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Abstract. Hepatocellular carcinoma (HCC) is the second 
leading cause of cancer-associated mortality worldwide. 
Transcription factors (TFs) are crucial proteins that regulate 
gene expression during cancer progression; however, the roles 
of TFs in HCC relapse remain unclear. To identify the TFs that 
drive HCC relapse, the present study constructed co-expres-
sion network and identified the Tan module the most relevant 
to HCC relapse. Numerous hub TFs (highly connected) were 
subsequently obtained from the Tan module according to the 
intra-module connectivity and the protein-protein interac-
tion network connectivity. Next, E1A-binding protein p400 
(EP400) and TIA1 cytotoxic granule associated RNA binding 
protein (TIA1) were identified as hub TFs differentially 
connected between the relapsed and non-relapsed subnet-
works. In addition, zinc finger protein 143 (ZNF143) and Yin 
Yang 1 (YY1) were also identified by using the plugin iReg-
ulon in Cytoscape as master upstream regulatory elements, 
which could potentially regulate expression of the genes and 
TFs of the Tan module, respectively. The Kaplan-Meier (KM) 
curves obtained from KMplot and Gene Expression Profiling 
Interactive Analysis tools confirmed that the high expression 
of EP400 and TIA1 were significantly associated with shorter 
relapse-free survival and disease-free survival of patients with 
HCC. Furthermore, the KM curves from the UALCAN data-
base demonstrated that high EP400 expression significantly 
reduced the overall survival of patients with HCC. EP400 and 

TIA1 may therefore serve as potential prognostic and thera-
peutic biomarkers.

Introduction

Hepatocellular carcinoma (HCC) is one of the most common 
types of cancer and the second leading cause of cancer-asso-
ciated mortality worldwide (1). Its incidence is increasing in 
numerous countries (2). Progression of HCC is characterized 
by abnormal cell differentiation, fast infiltrating growth, early 
metastasis, high‑grade malignancy and poor prognosis (3). 
Liver transplantation (LT) is considered to be one of the 
major treatment options for HCC (4), as not only it eliminates 
the tumor but could also cure the underlying liver disease. 
However, the high relapse rate of HCC following LT, which is 
estimated between 15 and 20%, remains an important clinical 
challenge (5). It is therefore crucial to determine the underlying 
mechanisms of HCC relapse, in order to increase the overall 
survival of patients with HCC.

Transcription factors (TFs) serve crucial roles in the 
regulation of tumor progression (6-8). The study of TFs 
has improved our understanding of the mechanisms under-
lying the dysregulation of gene expression in cancers. For 
example, multitudinous compelling evidence have recently 
showed that HIF-1 plays important roles in many critical 
aspects of HCC, including tumorigenesis, progression, 
and metastasis (9‑13). Several forkhead box proteins (14) 
and zinc finger proteins (ZNFs) (15‑21) have also been 
reported to serve crucial roles in HCC. Recently, a study 
demonstrated that ZNF687 overexpression promotes HCC 
recurrence (22); however, the TFs associated with HCC 
relapse remain unknown (22).

Weighted correlation network analysis (WGCNA) has 
emerged as a powerful technique for multi-gene analysis. This 
approach is designed to uncover networks and critical genes 
associated with some phenotypes of interest. WGCNA has 
been widely used to detect the co‑expressed modules (23,24), 
driver genes (24‑27) and driver TFs (28) associated with a 
disease. In the present study, WGCNA was used to build TFs 
co-expression network and to investigate critical TFs that may 
drive HCC relapse. The results from this study may serve at 
understanding the role of TFs as diagnostic markers of HCC 
or as therapeutic targets for HCC treatment.
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Materials and methods

RNA sequencing (RNA‑seq) datasets and preprocessing of 
data. The RNA-seq data and clinical magnifestations data 
of the HCC dataset SRP040998 (29) were downloaded from 
recount2, which is an online RNA‑seq resource (30). The 
dataset consists of tumor samples and matched adjacent normal 
samples from 21 patients with HCC. Among these patients, 
nine presented recurrent liver tumors or remote metastasis in 
the 24 months following orthotopic LT (OLT), whereas the 
remaining 12 patients were tumor free following OLT (29). 
Principal component analysis clustered the analyzed samples 
into the tumor and adjacent groups with only one exception 
per group. These two samples (sample numbers SRR1220147 
and SRR1220148), which were from the same patient, may 
have been mislabeled and were therefore excluded from 
this study. Genes with low counts may represent a bias of 
sequencing. In order to minimize the false positive in differ-
ential expression analysis and to speed up WGCNA analysis, 
only the expressed genes in terms with total counts ≥10 in the 
samples were kept.

