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Abstract: The wettability, surface energy, structure, and morphology of a material’s surface will affect
the interaction process between the material and the organism. Moreover, these factors are not inde-
pendent of each other, but will affect each other, which together determine the biological surface of the
material. Although two classic theories of surface wettability control have been established, including
the Wenzel model and the Cassie–Baxter model, the mechanism of the microstructure parameters on
the surface wettability has not been considered. This paper established a two-dimensional mathe-
matical model of the composite wetting pattern based on microstructure parameters, revealed the
mechanism of the microstructure parameters on the surface wettability, and then used ultra-precision
cutting and molding composite preparation methods to quickly and efficiently prepare bionic struc-
tures, and the hydrophobic character of the microstructure was characterized by the contact angle
meter, which provides theoretical support and preparation technology for the modification of the
hydrophobic character of the material.

Keywords: hydrophobicity; composite model; bionic structure; ultraprecision machining

1. Introduction

Due to hundreds of millions of years of natural selection and biological evolution,
many animal and plant surfaces exhibit different excellent functional properties, such as
self-cleaning [1], drag reduction and wear resistance [2], corrosion resistance [3], and low
adhesion [4]. As people continue to research and discover, these peculiar functions have a
huge connection with biological surface structure and microscopic morphology. The surface
layer of the lotus leaf exhibits excellent self-cleaning properties, that is, the phenomenon of
“lotus leaf effect” [5]. This is because there are a large number of micron papillae on the
surface layer of the lotus leaf, and there are nano-villi structures and low-energy waxy layers
on the papillary structure. The effect leads to the super-hydrophobicity of the lotus leaf;
the surface of shark skin [6] has a special groove structure, which can make it swim quickly
in the water and achieve excellent drag reduction function. Imitating the special wettability
surface in nature, researchers designed and prepared a variety of special wettability surfaces,
among which the superhydrophobic surface attracted the most attention of researchers [7,8].
The super-hydrophobic surface has super waterproof and self-cleaning properties, and
has important application value in industrial production and daily life. However, the
superhydrophobic surface also has some defects and shortcomings [9,10]; for example, it
only exhibits superphobic characteristics for water with high surface tension, and is easily
contaminated by organic oil stains with low surface tension. The “Cassie” of water on
superhydrophobic surfaces, the contact state, is unstable, and external forces such as high
pressure and impact can easily cause the “Cassie” contact state to change to the “Wenzel”
contact state and lose its waterproof properties. Therefore, the study of superhydrophobic
models based on the surface microstructure becomes particularly important.
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In recent years, scholars all over the world have conducted a large number of experi-
ments and studies on superhydrophobic functional surfaces. There are many preparation
methods, including sol-gel method [11], template method [12], chemical vapor depo-
sition [13], laser-processing method [14] and so on. Many micro-nano manufacturing
methods have been applied to prepare super-slip surfaces [15–18], but most of these meth-
ods are to build an additional layer of heterogeneous porous structure on the substrate
material, and then refill lubricating oil to further obtain super-slip properties. Therefore, the
prepared super-smooth surface substrate material and the liquid-infused porous structure
layer have different physical, chemical, thermodynamic, and mechanical properties. When
heated, bent, impacted, or other external forces are applied, it is easy to cause damage or
damage to the super-slip surface layer.

This paper established a microstructure-based superhydrophobic model to study the
mechanism of the influence of microstructure parameters on the superhydrophobicity of
the material, and then prepared a microstructure with superhydrophobic characteristics
through a composite processing method of ultra-precision cutting and molding. The
microstructure was verified by experiments. The superhydrophobicity of the structure has
important reference value for the further development and application of superhydrophobic
materials.

2. Materials and Methods

Figure 1 shows the two-dimensional model in the compound infiltration mode. In this
immersion mode, the liquid is not completely immersed inside the microstructure, leaving
some gas inside the microstructure.
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Figure 1. Two-dimensional model of composite infiltration mode. Figure 1. Two-dimensional model of composite infiltration mode.

Considering the scale of the microstructure, the liquid surface of the droplet inside the
microstructure can be simplified to a straight line. In the modeling, it is assumed that the
depth of the liquid immersed into the microstructure is the same, and the immersion depth
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himm is introduced. Therefore, the droplet in the composite wetting mode starts from the
three-phase contact point A and expands along the X-axis direction, first descending along
the side wall of the microstructure to a point with a depth of himm (point B’), and crosses to
the point B located on the other side wall of the microstructure, and then return to the top
of the microstructure along the sidewall (point C), and continues to expand along the plane
to point D, thus starting the next cycle of expansion, until the infiltration system reaches a
stable state.

