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Abstract: Chemotherapy has an essential role not only in advanced solid tumor therapy intervention
but also in society’s health at large. Chemoresistance, however, seriously restricts the efficiency
and sensitivity of chemotherapeutic agents, representing a significant threat to patients’ quality of
life and life expectancy. How to reverse chemoresistance, improve efficacy sensitization response,
and reduce adverse side effects need to be tackled urgently. Recently, studies on the effect of
ultrasonic microbubble cavitation on enhanced tissue permeability and retention (EPR) have attracted
the attention of researchers. Compared with the traditional targeted drug delivery regimen, the
microbubble cavitation effect, which can be used to enhance the EPR effect, has the advantages
of less trauma, low cost, and good sensitization effect, and has significant application prospects.
This article reviews the research progress of ultrasound-mediated microbubble cavitation in the
treatment of solid tumors and discusses its mechanism of action to provide new ideas for better
treatment strategies.
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1. Introduction

Despite the development and research of anti-tumor therapy having made obvious
progress, we are compelled to attach great efforts to the drug resistance in patients under-
going systematic chemotherapy [1]. The occurrence of chemotherapy resistance has been
directly related to the interaction between genetic factors, cellular heterogeneity, and tumor
microenvironment (TME) [2–4]. Evidence demonstrated that the overall 5-year survival
rate of cancer patients has increased from 49% in 1970 to the current 68% and the overall
mortality rate of patients has decreased by 32% aroused by the continuous breakthroughs
in medical technology and targeted drugs [5]. Disconcertingly, the gradual improvement in
the survival period and mortality of cancer patients promotes the continuous prolongation
of the anti-tumor treatment courses, which greatly aggravates the increase in anti-tumor
drug resistance and toxic side effects with a serious threat to life quality and prognosis [6–8].
Therefore, how to reverse drug resistance, improve side effects, and promote chemotherapy
sensitization effects are the key issues to solve urgently.

Most of the anti-tumor drugs and delivery vehicles used in current research do not
have tumor selectivity themselves. It is difficult to obtain a satisfactory drug accumulation
effect at tumor sites only by inherent EPR effect through passive targeted transport that
ultimately leads to inefficient drug efficiency and serious side effects in clinical trials [9].
In recent years, researchers have proposed a variety of methods to facilitate the targeted
delivery of drugs to tumor sites. Among them, the ultrasound-mediated microbubble cavi-
tation effect has attracted the attention of many researchers. Using ultrasound to mediate
the cavitation effect of microbubbles can enhance tissue and vascular permeability and tar-
geted drug retention, which is an effective way to improve the EPR effect. Compared with
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the traditional targeted drug delivery scheme, the microbubble cavitation effect has huge
advantages due to its smaller trauma, lower cost, and better sensitization effect [10] with
significant application prospects. This review summarizes the progress of the ultrasound-
mediated microbubble cavitation effect in solid tumor therapy by effectively improving
drug delivery obstacles via the EPR effect in TME, discusses the potential mechanisms of
microbubble cavitation enhancing the EPR effect, and ultimately describes the new ideas
based on the therapeutic research in vitro and in vivo for better therapeutic strategies.

2. EPR Effect in the TME
2.1. Chemotherapy Obstacles Aroused by Aberrant Angiogenesis in TME

Although many chemotherapy agents have ideal effectiveness on tumor cells cul-
tured in vitro, the unique aberrant angiogenesis in TME of tumors in vivo has multiple
obstacles that restrict drug efficacy; thus, the provision of traditional chemotherapy is
suboptimal [11–15]. The solid TME consists of tumor cells, stromal cells, and secreted
cytokines. Compared with normal tissue cells under stable conditions maintained by
numerous regulatory factors, tumor cells have characteristics of rapid proliferation, cell
cycle disorders, and immune escape [16,17]. Vascular development in TME is necessary for
the survival and progression of tumor cells and has an important impact on the remodeling
of the TME, and provides a conducive environment for tumor growth and invasion [18,19].
With the rapid proliferation of tumor cells, various angiogenesis regulators are secreted
in TME to induce the generation of a neovascular network [18,20]. Vascular development
mainly includes three processes: angiogenesis, neovascularization, and vascular remodel-
ing [21–23]. Due to the overexpression of pro-angiogenic factors induced by rapid tumor
proliferation, tumor neovascularization with abnormal structure and function could not
achieve normal oxygen supply of tissue cells leading to a TME surrounded by hypoxia and
ischemia [24–26]. Remolded TME will further aggravate angiogenesis abnormality and
increase intra-tumoral fluid pressure causing reduced blood perfusion supply, eventually
inhibiting immune cells from exerting anti-tumor efficiency and impeding chemothera-
peutic drug diffusion [25,27–30]. Meanwhile, imperfect vascularization causing disorder
distribution and irregular anastomotic branches combined with discontinuous vascular
structure connections in the tumor could induce the lost blood–tumor barrier function,
weaken vessel stability, and impair blood perfusion regulation [31–33]. In addition, the
discontinuous structure between the basement membrane with pericytes and endothelial
cells results in leakage and inefficiency in blood perfusion [27,29]. In the central region of
the tumor, intra-tumoral high interstitial fluid pressure (IFP) can lead to vascular perfusion
decrease, hypoxic state, and lymphatic vessel compression [14,34–36]. Thus, immature
tumor vessels in TME have characteristics of vascular leakage, decreased blood perfusion,
structure connection impairment, barrier dysfunction, and drug diffusion diminishment.
Additionally, the increased vascular leakage without effective lymphatic drainage inside
the tumor eventually leads to a significant increase in IFP in the tumor, which dramatically
hinders the diffusion of therapeutic drugs in the interstitial space [37–41]. In addition,
with the rapid proliferation of tumoral cells, the increased dispersal distance between
tumoral cells and neovessels further hinders the delivery of chemotherapeutic drugs from
blood vessels into interstitium, leading to exacerbating the formation of chemotherapy
resistance [42–44].