The TF list was obtained from the tftargets (version 1.3) 
package (https://github.com/slowkow/tftargets), which 
covers the TFs from Encyclopedia of DNA Elements (31), 
integrated TF platform (32), RegulatoryCircuits (33), 
RegulatoryNetworks (34,35), Transcriptional Regulatory 
Element Database (36) and TRRUST (37) datasets.

Differential expression analysis. Differential gene expres-
sion analysis was performed using DESeq2 package 
(version 1.20.0) (38). A gene was defined as a differentially 
expressed gene (DEG) when the false discovery rate (FDR) 
adjusted P-value between the tumor and adjacent groups 
was ≤0.05 (FDR ≤0.05) and the fold change (FC) is 
at least 2 times higher or lower (|log2FC| ≥1). However, a 
transcription factor is defined as a differentially expressed 
TF (DET) for the cutoff values FDR ≤0.05 and |log2FC| ≥0.6.

WGCNA network construction. A signed WGCNA network 
between the tumor and matched adjacent tissues was 
constructed based on the biweight midcorrelation using 
any gene that was expressed at the total counts value of 
10 or higher in ≥90% of samples. Different from an unsigned 
WGCNA network, which uses the absolute value of the 
Pearson correlation as an unsigned co-expression similarity 
measure, the similarity between genes in a signed WGCNA 
network reflects the sign of the correlation of their expression 
profiles. Therefore, highly connected hub genes in a signed 
networks may upregulate adjacent genes since they are posi-
tively correlated with them, while in unsigned networks, highly 
connected hub genes may activate or repress their neighboring 
genes (39). The count values were normalized by variance 
stabilizing transformation using DESeq2 package (38). In 
order to achieve a scale-free topology, soft power parameter 
was selected based on the criterion of approximate scale-free 
topology with mininal scale‑free fit (SFT) index R2>0.85 and 
used to derive a pair-wise distance matrix for selected genes 
using the topological overlap measure. The dynamic hybrid 
cut method was used to detect clusters of co-expressed genes 
using R functions in the WGCNA package (version 1.66) (40).

Identification of biological pathways and processes associ‑
ated with HCC relapse. The biological pathways related 
to the genes in the module of interest, including the Kyoto 
Encyclopedia of Genes and Genomes (KEGG) (41), were 
provided by g:Profiler (42‑44).

Analysis of hub TFs in the module of interest. Hub gene is 
defined as an abbreviation of ‘highly connected gene’, repre-
senting a small proportion of nodes with maximal information 
exchange with other nodes in a network (45). In the present 
study, hub TFs in the module of interest were defined by 
module connectivity that was measured by signed eigen-
gene-based connectivity with the cut-off value of absolute 
kME >0.15. kME, representing the module connectivity of 
gene k, was determined as the Pearson's correlation coefficient 
between gene expression values and the module eigengene. In 
addition, all genes from the module of interest were uploaded 
to the Search Tool for the Retrieval of Interacting Genes 
(version 11.0) database (46), by choosing a confidence >0.4 in 
order to construct a protein-protein interaction (PPI) network. 
In the PPI network, genes with a connectivity degree >4 
(edges) were defined as hub nodes, and TFs with a connectivity 
degree >4 were defined as hub TFs (47,48).

Differentially connected TFs in the Tan model between 
relapsed and non‑relapsed subnetworks. To identify which 
TFs were differently regulated in the networks, the differences 
in connectivity (DiffK) were compared between the relapsed 
vs. non-relapsed subnetworks according to the following 
formula: DiffK(i)=K1(i)-K2(i), where K1(i) and K2(i) indicate 
the connectivity of the gene (i) in the relapsed subnetwork and 
in the non-relapsed subnetwork, respectively. The connec-
tivity of K1 and K2 were calculated using R functions in the 
WGCNA package (version 1.66). To facilitate the comparison 
between the connectivity measures of each network, stan-
dardization was carried out in each network by dividing each 
TF's connectivity by the maximum connectivity of TFs-genes 
co-expression sub-network according to the following formula: 
K1(i)=K1(i)/max(K1).

