODUCTION

Many land management organizations have a mission to
conserve biodiversity. The protection and restoration of
native vegetation is a key focus of biodiversity manage-
ment programs, to protect native flora in its own right,
and as a source of food and shelter for fauna. Managers
have expectations about how the site or landscape will
respond over time when they are enacting management,
and the subsequent outcomes and benefits provided.
These hypotheses about cause and effect may not be
explicitly defined, but represent the justification for the
choice of management applied (Rumpff et al., 2011).
Decisions are implemented, and monitoring is often used
to better understand how the system is changing in
response to management to improve decisions, as well as
to report on the outcomes of management investment.

A common problem associated with monitoring the
results of vegetation restoration management is that the
objectives of management programs (if specified) are
often difficult to conceptualize and measure (Nichols &
Williams, 2006; Parkes et al., 2003; Yoccoz et al., 2001).
Defining biologically relevant performance measures that
can reliably inform a manager about whether efforts
result in the desired outcomes is not an easy task
(Di Stefano, 2003; Legg & Nagy, 2006). For example, a
common objective is to improve the condition of native
vegetation. But how does one define condition? By defini-
tion, vegetation condition is a value judgment defined by
a combination of variables, which differentially respond
to environmental perturbations and management inter-
ventions (McCarthy et al., 2004). As an added complica-
tion, “vegetation condition” can reasonably be defined in
many ways depending on the biodiversity, production, or
aesthetic or social values underpinning management
(Backstrom et al., 2018; Keith & Gorrod, 2006; Seastedt
et al., 2008).

In vegetation management, a common approach is to
monitor multiple structural, compositional, and func-
tional attributes of the system, then either combine these
variables into a univariate measure of “condition”
(Parkes et al., 2003), or monitor and report on change in
the individual attributes. The univariate option can result
in difficulties in understanding what the measure actu-
ally represents, and an unnecessary loss of clarity
(McCarthy et al., 2004), such that it can be difficult to
examine whether and how investment in management
actions has actually resulted in change (McCarthy
et al., 2004; Sato & Lindenmayer, 2021). Reporting on
change in individual variables can provide more clarity
in this regard but, if multiple variables are responding
differently, it can be hard to understand and communi-
cate how the condition of the site is changing as a whole.

A tension exists between integrating multiple attributes
into a “holistic” view of condition, or leaving the individ-
ual attributes disaggregated.

The design and interpretation of condition monitor-
ing may be helped by developing a system model that
explicitly captures the cause-and-effect hypotheses that
guide decisions, including the assumptions and uncer-
tainty around how individual variables change over
time in relation to management and other drivers
(e.g., environmental, landscape context; Lindenmayer &
Likens, 2010). System models are a key focus of adaptive
management programs (Lindenmayer & Likens, 2009),
and can be empirically validated or updated with moni-
toring data over time (Rumpff et al., 2011). They can lead
to (qualitative or quantitative) predictions, guiding man-
agement decisions that go beyond educated guesses
(Keddy, 1992; Rumpff et al., 2011).

State-and-transition models (STMs) are a relatively
common form of system model utilized in vegetation
management (Bestelmeyer et al., 2017; Stringham
et al., 2007; Westoby et al., 1989). These models provide
an explicit platform to formalize and communicate
knowledge and beliefs about multiple, distinct states of
vegetation in a landscape, with various pathways of
change (Bestelmeyer et al., 2017; Westoby et al., 2007).
States are defined according to single or multiple vegeta-
tion variables, so it is easy to understand the broad appeal
of STMs as support tools for decision-making. The devel-
opment of these models in a participatory setting can pro-
mote a shared understanding and justification of the
decision context, vegetation dynamics, and choice of
management interventions (Bestelmeyer et al., 2010). For
instance, an explicit model can be used to discuss and
define management objectives (i.e., for a site, what is the
target state?), the management interventions and funds
that are required to achieve the specified objective
(Bestelmeyer et al., 2017), and to identify where uncer-
tainty exists in the system (Rumpff et al., 2011).

In addition to providing a framework for modeling
vegetation condition, STMs can also help to formulate a
more targeted monitoring strategy. For instance, a man-
ager may define the starting state and identify a desired
state (the objective), then identify particular vegetation
condition variables (e.g., weed cover) that, without inter-
vention, are impeding a transition to the desired state.
Presumably, if a manager has identified the threshold for
that vegetation variable that defines the two states, one
could monitor progress toward that threshold to know
whether the desired change had been achieved at a site.
Monitoring data would then simultaneously evaluate the
model and the effect of the management intervention.
Yet choosing what to monitor may not be that simple.
There may be some uncertainty around system dynamics,
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such that the combination of environmental conditions
and intervention may result in some unexpected or even
perverse transition to a different state. The question then
remains, what would one monitor, given that there may
be multiple pathways of change and different time frames
over which change occurs?