Considering the four positions of A, B, C, and D, we set the apparent contact angle
corresponding to each contact point as θA, θB, θC, and θD, and the corresponding contour
area as AA, AB, AC, and AD, respectively. At point B, the droplet profile above the apparent
solid–liquid contact surface is regarded as a spherical shape, and the droplet profile below
the apparent solid–liquid contact surface was simplified as a straight line. According to the
geometric relationship in Figure 1, the droplet area at each stage is as follows:

AA =
θAL2

A
sin2 θA

− L2
A

tan θA
+ Ainter.

AB =
θBL2

B
sin2 θB

− L2
B

tan θB
+ Ainter. + 4hhimm tan θT

2 − 3h2
imm tan θT

2

AC =
θCL2

C
sin2 θC

− L2
C

tan θC
+ Ainter. + 4hhimm tan θT

2 − 2h2
imm tan θT

2

AD =
θDL2

D
sin2 θD

− L2
D

tan θD
+ Ainter. + 4hhimm tan θT

2 − 2h2
imm tan θT

2

(1)

When the droplet expands from point A to point B, we obtain:{
θBL2

B
sin2 θB

− L2
B

tan θB
+ 4hhimm tan θT

2 − 3h2
imm tan θT

2 =
θAL2

A
sin2 θA

− L2
A

tan θA

LB = LA + 2h tan θT
2 − himm tan θT

2

(2)

When the droplet expands from point B to point C, we obtain:
θCL2

C
sin2 θC

− L2
C

tan θC
+ h2

imm tan θT
2 =

θBL2
B

sin2 θB
− L2

B
tan θB

LC = LB + himm tan θT
2

(3)

When the droplet expands from point C to point D, we obtain:
θDL2

D
sin2 θD

− L2
D

tan θD
=

θCL2
C

sin2 θC
− L2

C
tan θC

LD = LC + p− 2h tan θT
2

(4)

In the composite wetting mode, when the three-phase contact point extends from
point C to point D, the length of the interphase interface is the same as that of the full
wetting mode. Due to the introduction of the infiltration depth himm, the length of the
interphase interface when the three-phase contact point extends from point A to point B
and from point B to point C is slightly different from that of the full infiltration mode.

LG, SG, and SL, stand for liquid–gas interface, solid–gas interface, and solid–liquid
interface, respectively.

As shown in Figure 2a, when the three-phase contact point extends from point A to
point B, the length of each interface can be expressed by the following formula:

LLG
A = 2 θALA

sin θA

LLG
B = 2 θBLB

sin θB
+ 2himm + 4h tan θT

2 − 4himm tan θT
2

LSG
A = LSL

B = 2 himm
cos(θT/2)

(5)

The free energy change ∆FA→B of the three-phase contact point extending from point
A to point B can be deduced:
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∆FA→B = 2γLG
(

θBLB

sin θB
− θALA

sin θA
+ himm + 2h tan

θT

2
− 2himm tan

θT

2

)
− 2himm

(
γSG − γSL)
cos(θT/2)

(6)

Dividing both sides by γLG at the same time, we obtain:

∆FA→B

γLG = 2
(

θBLB

sin θB
− θALA

sin θA
+ himm + 2h tan

θT

2
− 2himm tan

θT

2

)
− 2himm

cos θY

cos(θT/2)
(7)

Figure 2b shows the expansion of the three-phase contact point from point B to point
C. The length of each interface is:

LLG
B = 2 θBLB

sin θB
+ 2himm

LLG
C = 2 θCLC

sin θC

LSG
B = LSL

C = 2 himm
cos(θT/2)

(8)

Similarly, the free energy change ∆FB→C of the three-phase contact point extending
from point B to point C can be expressed as:

∆FB→C = 2γLG
(

θCLC

sin θC
− θBLB

sin θB
− himm

)
− 2himm

(
γSG − γSL)
cos(θT/2)

(9)

Dividing both sides by γLG at the same time, we obtain:

∆FB→C

γLG = 2
(

θCLC

sin θC
− θBLB

sin θB
− himm

)
− 2himm

cos θY

cos(θT/2)
(10)

The formula for the expansion of the three-phase contact point from point C to point D
is consistent with the full infiltration model. Therefore, the two-dimensional mathematical
model of the compound infiltration mode can be expressed by Equation (11):