The difference between the connectivity values of two 
subnetworks was defined as DiffK. DiffK values ranged 
from -1 to 1. A DiffK value >0 suggested that the TFs were 
more highly connected in the relapsed subnetwork compared 
with the non-relapsed subnetwork, whereas a DiffK value <0 
indicated that the TFs were more highly connected in the 
non-relapsed subnetwork compared with the relapsed subnet-
work. TFs were defined as differentially connected when the 
absolute value of DiffK was >0.4 (28).

Upstream TFs regulating gene expression in the module of 
interest. TFs regulating gene expression in the module of 
interest were analyzed using the plugin iRegulon (v1.3) (49) 
in Cytoscape network (version 3.7.1) (50). iRegulon is a 
computational tool that can identify the upstream TFs and 
predict direct target genes in a set of human, mouse and 
Drosophila genes. iRegulon uses >9,000 known position 
weight matrices from various sources and different species 
and link them to candidate binding TFs using a ‘motif2TF’ 
procedure. This allows to link motifs of TFs from other 
species to candidate human TFs. Predicted upstream TFs are 
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rated and grouped according to the Normalized Enrichment 
Score (NES) (28,51).

Kaplan‑Meier (KM) survival analysis. To evaluate the prog-
nostic potential of hub TFs, UALCAN (52), Gene Expression 
Profiling Interactive Analysis (GEPIA) (53) and KMplot (54) 
tools were used to obtain the KM curves for the overall 
survival (OS), disease-free survival (DFS) and relapse-free 
survival (RFS) of patients with HCC, respectively, for the 
genes of interest. These online tools provides the data on the 
effect of genes on cancer survival, including HCC survival.

Correlation analysis. Correlation analysis for binary and 
continuous variables was performed using standard screening 
binary trait and standard screening numeric trait functions in 

the WGCNA package (40), respectively. The output of these 
functions include q-values of the correlations calculated from 
the P-values using an optimised false discovery rate approach.

Results

Identification of modules associated with HCC recurrence 
using signed WGCNA. Once the two mislabeled samples and 
lowly‑expressed genes were excluded, the remaining 26,324 
genes from 58,037 genes detected in HCC samples were grouped 
into 32 modules according to their expression profiles via hier-
archical clustering (Fig. 1). To guarantee a scale-free topology 
(minimal SFT R2>0.85), the soft power parameter β-value  was 
set at 12 (Fig. 1A). The pairwise correlation was converted into 
adjacency matrix of connection strengths through soft-thresh-

Figure 1. Gene co‑expression network identified by weighted gene co‑expression network analysis. (A) Network topology for different soft‑thresh-
olding powers. Numbers in the plots indicate the corresponding soft thresholding powers. The approximate scale-free topology can be attained at the 
soft-thresholding power of 12. (B) Gene dendrogram obtained by clustering the dissimilarity based on topological overlap with the corresponding 
module colors indicated by the color row. Each colored row represents a color-coded module which contains a group of co-expressed genes. A total of 
32 modules were identified.
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olding approach, in order to construct a dissimilarity matrix 
based on topological overlap measure (TOM) and identify 
gene modules through a dynamic tree-cutting algorithm. Each 
module was assigned to a corresponding color (Fig. 1B). The 
module eigengenes were calculated by the first principal compo-
nent to represent each module. With module eigengenes, Tan 
[Spearman correlation, r=-0.58; P-value adjusted, (padj)=1x10-4] 
and Steelblue (r=0.57; padj=2x10-4) modules were found to be 
highly associated with HCC recurrence. The Steelblue module 
contained only two TFs. Although these two TFs, poly(rC) 
binding protein 2 (55) and eukaryotic translation initiation factor 
4B (56), have been reported to participate in HCC development, 
the present study did not detect differences in their expression 
between the tumor and adjacent normal tissues. Subsequently, 
the present study focused on the Tan module, which eigen-
gene levels were also associated with primary tumor grade 
(Spearman correlation, r=-0.61; padj=4x10-5) and α-fetoprotein 
(AFP) (Pearson correlation, r=-0.41; padj=9x10‑3; Fig. 2).