Given that monitoring is expensive, time consuming,
and often not linked back to learning about progress
toward objectives (Addison et al., 2016; Field et al., 2007;
Lindenmayer & Likens, 2009; Thomas et al., 2018; Wintle
et al., 2010), there is potentially great value in using
STMs to both model vegetation states that reflect condi-
tion and generate a reduced set of variables to underpin a
targeted monitoring strategy. In this paper, we present a
method to progress the development of a targeted moni-
toring program, using STMs. Using a pre-existing state-
and-transition model, we (1) use field data to validate an
expert-derived classification of woodland vegetation
states; (2) use these data to identify which variable(s)
help differentiate woodland vegetation states; and
(3) identify the target threshold (for the variable) that sig-
nifies when focal transitions have occurred. We discuss
the limitations of the approach and provide a guide to
the necessary steps for developing a targeted monitoring
strategy. The development of STMs provides a practical
approach to explicitly structuring hypotheses about sys-
tem dynamics that underpin management decisions. We
extend this thinking to provide an intuitive and accessi-
ble way to work toward a targeted monitoring program.

METHODS

The state-and-transition model: Defining
the states

This method relies upon having a predefined STM for
vegetation attributes or condition for the system at hand,
and here we build upon an existing model described in
Rumpff et al. (2011). The development of STMs to guide
management is covered in more detail elsewhere
(e.g., please refer to Bestelmeyer et al., 2010, 2017), but
here we briefly summarize the model used in this study.

The STM was developed for the grassy woodland
communities of central Victoria, on the northern slopes
and plains of the Great Dividing Range. The woodlands
are dominated by Eucalyptus species, primarily the box
species (e.g., E. microcarpa, E. albens, E. goniocalyx,
E. melliodora), as well as yellow gum (E. leucoxylon), and
sometimes red gum (E. camaldulensis, E. blakelyi). The
understory is variably dominated by grasses or shrubs,
with a wide range of native herbaceous species, particu-
larly within less disturbed areas. The states and

transitions that describe the woodland communities were
defined by a group of experts, with expertise in woodland
ecology and natural resource management. The states
included: Reference, Simplified, Oldfield, Thicket, Native
pasture, Exotic pasture and Derived (Rumpff et al., 2011;
Figure 1). Experts initially described states qualitatively
in terms of their structure and composition, using vegeta-
tion variables that best characterized each state and are
commonly used in condition assessments (Gibbons &
Freudenberger, 2006; Noss, 1990; Parkes et al., 2003;
Rumpff et al., 2011). Experts then quantitatively
described each state according to the expected range for
each vegetation “state” variable (e.g., % weed cover;
please refer to Rumpff et al., 2011).

Validating the states: Site identification
and assignment of state

We presented the conceptual model and the qualitative
and quantitative descriptions (Figure 1) of the woodland
states from Rumpff et al. (2011) to five land managers in
our study area, the Goulburn and Broken River catch-
ments in Victoria, Australia. We asked land managers to
identify multiple examples of sites for each state in their
landscape. We aimed to have equivalent numbers of sites
per vegetation state, even though they were not equally
represented within the landscape. For the Reference
state, we sought further input from three additional land
managers as there are few examples of intact high-quality
woodland in this landscape. In total, 85 sites was identi-
fied (Appendix S1).

A small team of researchers visited each of the
85 identified sites and each researcher qualitatively
assigned the site to a state using state descriptions and
photographs accompanying the conceptual model. In
addition to the assessment from land managers, at least
two researchers assessed each site to provide a coarse
understanding of whether perceptions of vegetation
states varied between individuals. There was high agree-
ment between the assignment of state to site by the
researchers, with 91% of sites classified identically, and
corresponding with the managers assignment of states.
The greatest uncertainty was in the differentiation of
Simplified from Oldfield states (accounting for 50% of
“uncertain” site classifications).

We also used data from vegetation condition assess-
ments of 40 sites from the same study area, collected by
researchers from the Australian National University
(ANU). The ANU sites were independently assigned
states by two individuals involved in collecting the data.
The field researchers were given the same general criteria
for differentiating each state as the Victorian managers.
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F I GURE 1 State-and-transition model for nonriparian woodlands and a brief description of the woodland states shown to experts,

modified from Rumpff et al., 2011. Reference: Sites that are largely intact in terms of structural and species diversity, with a low cover of

exotic species. Sites that have been little altered since European settlement fall into this category, but the reference state does not necessarily

have to represent pre-European vegetation condition. Simplified: Sites may have a relatively intact understory, overstory, or midstory

structure, but one or more of these strata is likely to be simplified. Species richness may be high, but unlikely to reach that of reference

levels. An example of this state is vegetation that has been intermittently grazed at low intensity and/or moderately cleared in the past.