2.2. Therapeutic Strategy Based on the EPR Effect

The TME in solid tumors presents several disorders with vascular tortuosity, angio-
genesis, and hypoxia [45–47]. Meanwhile, abnormal tissue vasculature, stromal matrix,
and interstitial fluid pressure are major limitations preventing drug penetration in solid
tumors [34,48]. Therefore, therapeutic agents transported into tumor lesions in the accurate
and efficient delivery is crucial for effectively addressing drug delivery in TME which
remains a major challenge to date. Fortunately, the lack of vascular supporting tissue
in tumors results in leaky vessels and poor lymphatic drainage is a structural basis for
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enhancing the effect of EPR [49]. The EPR effect in preclinical research with passive tar-
geted delivery systems has shown significant enhancement in anticancer efficacy compared
with traditional chemotherapeutics [50–52]. However, due to tumor heterogeneity with
aberrant vascular permeability, phenotypic mutation, and stromal abnormalities hinder
the successful application of EPR-based therapy [53–57]. Therefore, precision therapy and
complementary enhancement of EPR to overcome chemotherapy resistance challenges
aroused by aberrant angiogenesis in TME are crucial for the development of personalized
EPR-mediated solid tumor therapy [58].

3. Ultrasonic Microbubble Cavitation Enhancing the EPR Effect on Tumor Therapy
3.1. Mechanical Effects of Ultrasonic Microbubble Cavitation

The ultrasound-mediated microbubble cavitation effect refers to a series of dynamic
processes such as expansion, contraction, oscillation, and violent collapse in tiny bubbles
under ultrasound sonication at a specific frequency [59–61]. The physical phenomena
with high temperature, high pressure, and micro-jet are induced by rapid release of in-
stantaneous energy accompanying ultrasound intervention in bubbles after energy absorp-
tion [62,63]. The acoustic cavitation effect is commonly used to improve cancer therapy
for cancers such as hepatocellular carcinoma, colon cancer, brain cancers, and so on, in
clinical research [64–66]. When ultrasound is applied to the current and emerging tech-
nique on diagnosis and treatment, the cavitation effect can improve EPR in terms of both
drug release and biological effects. During the process of agent release, ultrasound can
stimulate the carrier to enhance the efficiency of drug release and distribution in tissues. In
terms of biological effects, the use of acoustic energy combined with the cavitation effect of
microbubbles is mainly to promote the vascular permeability and extracellular material
transport by membranes in TME [67–69].

When exposed to an ultrasound field, the liquid around the microbubbles will form
acoustic streaming, in which the shear stress generated by the streaming can promote the
directional release of the drug from microbubbles and enhance the permeability of the
drug in tissues and cell membranes (shear-induced permeability) [68]. These mechanical
effects primarily generated by ultrasound may lead to the improvement in permeability
and vascular perfusion into solid tumor tissues [70].

3.2. Ultrasonic Microbubble Cavitation Promoting Tumor Therapy by Enhancing the EPR Effect

Microbubbles can present distinct oscillation patterns when acoustic parameters are
varied. The stable ultrasonic cavitation effect of microbubbles is usually generated under
relatively low peak negative acoustic pressures. When the acoustic pressure amplitudes
were further increased, ultrasonic cavitation turned into a violent collapse called inertial
cavitation accompanied by shock waves and microstreaming [71]. These effects of cavitation
have been extensively applied in various domains of medical applications [72–75].