The Tan module consisted of 615 genes, including 55 tran-
scription factors. The results form KEGG pathway analysis 
demonstrated that the Fanconi Anemia pathway was enriched 
in the Tan module (adjusted P‑values, 1.782x10-2).

Hub TFs in the module of interest. Hub genes were first screened 
from the Tan module based on the eigengene-based connectivity. 
By using the cut‑off value of absolute kME>0.15, 17 TFs with 
high connectivity were identified in the Tan module. Among 

them, T-cell-restricted intracellular antigen-1 (TIA1) had the 
highest connectivity. Intraflagellar transport protein 80 homolog 
(IFT80), mediator of DNA damage checkpoint 1 (MDC1) and 
zinc finger protein 260 (ZNF260) were differentially expressed 
between the tumor and adjacent tissues (Table I).

Hub genes were also screened from the Tan module 
according to the connectivity of genes in the PPI network 
(Table SI). By using the cutoff of confidence >0.4 and the 
connectivity degree of 4 (node/edge), nine TFs, including 
EP400, were identified as the hub TFs (Table SI).

These two approaches identified 23 hub TFs in total, including 
TIA1, IFT80 and MDC1 that were identified by both approaches.

Analysis of the differentially connected TFs between the 
relapsed and non‑relapsed subnetworks in the module of 
interest. Genes that are differentially co-expressed between 
different sample groups are more likely to be regulators, 
and may therefore explain differences between phenotypes. 
Differential network analysis was performed between the 
relapsed and non-relapsed subnetworks in the Tan module. 
The analysis identified TIA1 and nuclear receptor subfamily 2 
group C member 2 (NR2C2) as differentially connected TFs 
which were more highly connected in the relapsed subnetwork 
compared with the non-relapsed subnetwork. Furuthermore, 
EP400 and five other TFs were differentially connected TFs 
that were more highly connected in the non-relapsed subnet-
work compared with the relapsed subnetwork (Table II).

Figure 2. Relationships between module eigengenes and variables of hepatocellular carcinoma. Each row in the table corresponds to a module and each column 
corresponds to a clinical trait. The module name is shown on the left side of each cell. Numbers in the table corresponds to the correlations of the corresponding 
module eigengenes and clinical traits, with the P-values printed below the correlations. Intensity and direction of correlations are indicated on the right side of 
the heatmap (red, positively correlated; green, negatively correlated).
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Master regulatory factors for the module of interest. It is 
regarded that genes co-expressed or participating in the 
same biological process may be regulated by the same or 
similar TFs (51). In order to gain insight into the upstream 
regulators of gene expression in the module of interest, 
iRegulon was used to search the user‑defined space for motifs 
enriched around the transcription start site of the genes in 
the Tan module. The most enriched TF motif was ZNF143 
with NES 6.39. There were 42 target genes of ZNF143 in the 
Tan module. Among them, TRIM74 was negatively correlated 

with ZNF143 expression level, and 15 were positively corre-
lated with ZNF143 expression level, including seven TFs such 
as MDC1 and ZNF260 (Table III).

iRegulon predicted 30 TFs for ZNF143. Among them, 
4 were negatively correlated with ZNF143 in the gene expres-
sion levels (Table IV), and YY1 together with another 6 TFs 
were positively correlated with ZNF143 expression level.

The most enriched TF motifs were also analyzed in the 
dataset consisting of 55 TFs in the Tan module, where the 
most enriched TF motifs were YY1 with NES 5.54. YY1 had 

Table I. Expression differences of the hub transcription factors between the tumor and adjacent tissues.