Oldfield: Sites with a simplified overstory structure, low species richness (of the understory and midstory), but may have a moderate to high

cover of shrubs. A typical example includes sites that have been previously cleared and intensively grazed, but then abandoned from grazing

and left to recover without management intervention. Native pasture: Sites with a simplified overstory, and a low cover and richness of

both the midstory and understory. The cover of weeds may be low-moderate. Such sites will typically include those that have been cleared

and grazed at a high frequency and intensity, but without the addition of fertilizer. Exotic pasture: Sites with an understory composed

almost entirely of exotic species, a simplified overstory, and no midstory. Such sites will have been fertilized and sown with an exotic

understory. Thicket: Sites with a dense regrowth of overstory species, and a relatively low cover/richness of the understory and midstory

component. For instance, sites may have had a change in land-use (e.g., removal of grazing or logging) and climatic conditions that were

favorable for natural regeneration of woody species. Derived: Sites that have low understory species richness, and a low to mid cover of

weed, understory, and overstory species. The cover and richness of the midstory can range from low to high. This state represents sites that

have been replanted with multiple life-forms for the purpose of enhancing biodiversity.
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The two researchers were in perfect agreement for the
40 ANU sites. This brought the total number of sites to
125, with a minimum of seven sites in the Reference state
and maximum of 32 sites in the Simplified state
(Appendix S1).

Validating the states: Field collection

Field data were collected for all 125 sites by the two sepa-
rate groups of researchers between October 2011 and
February 2013. Sites spanned a range of states for each
group and were surveyed using equivalent survey
approaches outlined in Appendix S1. Data were collected
for each of the nine state indicator vegetation variables
described in Rumpff et al. (2011) at all sites. The nine var-
iables defined the overstory (tree density in different size
classes), midstory (shrub cover and recruitment density)
and understory (cover and diversity) vegetation compo-
nents of the community (Appendix S1). Data were col-
lected in quadrat areas and along line transects in both
survey approaches. Given the equivalent ecosystems and
data collection methods, we combined the two datasets
for analysis. Stem density and species richness data were
calibrated so that all relevant variables from both groups
had an equivalent spatial scale (Appendices S1 and S2).

Transitions between states

Each state was considered by the group of experts to be
likely to transition to one or more alternative states, as
described in the STM conceptual model (Figure 1,
Table 1). This was not an exhaustive list of the possible
transitions, but rather a list of the transitions commonly
observed in the landscape. Although all possible transi-
tions could be evaluated, there was little value in investi-
gating very unlikely transitions, such as those from more
degraded states to the ideal Reference state. Additionally,
the experts suggested the probable primary drivers of
each transitional change, including damaging processes,
such as tree clearing, livestock grazing, and fertilization,
and restorative processes, such as revegetation, weed con-
trol, and destocking. The list of likely transitions and
their primary drivers are given in Table 1.

Data analysis

Data analyses were conducted to directly address three
questions relating to the STM: (1) How valid are the
expert-derived woodland vegetation states when tested
with field data? (2) What are the variables that

differentiate states? (3) What variable(s) and value
threshold(s) define a transition from one state to another?
The first two questions were addressed using decision tree

TABL E 1 The most likely transitions between states from the

conceptual model (from Rumpff et al., 2011), to be tested in this

paper.

Initial
state

Transition
state

Suggested drivers of change
(Rumpff et al., 2011)

Reference Exotic
pasture

Major clearing (overstory and
midstory), fertilization, sowing

Native
pasture

Major clearing (overstory and
midstory)

Simplified Clearing of midstory or overstory,
grazing by domestic stock

Simplified Native
pasture

Clearing of midstory and
overstory, grazing by domestic
stock

Reference Active rehabilitation (planting or
direct seeding), weed control,
native, and pest herbivore
control, destocking, and time

Oldfield Native
pasture

Destocking

Simplified Active rehabilitation (planting),
time

Native
pasture

Exotic
pasture

Fertilization, sowing

Thicket Destocking and “good” rainfall
year

Oldfield Removal of grazing and fencing

Derived Destocking, soil preparation,
weed control, active
rehabilitation (planting or
direct seeding)

Exotic
pasture

Native
pasture

Cease fertilization, time

Thicket Destocking and “good” rainfall
year, or mass direct seeding of
Eucalyptus species with soil
disturbance and a “good”
rainfall year

Thicket Oldfield Natural or manual thinning, poor
native seed bank

Simplified Manual thinning when native soil
seed bank present, and/or
active rehabilitation (planting
or direct seeding)

Derived Simplified Weed control, active
rehabilitation (planting or
direct seeding), time
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models, whereas the third was achieved through logistic
regression. All analyses were performed using the statisti-
cal software package R version 3.6.0 (R Core Team, 2020).