Ultrasound-mediated microbubble cavitation can enhance EPR by improving the
permeability of the biological barriers in TME through a local controllable cavitation effect,
enhance material exchange and transport, and achieve the therapeutic effect of increasing
drug concentration in tissue cells (Figure 1). The hydrophobic microbubbles encapsulated
by lipid, protein, or polymer shell gas are irradiated by ultrasound to expand, contract, oscil-
late, and even violently collapse, a process called cavitation. Cavitation can be divided into
two forms, namely steady-state cavitation and inertial cavitation. Steady-state cavitation
refers to the stable vibration of microbubbles around the resonant diameter at low sound
intensities. As the sound intensity increases, the microbubbles expand, contract, or collapse
more violently, generating shock waves and microjets near the microbubbles, a process
called inertial cavitation [76]. In recent decades, numerous studies have demonstrated that
ultrasound-mediated cavitation of microbubbles can facilitate the delivery of anticancer
drugs to tumor cells [77,78]. Microbubbles are composed of less than 100 nm layers of
polymers, proteins, and lipids covering the surface of a hydrophobic fluorinated gas. To
increase tumor tissue specificity, ligands for specific cell surface receptors can be attached
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to the micro-vesicles. Due to the sound pressure of ultrasonic waves, the microbubbles will
shrink and expand periodically. When the sound pressure reaches a certain threshold, the
microbubble collapses [79]. The cavitation or explosion of microbubbles will form tempo-
rary holes in the cell membrane and blood vessel wall to enhance permeability, providing
temporary and reversible channels for the transport of substances, so that therapy agents
can enter the cell passively [80,81]. Studies have shown that ultrasound could not only
enhance the passive diffusion of drug, but also affect the active transport for enhancing
drug uptake. Ultrasound cavitation is thought to induce changes in ion channels and
molecular reaction including membrane resealing or gap restoration in different spatial and
temporal scales, resulting in increased intracellular Ca2+ concentration and cytoskeletal
rearrangement [82]. These changes discussed above could play a crucial role in stimulating
the clathrin-mediated endocytosis pathway to promote drug diffusion into cells [83]. In
addition, fluid movement caused by cavitation may also facilitate vascular perfusion ac-
cording to vasodilator expression including nitric oxide induced by increased intracellular
Ca2+ concentration and high shear stress from oscillating bubbles, increasing the amount
of drug agent uptake by distant tumor cells [83–85].
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Figure 1. Ultrasound-mediated microbubble cavitation enhances biological barriers’ permeability
and material transport. High interstitial pressure aroused by lack of blood perfusion and lymphatic
return in solid tumors hinders the uptake and absorption of drug agents in cells. Using ultrasound
to mediate the cavitation effect of microbubbles can increase blood–tumor barrier permeability and
vascular perfusion, significantly increasing the diffusion of agents and sensitizing chemoresistance.
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In recent years, many studies have also confirmed that claudins and ZO-1 play an
important role in the permeability regulation of biological barriers such as the blood–
tumor barrier [86–90]. Studies have shown that there are a series of intercellular junctions
between endothelial or epithelial cells, of which tight junctions are the most important.
Between mammalian cells, tight junctions are mainly composed of transmembrane proteins
(Occludin), claudins, junctional adhesive molecules (JAMs), and cytoplasmic attachment
proteins (ZO family) [91–93]. Tight junctions widely exist in biological barrier structures
such as intestinal mucosal epithelial cells, interstitial cells, the blood–testis barrier, and the
blood–brain barrier [94–97]. Through research, Bae et al. found that the permeability of
tight junctions in the barrier structure increased after physical treatment of the biological
barriers, and the expression and distribution of the main components of tight junctions
changed [98]. Through research, it was found that after intravenous injection of contrast
agent microbubbles, low-frequency ultrasound irradiation can significantly increase the
drug concentration in the tissue, and 24 h after the ultrasound irradiation, the drug concen-
tration was significantly reduced, and tissue cells were observed by transmission electron
microscopy. The gap between them widened and recovered after 24 h. Changes in the
spatial structure of tight junctions are temporally consistent with changes in tissue barrier
permeability. This indicates that tight junctions play an important role in the regulation of
tissue cell permeability. Studies have shown that the tight junction protein Occludin plays
an important role in the process of low-frequency ultrasound irradiation combined with
contrast agent microbubbles to open the blood–tumor barrier (Figure 2). When the blood–
tumor barrier is opened, the expression level of this tight junction protein decreases [99].
This indicates that the tight junction protein Occludin plays an important role in enhancing
the permeability of tissue cells by low-frequency ultrasound irradiation combined with
contrast agent microbubbles.
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Figure 2. Ultrasound-mediated microbubble cavitation enhancing tumor–blood barrier permeability.
The blood–tumor barrier is composed of vascular endothelial cells, basement membrane, and tumor
interstitial cells. Biological barrier regulator proteins include Occludin, Claudin, JAM, ZO, and so
on. Ultrasound-mediated microbubble cavitation can significantly increase local tissue tight junction
protein permeability and increase drug diffusion, meanwhile, can form vascular microcirculation
thrombus by further increasing ultrasound frequency to induce tumor ischemic necrosis.
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Overall, ultrasound can utilize the local microbubble cavitation to enhance the EPR
effect for non-invasive targeted therapy of diseases without affecting the surrounding soft
tissues. The cavitation effect can achieve the passive agents’ diffusion in tissue through
ameliorating the permeability of tissue and vascular barrier by sonoporation and regulate
the intercellular tight junction. Similarly, it can also enhance intracellular uptake via
stimulating the clathrin-mediated endocytosis pathway induced by ion channels. On the
one hand, the cavitation effect can also enhance the drug delivery efficiency by inducing
the releasing vasodilator to a certain extent to increase local tissue blood perfusion. The
feasibility and potential of this approach might contribute to achieve better targeted delivery
in the prospective fast-revolutionizing disease area.