 Tumor vs. adjacent
 ------------------------------------------------------------------------------------------------------------------
Ensembl ID Log2 fold change P-value Adjusted P-value  kME Gene symbol

ENSG00000116001 0.28 0.04 0.08 0.314 TIA1
ENSG00000179912 0.33 0.02 0.04 ‑0.281 R3HDM2
ENSG00000163666 0.29 0.15 0.24 0.264 HESX1
ENSG00000124459 0.46 0.01 0.02 ‑0.260 ZNF45
ENSG00000185670 0.28 0.04 0.07 ‑0.256 ZBTB3
ENSG00000148200 0.14 0.40 0.51 0.253 NR6A1
ENSG00000167081 0.39 0.04 0.09 0.239 PBX3
ENSG00000162086 0.12 0.43 0.54 ‑0.200 ZNF75A
ENSG00000089335 0.44 0.01 0.02 0.197 ZNF302
ENSG00000177463 0.33 0.04 0.08 0.192 NR2C2
ENSG00000133111 0.55 <0.01 <0.01 0.189 RFXAP
ENSG00000100307 0.34 0.07 0.13 0.186 CBX7
ENSG00000254004 0.62 <0.01 <0.01 ‑0.172 ZNF260
ENSG00000173153 0.16 0.21 0.32 0.169 ESRRA
ENSG00000137337 0.65 <0.01 <0.01 ‑0.166 MDC1
ENSG00000068885 0.75 <0.01 <0.01 0.155 IFT80
ENSG00000166432 0.08 0.76 0.83 0.151 ZMAT1

Differential expressions were analyzed using R package DESeq2 (version 1.20.0). kME indicates the eigengene-based connectivity of gene 
co-expression network.

Table II. Differentially connected transcription factors between the relapsed and non-relapsed subnetworks and their expression 
differences between the tumor and adjacent normal tissues.

Ensembl ID DiffK Log2 fold change P-value Adjusted P-value  Gene symbol

ENSG00000117569 ‑0.58 0.60 <0.01 <0.01 PTBP2
ENSG00000267680 ‑0.55 0.47 0.01 0.02 ZNF224
ENSG00000076108 ‑0.54 0.39 <0.01 0.01 BAZ2A
ENSG00000183495 ‑0.47 0.41 <0.01 0.01 EP400
ENSG00000185946 ‑0.45 0.49 0.01 0.02 RNPC3
ENSG00000186908 ‑0.40 0.13 0.24 0.35 ZDHHC17
ENSG00000116001 0.40 0.28 0.04 0.08 TIA1
ENSG00000177463 0.45 0.33 0.04 0.08 NR2C2

Differential expressions were analyzed using R package DESeq2 (version 1.20.0). DiffK indicates the differential connectivity between the 
relapsed and non-relapsed subnetwork.
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36 target TFs. Among these target TFs, 12 were positively 
correlated with YY1 expression level (Table V), including 
MDC1 and ZNF260.

iRegulon predicted 20 TFs for YY1. Among them, one was 
negatively correlated with YY expression level, and six were 
positively correlated with YY1 expression level (Table VI), 
including YY1 itself.

KM survival analysis. To validate the effects of the 23 hub TFs 
and two master regulatory factors associated with HCC relapse, 
KMplot and GEPIA were used to retrieve the RFS curves of 
313 patients with HCC and the DFS curve of 362 patients with 

HCC, respectively (Table SII). In order to determine the prog-
nostic relevance of these TFs in HCC, the OS of patients with 
HCC was determined for each TF according to its expression 
using UALCAN (Table SII), which contains data from 365 
patients with HCC.

The results from KMplot and GEPIA demonstrated that 
TIA1, ZNF260 and EP400 expression levels were associated 
with the RFS and DFS of patients with HCC (Fig. 3A and B). 
Furthermore, ZNF260 and EP400 were also associated with the 
OS of patients with HCC, however, TIA1 was only trend asso-
ciated with the OS of patients with HCC (P=0.09) according 
to UALCAN (Table SII). In addition, the results demonstrated 

Table III. Correlation of zinc finger protein 143 with its target genes in the Tan module.

Ensembl ID Correlation coefficient P‑value q‑value TFs Gene symbol

ENSG00000089335 0.43 0.005 0.014 Yes ZNF302
ENSG00000109118 0.37 0.019 0.033 Yes PHF12
ENSG00000124459 0.40 0.010 0.022 Yes ZNF45
ENSG00000125945 0.39 0.012 0.024 No ZNF436
ENSG00000127483 0.51 0.001 0.004 No HP1BP3
ENSG00000127957 0.38 0.015 0.029 No PMS2P3
ENSG00000131115 0.50 0.001 0.006 Yes ZNF227
ENSG00000137337 0.41 0.009 0.021 Yes MDC1
ENSG00000155428 ‑0.39 0.014 0.027 No TRIM74
ENSG00000159905 0.38 0.015 0.028 No ZNF221
ENSG00000175787 0.42 0.007 0.017 Yes ZNF169
ENSG00000196597 0.33 0.035 0.050 No ZNF782
ENSG00000198707 0.47 0.002 0.009 No CEP290
ENSG00000254004 0.62 <0.001 0.001 Yes ZNF260
ENSG00000256294 0.40 0.010 0.022 No ZNF225
ENSG00000263002 0.50 0.001 0.006 No ZNF234