Evaluating the visual classification of states
using classification trees

We used classification trees to conduct categorical assign-
ment of sites to individual classes (De’Ath &
Fabricius, 2000). These methods are effective for this type
of analysis as they make no assumptions about the distri-
bution of variables and are not overly compromised by
nonlinear relationships (De’Ath & Fabricius, 2000). We
developed an all-site classification tree with the entire
dataset of sites and vegetation variables for illustrative
purposes only, to see whether the expert-derived STM
states are consistent when quantitatively validated with
field data in this successive data partitioning process.
This model shows the measured vegetation variables that
successively partition the entire set of sites into a speci-
fied number of groups (states) (Appendix S3). A classifi-
cation tree model using all sites involves successive
partitions that only use a subset of the total sites that is,
does not use all the data relating to each state transition.
Although there may be benefits to this all-state synthesis,
the successive nature of the model with imperfect
partitioning means that this approach does not fully dis-
criminate any two particular states. An alternative
approach that maximizes the use of all data within each
state for determining a set of specific monitoring vari-
ables is to make separate models for each pair of states
that are targeted for monitoring transitions. For this rea-
son, our set of classification trees used subsets of the data
to look at each target pair of states that corresponded to
probable thresholds that discriminate states (Table 2).

In constructing the classification trees, we specified
the “formula” as a linear model in which the response
variable was the assigned state. The predictor variables
were the various vegetation state variables measured at
each site that reflect the state definitions, their transitions
and drivers (Figure 2, Table 1). A stepwise approach
termed recursive partitioning was used to sequentially
divide splits (branches) until some point of resolution of
a group, using the rpart statistical package (Therneau &
Atkinson, 2019) within R. Within the rpart function, the
“method” argument in all cases was set as “class,”
whereas the “control” argument was used to specify the
number of splits within the tree to reflect the number of
possible states in the set. The most useful variables for
differentiating between two states can then be identified
and ranked using the paired classification trees
(De’Ath & Fabricius, 2000). Additionally, this process

also indicates how effectively this top ranked variable
splits the sites (e.g., 10 out of 12 sites were split based on
this single variable). This can be used to assess how well
the classes mapped on to the predefined assignment of
state (i.e., the model is not predetermined to split into the
different states). However, this only speaks to the top
ranked variable and would only be useful if only a single
variable was going to be used to monitor state transitions.

Logistic regression: Evaluating thresholds and
uncertainty for monitoring

Although classification trees can provide a quantitative
estimate of the threshold value of a variable that splits
two groups, explicitly examining the uncertainty around
this threshold was more easily achieved through logistic
regression. Logistic regression maintains input state
assignment, whereas classification trees can reallocate
states into new groups based on the data. This means
that the ranking of classification trees may not align
with a ranking of the most certain logistic regression
thresholds, but this is not considered a conflict as the
outcomes of both tools can be used together to inform
monitoring or management decisions. Exploring uncer-
tainty will inform our confidence that a transition has
occurred, because values near the threshold are weak
indications of a transition. Although all thresholds will
be uncertain, some will be more uncertain than others
and these will be less reliable indicators of transition.
However, it is difficult to determine an ideal or unac-
ceptable level of uncertainty because it depends on the
relative suitability of alternative variables and the risk
attitude of the manager. For each pair of states
(i.e., possible initial to transition states; Table 1) we pro-
duced logistic regression models for the three best-
performing variables from the classification tree (paired)
models and calculated and examined the uncertainty
around the threshold.

Logistic regression models were fitted with the glm
function in R (R Core Team, 2020), with the binomial
“family” and logit “link.” Models were fitted on
transformed response variable data to improve normality;
square-root transformations were used for all percentages
and a subset of the count data (densities and richness). In
general, count data with relatively clear thresholds (little
data overlap between states) produced better fitting
models with log transformations, whereas square-root
transformations performed better for uncertain thresh-
olds. Once fitted, the predict function was used to esti-
mate the value (with 95% confidence interval) of the
vegetation variable when the state was exactly 0.5, that is,
halfway between the two state binary values. Predictions
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with log transformation were made on the link scale to
identify the 0.5 threshold and then back-transformed for
plotting. This provides a threshold value that discrimi-
nates between the two states.