LB = LA + 2h tan θT
2 − himm tan θT

2
LC = LB + himm tan θT

2
LD = LC + p− 2h tan θT

2
θBL2

B
sin2 θB

− L2
B

tan θB
+ 4hhimm tan θT

2 − 3h2
imm tan θT

2 =
θAL2

A
sin2 θA

− L2
A

tan θA
θCL2

C
sin2 θC

− L2
C

tan θC
+ h2

imm tan θT
2 =

θBL2
B

sin2 θB
− L2

B
tan θB

θDL2
D

sin2 θD
− L2

D
tan θD

=
θCL2

C
sin2 θC

− L2
C

tan θC
∆FA→B

γLG = 2
(

θBLB
sin θB

− θALA
sin θA

+ himm + 2h tan θT
2 − 2himm tan θT

2

)
− 2himm

cos θY
cos(θT/2)

∆FB→C
γLG = 2

(
θCLC
sin θC

− θBLB
sin θB

− himm

)
− 2himm

cos θY
cos(θT/2)

∆FC→D
γLG = 2

(
θDLD
sin θD

− θCLC
sin θC

)
− 2
(

p− 2h tan θT
2

)
cos θY

(11)

Similarly, suppose stage A is the initial state, and the input conditions of the equation
group include θA, θT, θY, LA, γLG, p, h, and himm. The output of the equation group is still
LB, LC, LD, θB, θC, θD, ∆FA→B, ∆FB→C, and ∆FC→D. The compound infiltration model also
contains nine equations and nine unknowns, and the model is solvable.

The relationship between system free energy and apparent contact angle in the com-
pound infiltration mode was also obtained by iterative calculation of Equation (11) by
constructing a loop program in MATLAB. The infiltration depth himm was increased from
1 µm to 7 µm in steps of 1 µm. The calculation results of the composite infiltration model
are shown in Figure 3. When the infiltration depth was constant, the free energy of the
system decreased first and then increased with the decrease of the apparent contact angle.
Similarly, the apparent contact angle of the droplet when the surface of the microstructured
array was stable could be obtained by determining the minimum value of the free energy.
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The relationship between the steady state apparent contact angle and the droplet
infiltration depth is shown in Figure 4, and the relationship between the two was basically
linear. As the depth of infiltration increased, the apparent contact angle gradually decreased,
because the droplet infiltration mode gradually approached the full infiltration mode.
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In summary, comparing the calculation results of the simulation model with the
calculation results of the mathematical model, it can be seen that the calculation results of
the total infiltration model had a large error, and the calculation results of the composite
infiltration model at himm = 3 µm were consistent with the simulation results. When the
microstructure pitch p = 20 µm, the width w = 16 µm, the depth h = 8 µm, and the bottom
angle θT = 90◦, the microstructure array appears to be hydrophobic. Therefore, in this
paper, the composite infiltration model was used as a theoretical model for the regulation
of the wettability of the microstructure array surface.

The microstructure array processing tool is a diamond tip with a tip angle of 90◦, then
θT = 90◦, and the relationship between the width of the processed microstructure and the
depth of the microstructure is w = 2h. Therefore, different microstructure morphologies can
be obtained by setting different h and p.

When the microstructure depth h is fixed, the influence of the microstructure pitch p
on the wettability of the coating surface is studied. Using the composite infiltration model,
we set h to 8 µm, and calculated the relationship between the free energy of the system and
the apparent contact angle θa when the microstructure spacing p was 16, 20, 30, and 60 µm.
The results are shown in Figure 5.
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(a) p = 16 µm; (b) p = 20 µm; (c) p = 30 µm; (d) p = 60 µm.
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The apparent contact angle corresponding to the minimum system free energy is the
apparent contact angle when the liquid is stable. At different p values, there was a range
of variation in θa with the infiltration depth himm, and the results are shown in Figure 6.
When h was fixed, with the increase of p, the variation range of θa gradually decreased, and
the surface of the microstructure array gradually tended to be hydrophilic. This is because
when h was fixed, w was also a fixed value, and an increase in p led to an increase in the
contact area between the droplet and the surface of the Ni-P coating. According to the
Cassie–Baxter model, the above situation increases the ratio f a between the actual contact
area of the liquid and the solid to the visible contact area, resulting in a decrease in the
apparent contact angle.
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When the microstructure pitch p is fixed, the influence of the microstructure depth h
on the wettability of the coating surface is studied. We set p to 30 µm, calculated the change
of the stable apparent contact angle θa of the droplet when the microstructure depth h was
2, 4, 8 and 12 µm, and the results are shown in Figure 7. When p is a certain value, with the
increase of h, the variation range of θa gradually increased, and the surface wettability of
the microstructure array included both hydrophilic and hydrophobic ones.