Pearson correction coefficient was calculated using R package (version 3.5.1). q‑values are adjusted P‑values, which were calculated from 
the P-values using an optimized false discovery rate approach using R function in the weighted correlation network analysis package. TFs, 
transcription factors.

Table IV. Correlation of zinc finger protein 143 with its upstream transcription factors.

Ensembl ID Correlation coefficient P‑value q‑value Gene symbol

ENSG00000078399 0.45 0.003 0.011 HOXA9
ENSG00000100811 0.44 0.004 0.013 YY1
ENSG00000105866 0.49 0.001 0.007 SP4
ENSG00000106689 ‑0.54 <0.001 0.003 LHX2
ENSG00000147133 0.52 0.001 0.004 TAF1
ENSG00000164002 0.37 0.019 0.033 EXO5
ENSG00000167182 0.52 0.001 0.004 SP2
ENSG00000168066 -0.40 0.010 0.022 SF1
ENSG00000172845 0.40 0.011 0.024 SP3
ENSG00000177374 ‑0.47 0.002 0.009 HIC1
ENSG00000185630 ‑0.45 0.004 0.012 PBX1

Pearson correction coefficient was calculated using R package (version 3.5.1). q‑values are adjusted P‑values, which were calculated from the 
P-values using an optimised false discovery rate approach using R function in the weighted correlation network analysis package.
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that MDC1 was associated with the RFS and DFS of patients 
with HCC according to KMplot and UALCAN analyses. 
However, according to GEPIA, MDC1 was not associated with 
the DFS of patients with HCC (P=0.07) (Table SII).

Two master regulatory factors, ZNF143 and YY1, were 
demonstrated to significantly influence the OS of patients with 
HCC, but not the RFS.

Discussion

Although liver resection is the most effective curative treatment 
for HCC, relapse remains frequent (57,58). Investigating the 
underlying mechanisms of HCC recurrence may therefore lead 
to the development of novel therapeutic strategies and prog-
nostic biomarkers. Recent studies reported that miR-125b (59) 
and miR-1246 (60) could be considered as novel biomarkers 
for HCC relapse. miR-125b has been described as a tumor 
suppressor that induces cellular senescence and apoptosis 
in hepatocellular carcinogenesis by targeting sirtuin6 (61). 
Similarly, miR-1246 has been reported to promote the cell 

apoptosis of HCC cells (62), and enhance migration and inva-
sion in HCC (63).

In addition to miRNAs, TFs may also serve important 
roles in HCC relapse. In order to identify the TFs that coop-
eratively drive HCC relapse, the present study constructed 
signed WGCNA gene co-expression network by using the 
tumor and matched adjacent normal samples of 20 patients 
with HCC. The Tan module was found to be associated 
with HCC relapse and HCC staging, and was enriched in 
the Fanconi Anemia pathway. Furthermore, 23 hub TFs 
were identified, including TIA1, IFT80 and MDC1, which 
were identified by both eigengene‑based and PPI network 
approaches. Eight TFs, including TIA1 and EP400, were 
found to be differentially connected when comparing the 
non‑relapsed and relapsed subnetworks. ZNF143 and YY1 
were detected as master upstream regulator genes that could 
potentially regulate the expression of the genes and TFs of 
the Tan module, respectively. KM survival analysis demon-
strated that TIA1, ZNF260 and EP400 expression levels were 
associated with the RFS and DFS of patients with HCC.

Table V. Correlation of Yin Yang 1 with its target transcription factors.