RESULTS

The seven different states identified in the STM varied
considerably in the values of the measured vegetation
variables (Figure 2). Native understory cover, shrub rich-
ness, and understory richness varied substantially within
states, but less so between states. Other variables, like
stem density, midstory (shrub) cover and recruitment

had greater between-state variation, predominantly due
to high values in one of the states (Figure 2). The raw
data demonstrated that some states have clearly
distinguishing variables (e.g., Thickets are characterized
by high stem density, and Derived states by high levels of
shrub cover and richness).

Classification trees

The paired classification models were run for all pairs of
states with corresponding probable transitions specified
in the original STM conceptual model (Figure 1). These
trees display the top ranked variable used to split

TAB L E 2 The top three variables across the full set of classification trees for all unique combinations presented in the expert-derived

conceptual model (STM).

State transition Model rank of variables for each state pair

From To 1 2 3

Reference Exotic pasture Density of immature trees
(Stem.to30)

Exotic understory cover
(Perc_ex_us)

Density tree recruits
(REGEN_T_ha)

Native pasture Density of immature trees
(Stem.to30)

Density tree recruits
(REGEN_T_ha)

Native shrub cover
(Perc_nat_shrub)

Simplified Native shrub cover
(Perc_nat_shrub)

Density shrub recruits
(REGEN_SH_ha)

Density of immature trees
(Stem.to30)

Simplified Native pasture Density of immature trees
(Stem.to30)

Native understory richness
(RICH_natund)

Density tree recruits
(REGEN_T_ha)

Reference As in reference to simplified

Oldfield Native pasture Density of immature trees
(Stem.to30)

Density tree recruits
(REGEN_T_ha)

Density of mature trees
(STEM.50plus_ha)

Simplified Density of mature trees
(STEM.50plus_ha)

Exotic understory cover
(Perc_ex_us)

Native shrub richness
(RICH_natmid)

Native pasture Exotic pasture Native understory cover
(Perc_nat_us)

Exotic understory cover
(Perc_ex_us)

Native understory cover
(RICH_natund)

Thicket Density of immature trees
(Stem.to30)

Density tree recruits
(REGEN_T_ha)

Exotic understory cover
(Perc_ex_us)

Derived Native shrub richness
(RICH_natmid)

Native shrub cover
(Perc_nat_shrub)

Density shrub recruits
(REGEN_SH_ha)

Oldfield As in Oldfield to Native pasture

Exotic pasture Native pasture As in Native pasture to Exotic pasture

Thicket Exotic understory cover
(Perc_ex_us)

Density of immature trees
(Stem.to30)

Native shrub cover
(Perc_nat_shrub)

Thicket Oldfield Exotic understory cover
(Perc_ex_us)

Density of immature trees
(Stem.to30)

Density of mature trees
(STEM.50plus_ha)

Simplified Density of immature trees
(Stem.to30)

Native shrub cover
(Perc_nat_shrub)

Exotic understory cover
(Perc_ex_us)

Derived Simplified Density shrub recruits
(REGEN_SH_ha)

Native shrub richness
(RICH_natmid)

Native understory richness
(RICH_natund)

Note: Transitions are two-way, that is, reference to simplified is equivalent to simplified to reference, so duplications are not repeated in the table.
Abbreviation: STM, state-and-transition models.
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between two groups, a threshold value indicating the
value of the variable that best splits two states as well as
an indication of effectiveness of correctly differentiating
between states, as exemplified in Figure 3. The “Native
pasture” and “Exotic pasture” states have similar stem
densities, woody recruits and midstory cover (Figure 2),
but the cover of native understory vegetation appears to

be the most important differentiating variable at a 34%
threshold (Figure 3). If native understory cover alone
were to be used to differentiate between these states it
would correctly identify 10 out of 14 sites (71% correct)
and six out of seven native pasture sites (81% correct).
The “Oldfield” and “Simplified” states differ most in their
density of mature trees in the paired models with a

F I GURE 2 Boxplots representing raw data across both the Australian National University (ANU) and University of Melbourne

(UM) datasets across each of the vegetation states. Tree and shrub densities are plotted on the log 10 scale to aid visual comparisons, so a

constant (1) was added to all values for plotting. Center lines indicate median values, boxes indicate the interquartile range and whiskers

extend to no more than 1.5 times the interquartile range from the box. Percentage cover values are summed across individual species, so

totals can exceed 100% when species overlap.
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threshold of 18 stems per hectare. If this variable alone
was used to differentiate these two states, then Oldfield
sites would be correctly identified 72% of the time and
Simplified states 92% of the time (Figure 3).