Comparing the results in Figures 6 and 7, the following correspondence can be found:
the change curves of p = 20, 30, and 60 µm in Figure 6 correspond to the change curves
of h = 12, 8, and 4 µm in Figure 7, respectively. In Figure 6, h is 8 µm, and h/p is 6/15,
4/15, and 2/15, respectively; in Figure 7, p is 30 µm, and h/p is also 6/15, 4/15, and
2/15 respectively. It can be seen that the change of the apparent contact angle is related to
the ratio of the microstructure depth h to the microstructure pitch p. The surface wettability
of the electroless Ni-P coating can be adjusted by processing microstructure arrays with
different h/p values.

Considering the machinability of the large-area microstructure array on the surface
of the electroless Ni-P coating, when h is small, the efficiency of large-area processing
is too low; when h is large, large-area processing is likely to cause tool wear. Therefore,
in the subsequent microstructure array processing experiments in this paper, h was set
to 8 µm and p was set to 16, 20, 30, and 60 µm, respectively, and h/p was 7.5/15, 6/15,
4/ 15 and 2/15.
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The test was completed by the Nanoform X ultra-precision processing machine tool
from Precitech, USA. The structure of the machine tool is shown in Figure 8. The inside
of the machine tool is a T-shaped layout processing platform, which realizes processing
through four-axis linkage, where the X-axis and Z-axis are moving axes, and the C axis
and the B axis are the rotation axis. The maximum stroke of the moving axis is 220 mm,
the maximum feed speed is 4000 mm/min, the programming resolution is 0.01 nm, the
position feedback resolution is 0.016 nm, and the maximum speed of the C axis of the rotary
axis is 1500 r/min; the maximum speed of working spindle can reach 10,000 r/min, the
position feedback resolution is 0.025 arc second, the positioning accuracy is ±1 arc second,
the rotary axis B axis position feedback resolution is 0.004 arc second, and the positioning
accuracy is ±1 arc second. The performance parameters of the machine tool mentioned
above all provide a strong guarantee for the development of cutting tests.
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The cutting process uses a diamond cutting tool with a rake angle of 0◦ and a clearance
angle of 15◦, which can process microstructures of different sizes, as shown in Figure 9.
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Figure 9. Diamond tool.

In the experiment, ultra-precision machine tools were used to process different sizes
of microstructures on Ni-P coating molds, as shown in Figure 10. By observing the inclined
surface with microstructures of different widths under laser scanning confocal microscope
(LEXT OLS5000, Olympus, Japan), the average surface roughness was 20 nm, which has
high processing quality and facilitates the flow of PDMS during injection and the separation
of PDMS during demolding [19].
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Figure 10. Cemented carbide mold.

The PDMS material purchased from Dow Silicones Corporation, which has the advan-
tages of low surface energy, chemical stability and low cost. In the experiment, firstly, we
mixed the basic component (SYLGARD 184A) and the curing agent (SYLGARD 184B) at a
mass ratio of 10:1, and then vacuumed until the bubbles inside were completely removed.
Subsequently, the liquid PDMS was poured into the surface of the mold with wedged
slanted microstructure, and a punch was used to press the PDMS, and cured at 80◦C for
2 h. Finally, it was cooled down at room temperature, and the PDMS gradually removed
from the mold from the edge to the middle. The demolding process is briefly shown in
Figure 11, and the PDMS material with microstructure is shown in Figure 12.
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Figure 11. Sketch of the demolding process.

The measurement of the PDMS bionic structure was carried out on a HITACHI S-4800.
The outline of the microstructure is shown in Figure 13. The overall outline of the PDMS
bionic structure is shown in Figure 13a. It can be seen that a series of concentric circles
were clearly visible, and the microstructure had a certain tilt angle, which is consistent with
the designed microstructure of the mold. The specific tilt can be seen in Figure 13b. It can
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be observed in the partially enlarged microstructure, and rows of microstructures were
arranged neatly and the structure was relatively complete. There will be a small amount of
PDMS fragments remaining in the demolding process in the microstructure. The partial
top view of the microstructure is shown in Figure 13c. The microstructure of each part
had good parallelism and completeness. The side view of the microstructure is shown in
Figure 13d. The overall microstructure had a certain slope and is triangular. The structural
integrity was relatively complete, and the designed bionic microstructure was well realized.
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3. Results