Ensembl ID Correlation coefficient P‑value q‑value Gene symbol

ENSG00000005339 0.46 0.003 0.012 CREBBP
ENSG00000076108 0.36 0.023 0.048 BAZ2A
ENSG00000089335 0.39 0.013 0.034 ZNF302
ENSG00000106261 0.37 0.018 0.042 ZKSCAN1
ENSG00000117569 0.37 0.019 0.043 PTBP2
ENSG00000124177 0.53 <0.001 0.004 CHD6
ENSG00000131051 0.46 0.003 0.012 RBM39
ENSG00000131115 0.38 0.016 0.038 ZNF227
ENSG00000137337 0.52 0.001 0.004 MDC1
ENSG00000173575 0.37 0.019 0.043 CHD2
ENSG00000254004 0.46 0.003 0.013 ZNF260
ENSG00000166478 0.44 0.004 0.016 ZNF143

Pearson correction coefficient was calculated using R package (version 3.5.1). q‑values are adjusted P‑values, which were calculated from the 
P-values using an optimized false discovery rate approach using R function in the weighted correlation network analysis package.

Table VI. Correlation of Yin Yang 1 with its upstream transcription factors.

Ensembl ID Correlation coefficient P‑value q‑value Gene symbol

ENSG00000100811 1.00 <0.001 <0.001 YY1
ENSG00000105866 0.38 0.016   0.039 SP4
ENSG00000112592 0.39 0.014   0.035 TBP
ENSG00000147133 0.42 0.008   0.024 TAF1
ENSG00000167182 0.48 0.002   0.009 SP2
ENSG00000172845 0.65 <0.001 <0.001 SP3
ENSG00000177374 ‑0.58 <0.001   0.001 HIC1

Pearson correction coefficient was calculated using R package (version 3.5.1). q‑values are adjusted P‑values, which were calculated from the 
P-values using an optimized false discovery rate approach using R function in the weighted correlation network analysis package.
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Among the 23 hub TFs, TIA1, EP400 and NR2C2 were 
differentially connected when comparing the non-relapsed and 
relapsed subnetworks. These TFs were less cooperative with 
other genes in the Tan module of patients with HCC relapse 
patients compared with patients with non-relapse, suggesting 
that they may serve important role in HCC relapse.

EP40 0 is  a  SW Itch /sucrose non‑fer mentable 
DNA-dependent ATPase (64) that can alter chromatin structure 
during DNA double-strand break repair. EP400 has also been 

reported to be implicated in HCC (65). Similarly, the present 
study demonstrated that EP400 was associated with the RFS, 
DFS and OS of patients with HCC. Previous studies reported 
that preoperative AFP serum level (66) and half live of serum 
AFP (67), which are used to calculate the rate of serum AFP 
decline, could be considered as an early prognostic index of 
HCC relapse and patients survival following hepatic resection. 
The module eigengene provides the most appropriate synopsis 
of gene expression profiles of any given module. In the current 

Figure 3. KM survival curves for TIA1, NR6A1, RFXAP, ZNF260, EP400 and PTBP2. Red color indicates high expression and grey/blue colors indicate low 
expression. (A) Effect of TIA1, NR6A1, RFXAP, ZNF260, EP400 and PTBP2 expression levels on RFS of patients with HCC (data from KMplot).
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study the eigengene levels of the Tan module were associated 
with HCC relapse and with AFP expression levels. EP400 was 
a critical TF in the Tan module with a PPI connectivity of 9 
(Table SI), and its expression level was weakly correlated with 
AFP expression level. These results suggested that EP400 may 
serve a crucial role in HCC relapse.

TIA1 is a member of an RNA-binding protein family and 
possesses nucleolytic activity against cytotoxic lymphocyte 
target cells (68). In the present study, TIA1 was found 
to be associated with the RFS and DFS of patients with 
HCC. However, TIA1 was not associated with the OS of 
patients with HCC. A recent study reported that high TIA-1 

Figure 3. Continued. (B) Effect of TIA1, NR6A1, RFXAP, ZNF260, EP400 and PTBP2 expression levels on DFS of patients with HCC (data from Gene 
Expression Profiling Interactive Analysis). DFS, disease‑free survival; EP400, E1A binding protein p400; NR6A1, nuclear receptor subfamily 6 group A 
member 1; PTBP2, polypyrimidine tract binding protein 2; RFS, relapse‑free survival; RFXAP, regulatory factor X associated protein; TIA1, TIA1 cytotoxic 
granule associated RNA binding protein; ZNF260, zinc finger protein 260; KM, Kaplan‑Meier.
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expression level is associated with the poor survival rate of 
patients with HCC (69). Furthermore, TIA-1 can regulate 
IGF binding protein‑3 (IGFBP3) at the post‑transcriptional 
level in human HCC cells (70). IGFBP3 is the primary 
binding protein of IGF-I, and IGF-I has been reported 
to be involved in early HCC relapse (71). Therefore, 
TIA1‑mediated IGFBP3 regulation may serve an important 
role in HCC relapse.