The three most highly ranked vegetation variables
defining the difference between each state pair are
recorded in Table 2. The threshold value for each vari-
able is included in Appendix S4. Of the most highly
ranked variables across all-state pairs, the density of
immature trees (Stem.to 30) was most frequently
reported (in nine out of 13 unique transitions). The
percentage cover of exotic understory was the second
most frequently listed (in seven out of 13 unique transi-
tions) followed by density of tree recruits and native
shrub cover (both five of 13). Native understory rich-
ness, density of mature trees, density of shrub recruits
and the richness of native shrubs generally indicated
uncertain transitions and occurred in three out of 13
unique transitions. Native understory cover was the
least frequently listed (in one out of 13 unique
transitions).

Logistic regression

The top three ranked variables determined by the classi-
fication trees for each pair of states were modeled using
logistic regression via a generalized linear model with a
binary variable for states to calculate a threshold value,
and the uncertainty (95% CI intervals) around the
threshold. Three common vegetation states and their
probable transitions are shown in Figure 4. These transi-
tions represent moving in a perceived negative direction
(due to a decline in condition) from a “Reference” state
to a “Simplified” state (Cunningham et al., 2008), a

positive direction moving from a “Derived” state to a
“Simplified” state and a potentially problematic transition
from “Native pasture” to “Thicket” (Jones et al., 2015).
The reference to simplified transition is uncertain and
relatively inaccurate, due to the small and inconsistent
differences between vegetation variables within these
states. Detecting this transition is therefore likely to be
difficult and require accurate data from multiple variables.
In contrast, the Derived and Simplified states have
clearly different data distributions of multiple vegetation
variables, and therefore precise and more certain thresh-
olds. This would be a much simpler and more reliable
transition to detect. The Native pasture and Thicket states
have moderate transitions with high uncertainty at low
tree densities but high certainty at high densities. Once
states are clearly defined with specific ranges of vegetation
variables, a manager could use these results to monitor
specific site changes and get an early indication of likely
or problematic transitions. The full results for each pair of
states is presented in Appendix S4.

Examples of thresholds with low and high uncer-
tainty are shown in Figure 5. The width of the confi-
dence interval and the percentage deviance explained
of the logistic regression (Appendix S4) are effective
indicators of uncertainty around a threshold. Variables
that provide clear thresholds with narrow confidence
intervals are optimal for indicators of change in state.
When states can be confidently discriminated by a veg-
etation variable, that variable may be sufficient to
detect changes alone, but when variables provide
unconfident thresholds, multiple variables may be
required to indicate state changes. For example, for a
transition between “Thicket” and “Oldfield” states, the
variable exotic understory cover may be a useful moni-
toring variable on its own (Figure 5), as the width of

Na�ve understory cover <34%
≥34% <18/ha

Mature tree density ≥8/ha

Exo�c pasture and Na�ve pasture Oldfield and Simplified

Exo�c pasture
10 / 14

Na�ve pasture
6 / 7

Oldfield
21 / 29

Simplified
22 / 24

F I GURE 3 A graphical representation of two classification trees for paired states: Exotic pasture and Native pasture (left), and Oldfield

and Simplified (right). The trees were generated by hierarchical partitioning of 21 sites using vegetation variables. The percentage cover of

native understory was the best variable to distinguish between Native pasture and Exotic pasture states, at a threshold of 34% cover. Whereas

a mature tree density threshold of 18/ha was the best for distinguishing Oldfield and Simplified states. Values within each group refer to the

number of sites reflecting the label and the total number of sites in that group.
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the confidence interval around the threshold (37.8%
cover) is narrow relative to the range of values and
overlapping data distributions (26.9%–47.7%, 79% Dev.
Exp., p = 0.0024). In comparison, for a transition
between “Reference” and “Simplified” states the per-
centage cover of native shrubs is unlikely to be a useful
monitoring variable on its own as the width of the con-
fidence interval around the threshold (9%) is wide
(3.6%–24.7%, 23% Dev. Exp., p = 0.012) (Figure 5).

It is more likely to be a change in state will be
detected when monitoring variables with more certain
thresholds, whereas monitoring very large changes may
still be insufficient to conclude a state change when the

thresholds are uncertain. For example, monitoring a
change in exotic understory cover of 35% at a hypothetical
site is enough to be confident of a transition between
Oldfield and Thicket (Figure 5) because this change is
large enough to clearly cross over the threshold and its
confidence interval (open circle change from 20% to 55%).
However, a change of only 20% (change from 20% to 40%)
suggests a state change with low confidence. In contrast,
when monitoring the cover of native shrubs at a Simplified
state, one is unlikely to be confident in detecting a transi-
tion to a Reference site even if the magnitude of the
change is as large as 13% (more than 10 times the initial
estimate; Figure 5).