In the experiment, microstructures with different inclination angles were designed.
Among them, the vertical wedge-shaped structure and the 45◦ tilted microstructure are
shown in Figure 14. Figure 14a is a vertical wedge structure with a width of 30 µm. There
was no sharp corner at the top of the structure, because the size of the microstructure
decreased. When the PDMS was poured into the microstructure of the cemented carbide
mold, due to the viscosity and fluidity of the material of PDMS, a part of the air remained to
be sealed at the bottom of the mold microstructure, which cannot be completely ruled out.
When the microstructure was copied with PDMS, it appeared that the top of the microstruc-
ture was not a sharp triangle, but a flat surface. When the width of the microstructure was
60 µm, as shown in Figure 14b, the inclination angle of the bionic structure reached 45◦, and
the PDMS material could completely fill all the spaces of the microstructure of the cemented
carbide mold, but due to the inclination of the microstructure, stress concentration resulted
at the bottom during demolding, and prone to partial shedding, making the root of the
PDMS material microstructure incomplete.
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tilted microstructure.

For PDMS without microstructure, the contact angle of the surface was 115.7◦, while
after processing the microstructure, the contact angle of the unprocessed area on the PDMS
surface was 122.1◦, which increased slightly, indicating that the processed microstructure
or the machining process has a certain influence on the properties of the material in the
unprocessed area. It also shows that the hydrophobic properties of the material can be
changed by processing the microstructure, as shown in Figure 15. The factors that affect
the hydrophobic properties of materials include material properties and microstructure.
Microstructure influences the hydrophobic properties of materials through its structural
size, including length, width, height and tilt. For the vertical bionic structure, when the
bionic structure decreased from 100 µm to 30 µm, the corresponding contact angles were
134.1◦ (Figure 16a), 135.1◦ (Figure 17a), and 136.4◦ (Figure 18a), respectively, and the contact
angle tended to increase. For the inclined angle of 45◦, the contact angle had the same trend.
However, when the inclination angle was 30◦ and the microstructure width decreased from
60 µm to 30 µm, the contact angle decreased from 133.7◦ (Figure 17c) to 121.6◦ (Figure 18c).
It is observed that when the microstructure width was 30 µm and the inclination angle
was 30◦, the microstructure integrity of the prepared PDMS was poor. The defect of the
bottom of the microstructure can affect the functional characteristics of the microstructure
and reduce the contact angle. Similarly, for the microstructures with the same width, when
the width of the bionic structure was 60 µm, the contact angles of the microstructures
changed to 135.1◦ (Figure 17a), 146.0◦ (Figure 17b), and 133.7◦ (Figure 17c) as the tilt angle
decreased from 90◦ to 30◦, and the contact angles first increased and then decreased. The
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same trend also occurred when the width was 100 µm and 30 µm, indicating that the contact
angle of the microstructure increased with the decrease of the tilt angle, but when the tilt
angle was small, it posed a higher challenge to the preparation process. The simulation
results showed that the smaller the tilt angle is, the smaller the contact angle is. However,
for the microstructure with a tilt angle of 30◦, the root tear very easily occurred during
the demolding, which rendered the microstructure no longer complete, thus affecting its
functionality.
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4. Conclusions 
In this paper, a two-dimensional mathematical model of the composite infiltration 

mode considering the hydrophobic properties of the microstructure parameters was es-
tablished, the influence of the microstructure width and inclination angle on the hydro-
phobic properties of materials was discussed, and it was prepared by ultra-precision 
cutting and molding. The superhydrophobic structure (CA = 153.2°) was fabricated by 
the method, which improved the hydrophobic properties of the material. 
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Figure 18. Hydrophobic characteristics of microstructures with different tilt angles when the mi-
crostructure width is 30 µm. (a) 90◦; (b) 45◦; (c) 30◦.

In the experiment, when the microstructure size was 30 µm and the inclination angle
was 45◦, as shown in Figure 18b, the contact angle of the microstructure was the largest,
153.2◦, which is higher than the definition of the stable contact angle of the superhydropho-
bic material surface (>150◦). By processing the microstructure, the contact angle of PDMS
increased from 115.7◦ to 153.2◦, and the hydrophobicity of the material changed from hy-
drophobicity to superhydrophobicity, indicating that it is an effective and efficient method
to improve the hydrophobicity of the material by machining the microstructure of different
sizes on the surface of the material.

4. Conclusions

In this paper, a two-dimensional mathematical model of the composite infiltration
mode considering the hydrophobic properties of the microstructure parameters was estab-
lished, the influence of the microstructure width and inclination angle on the hydrophobic
properties of materials was discussed, and it was prepared by ultra-precision cutting and
molding. The superhydrophobic structure (CA = 153.2◦) was fabricated by the method,
which improved the hydrophobic properties of the material.
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