In addition to TIA1, MDC1 was found to be a hub TF in the 
present study. MDC1 was also differentially expressed between 
the tumor and adjacent normal tissues. MDC1 is involved in 
checkpoint activation and subsequent DNA repair following 
DNA damage (72,73). Previous studies reported MDC1 
contributes to breast cancer (74) and pancreatic cancer (75); 
however, its role in HCC remains unknown. The result from 
the present study demonstrated that MDC1 reduced the OS 
and RFS of patients with HCC.

This study demonstrated that ZNF143 was a master upstream 
regulator gene that could potentially regulate expression of the 
genes in the Tan module. In addition, ZNF143 expression level 
was correlated with 16 of its target genes, including MDC1 and 
ZNF260. ZNF143 is a chromatin‑looping factor that contrib-
utes to the architectural foundation of the genome by providing 
sequence specificity at promoters connected with distal regu-
latory elements (76). A previous study reported that ZNF143 
expression is activated following DNA damage induced 
by etoposide, cisplatin and Adriamycin (77). Furthermore, 
ZNF143 is involved in cellular motility via the zinc finger 
E-box binding homeobox 1-cadherin-linked pathway in colon 
cancer cells (78). ZNF143 protein level is also correlated with 
clinical outcomes in patients with lung adenocarcinoma (79). 
A previous study demonstrated that ZNF143 activity inhibi-
tion by small molecules induced tumor regression in vitro 
and in vivo (80). Similarly, the present study demonstrated 
that ZNF143 expression level was associated with the OS of 
patients with HCC; however, ZNF143 had no influence on the 
RFS and DFS of patients with HCC (Table SII).

In the present study ZNF143, MDC1 and ZNF260, and 
YY1 itself, were all predicted targets of YY1. Furthermore, 
they were all positively correlated with YY1 expression level 
(Table V). YY1 belongs to the polycomb group of proteins; 
this type of protein may cause epigenetic remodeling of the 
chromatin and therefore dynamically regulate expressions of 
their target genes (81). YY1 overexpression observed in the 
majority of cancers has been correlated with poor prognosis 
of patients (82). Previous studies have demonstrated that YY1 
is implicated in HCC (83‑88). It has been reported that YY1 
acts predominantly as an epigenetic modulator, influencing the 
activity and/or localization of epigenetic modifiers molecules, 
including DNA methylation transferases, histone deacety-
lases or non-coding RNAs (81). YY1 may therefore increase 
expressions of ZNF143 and MDC1, and dampen DNA repair 
pathways in HCC progression. Similarly, the present study 
demonstrated that YY1 expression level was associated with 
the OS of patients with HCC; however, YY1 was not associ-
ated with the RFS of patients with HCC.

The Fanconi anemia pathway is essential for the repair 
of DNA damage and is involved in three classic DNA repair 
pathways named homologous recombination, nucleotide 
excision repair and mutagenic translesion synthesis (89). 

A recent study demonstrated that genes from the Fanconi 
anemia/BReastCAncer pathway are involved in HCC chemo-
resistance (90). In the present study, the Tan module was 
enriched in the Fanconi Anemia pathway, and several hub TFs 
involved in DNA repair, including MDC1 and EP400, were 
associated with the RFS of patients with HCC, suggesting 
that dysfunction in DNA repair pathways may be important 
mechanism involved in HCC relapse.

The DNA repair pathways may play a role in HCC relapse. 
The hub TFs TIA1 and EP400 were differentially connected 
between the non-relapsed and relapsed subnetworks. TIA1 and 
EP400 may be considered as critical drivers for HCC relapse 
and serve therefore as promising targets of HCC relapse. 
However, further investigation is required to confirm these 
in silico results.
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