F I GURE 4 An example of three transitions that occur in our study region. Each transition shows the top three ranked vegetation

variables (identified by the classification tree analysis) that would be most useful for monitoring these transitions. Solid black lines are the

likelihood of a site being in one of two states given the value of a vegetation variable. Black circles indicate measured values at a site (one

circle per site). The dashed black line occurs at the 0.5 probability and shaded areas represent 95% CI or uncertainty around threshold

values. Densities of trees and shrubs have been log scaled for clarity, so a constant (1) was added to all values for plotting.
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In only one case there was no overlap between the
values of a variable between two different states, that is, the
data could be split perfectly into two separate groups
(Appendix S4). In two other cases, the data did not overlap
apart from one equal value. These include transitions
between: “Native pasture” and “Derived” (with native shrub
richness), “Exotic pasture” to “Thicket” (with % cover native
shrubs) and “Derived” to “Simplified” (with native shrub
richness; Figure 4) respectively. These represent the best-
case scenario for the use of a variable to define a transition.

DISCUSSION

This study provides good justification for, and demon-
strates the development of, targeted monitoring strategies

for woodland vegetation. Landscape scale decision-
making is a focus in some ecosystems (Bestelmeyer
et al., 2011; Steele et al., 2012) and STMs are useful
in capturing complex ecological dynamics (Rumpff
et al., 2011). However, having measurable targets and
monitoring to detect a specific directional change at the
site level is often a requirement of useful monitoring pro-
grams (Nichols & Williams, 2006). The measured vegeta-
tion variables from each woodland site in this study were
good predictors of the different vegetation states as previ-
ously defined by experts (Rumpff et al., 2011). We dem-
onstrate an effective approach to quantifying transition
thresholds and their uncertainty. Importantly, we have
shown that by measuring only a few of these variables, it
is possible to assign a collection of sites into a vegetation
state corresponding with perceptions of condition, and to

F I GURE 5 A linear model prediction (solid black line) of the likelihood of a site being in one of two states given the value of a

vegetation variable. Black circles indicate measured values at a site (one circle per site). The dashed black line occurs at the 0.5 probability,

that is, the threshold of likelihood between states, with the gray area showing the 95% confidence interval of this prediction. The open circles

and dotted lines indicate changes in value at a hypothetical site, representing examples of clear (Thicket and Oldfield: spanning the

threshold uncertainty) and less certain (threshold uncertainty range not crossed) transitions were based on these vegetation variables and

different levels of certainty of threshold values.
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monitor if and when a transition to another state has
occurred.

Of the nine vegetation variables measured across
all sites, the density of immature trees and percentage
of exotic understory vegetation cover were the most
reliable variables to define a threshold or transition
between two woodland states. Despite being listed as
the most frequently important indicator of a transi-
tion, immature stem densities typically had uncertain
threshold values and would therefore only be the most
practical indicators on their own when the magnitude
of change was large. Although the requirement of a
large change is not ideal, mass recruitment events are
common within these landscapes and high densities of
immature trees can occur quickly (Jones et al., 2015).
Although the percentage cover of native vegetation
is a frequently monitored vegetation variable in
Australia (Parkes et al., 2003), it was the least
commonly listed as an important variable to define
transitions in these woodlands. Similarly, species rich-
ness is a commonly recorded variable but was a rela-
tively uncertain indicator of transition in this
ecosystem, given the objective of differentiating
between vegetation states. However, these variables
may be important conservation attributes for other
management objectives.

The paired classification approach displays the
highest ranked variable for differentiating between sites
as well as other useful variables. For any monitoring
strategy we would advocate for monitoring at least two of
the ranked variables, and this is for several reasons. First,
in few cases could a single variable distinguish between
states perfectly, nor would we expect this to be the case
given the complex nature of ecological systems. Second,
the vegetation variables can be measured in different
ways that might be more or less prone to measurement
error. For example, a threshold for native shrub cover
may have narrow confidence intervals (e.g., 2% CI
width in Thicket to Simplified) but if visual assessment of
cover is being used to monitor this variable, measure-
ment error may be larger compared with this (McCarthy
et al., 2004). A narrow confidence interval around the
richness of native shrub species (e.g., a one species differ-
ence in Derived to Simplified) may be less prone to mea-
surement error, depending on detectability (Kéry &
Schmidt, 2008). Third, attention needs to be given to the
time frame over which change is monitored. Reporting
achievement of a transition may be best demonstrated
with a more dynamic variable (i.e., percentage exotic
understory cover compared with development of mature
trees), but this depends on the time frame of the monitor-
ing given the objectives of the monitoring program. Last,
this analysis has only been carried out using two data sets

and, whereas those involved in this study could visually
assign states to vegetation relatively reliably, larger or
more validation data sets may be required to avoid or
reduce misclassification errors. In all cases, erring on the
side of caution with the choice of variable(s) is wise. A
practical next step would be to test how applicable the
identified vegetation variables are in signifying transi-
tions across a range of similar vegetation types in
Australia.

How to identify targeted monitoring
variables, using the state-and-transition
model approach

The decision tree in Figure 6 is intended to aid in develop-
ing a targeted monitoring strategy at a site level, using the
process outlined in this paper. We assume the process of
developing the state-and-transition model, data collection,
and analysis (as per this paper) is complete (for guidance
please refer to Bestelmeyer et al., 2017; Rumpff et al., 2011).
The first stage in developing a monitoring strategy based on
the state-and-transition model is to determine the objectives
for management (Field et al., 2007). This may relate to the
landscape level, and/or at the level of a site. At a landscape
level, managers first need to identify the objectives for the
landscape (i.e., how much of landscape should be in state X
vs. Y, by time Z?). This decision depends on the area and
distribution of states in the landscape, and what resources
are available. Then, at a site level, the objective relates to
what state is desired, over what time frame.

In the decision tree (Figure 6) the diamond shapes
indicate questions that should be asked at each site,
whereas the rectangular shapes indicate the subsequent
processes required to develop the monitoring strategy.
Important decision triggers include whether the user has,
or can identify, the starting state at a site. We recommend
that more than one person assesses the starting state, as
uncertainty and variation between observers can have
implications for which monitoring variables are used to
assess condition and change over time.

The next important decision trigger is determining
how much uncertainty is tolerable in the selection of
monitoring variables. This requires the user to examine
the uncertainty around the threshold for each monitoring
variable. We have demonstrated a threshold point at
which the model is most uncertain about state (i.e., a
50/50 chance of being in either state) but this threshold
definition might not always be the most appropriate deci-
sion threshold. Instead, the user may wish to specify a
different tolerance to uncertainty (Figure 6). We recog-
nize this is an important consideration (Rumpff
et al., 2012), but is outside the scope for this paper.
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Rank

F I GURE 6 Decision tree indicating how to identify targeted monitoring variables given the knowledge of starting states, transitions,

monitoring attributes, and tolerance of uncertainty.
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Even if the bounds of uncertainty are adequate, it may
be prudent to monitor more than one variable to be more
certain of a transition (if it occurs), or if the user wants to
include a short-term monitoring variable (e.g., recruitment)
in addition to a longer term variable (e.g., tree density) in
their strategy. Alternatively, when monitoring a variable
and the site lies within the bounds of uncertainty (i.e., the
95% CI), the user might want to consider monitoring
another variable if greater certainty about the assignment of
state is needed (Appendix S4). Of course, other variables
may be collected for other purposes at the same time, but
here we are focusing on the minimum number of variables
to measure to reliably detect state transitions.

The next decision point requires the user to reconsider
how confident they want to be that a transition has
occurred, or is occurring. That will influence the sampling
design as greater confidence requires greater sample size, or
reduced variability, or both. A power analysis approach may
be helpful in determining monitoring parameters (or for
methods for more complex systems please refer to Thomas
et al., 2018), but with a key component being the manager’s
preferred level of confidence in a true state change. Typi-
cally, sample size is what one manipulates, as natural vari-
ability is less controllable, except by sampling methods of
greater or lesser precision. This depends on the available
sampling budget and how it needs to be allocated over space
and time. Last, when the desired state is reached
(or maintained), a manager has to decide whether to set a
new objective, and how much monitoring is required to
detect whether the desired state is maintained. We use a
feedback loop to indicate when a decision needs to be made,
rather than to imply that a site is monitored in perpetuity.

Summary

In contrast with surveillance monitoring that can be useful
for discovering “unknown unknowns” (Wintle et al., 2010),
managers and decision makers require targeted monitoring
programs that focus on a reduced set of variables that are
tied to specific restoration objectives. In this paper, we pro-
vide an example of testing whether a targeted monitoring
program can be developed for woodland vegetation in
southeast Australia. We use STMs as the framework for
specifying site objectives, identifying a reduced set of moni-
toring variables to help distinguish between states, and
identifying thresholds (with uncertainty) that provide moni-
toring targets that are linked to objectives. Our findings
indicate that measured vegetation variables from each site
in this study were good predictors of the different vegetation
states, and there are a few variables that can be commonly
used as monitoring variables distinguishing among multiple
states. This approach, although developed for one

ecosystem only, is a promising step toward developing more
targeted and efficient monitoring protocols that can support
learning about change over time for vegetation restoration
projects when specific objectives have been identified.
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