3.3. Application Studies Using Ultrasonic Microbubble Cavitation on Tumor Therapy

Many studies have confirmed that ultrasound-mediated microbubble cavitation can
promote drug diffusion and induce tumor-suppressive effects by enhancing EPR through
improving permeability and vascular perfusion in vitro (Table 1) and in vivo (Table 2), man-
ifested as tumor growth inhibition, increased tumor cell apoptosis and necrosis, decreased
tumor angiogenesis, and decreased expression of tumor-associated proteins. Nevertheless,
a profusion of adverse effects has also been reported including hemorrhage, thrombus
formation, local burns, tissue necrosis, and various organ toxicities [100–102]. Thankfully,
most of the serious side effects of ultrasound-assisted therapy including necrosis and
hemorrhage, are concentrated in a relatively high intensity focused ultrasound which
mainly exerts an acoustic thermal effect rather than cavitation effect. Thus, keeping the
ultrasonic waves under a lower intensity level and shorter intervention time could induce
the controllable cavitation effect without obvious cell death and thermal damage [103].
Overall, low-intensity ultrasound is a relatively safe non-invasive intervention strategy.
It is worthwhile to expect that flexible regulation of ultrasonic intervention parameters
and better protocol design can further improve cavitation effect efficacy and potential risk
aversion [104].

Table 1. Ultrasound-mediated microbubble adjuvant drug therapy in vitro.

Cavitation
Mechanism Authors Cell Type Component Intervention Outcomes after Cavitation Effect

Enhanced
permeability

Tinkov
et al.
[105]

Renal
carcinoma cell Doxorubicin Group 1: DOX

Group 2: DOX + MBs

Approximately two-fold enhanced
anti-proliferative effect in

DOX-loaded MBs.
DOX-loaded MBs with high

affinity to the nucleus.

Enhanced
permeability

Promoted drug
diffusion

Li F. et al.
[106]

Renal
carcinoma cell rAAV

Group 1: rAAV
Group 2: rAAV + MBs
Group 3: rAAV + US

Group 4: rAAV + UTMD

US-mediated MBs inhibit tumor
cell proliferation and induce

apoptosis.
US-mediated MBs promote viral

transfection approximately
two-fold.

Enhanced
permeability

Promoted drug
diffusion

Haag P.
et al.
[107]

Prostate
tumor cell ODNs

Group 1: MBs
Group 2: ODNs

Group 3: ODNs + MBs
Group 4: ODNs + US

Group 5: ODNs + MBs +
US

Best US frequency: 1.75 MHz; best
MI: 1.9.

US-mediated MBs inhibit AR
protein levels by 36.23%.

US-mediated MBs promote viral
transfection approximately 40-fold.

Promoted drug
uptake

Yan F.
et al.
[108]

Breast cancer
cell

Paclitaxel and
LyP-1 Peptide

Group 1: MBs
Group 2: PTX-loaded

MBs
Group 3: Targeted
PTX-loaded MBs

Targeted ultrasonic MBs
encapsulation rate: 63%.

US for 2 min increased cell uptake
approximately seven-fold.
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Table 1. Cont.

Cavitation
Mechanism Authors Cell Type Component Intervention Outcomes after Cavitation Effect

Enhanced
permeability

Promoted drug
diffusion

Cochran
M.C.
et al.
[109]

Breast cancer
cell

Doxorubicin
and paclitaxel

Group 1: MBs
Group 2: MBs + US

Group 3: Drug-loaded
MBs

Group 4: Drug-loaded
MBs + US

The encapsulation efficiency of
PTX and DOX: 72%, 20.5%.

The payload of PTX-loaded MBs is
20 times DOX.

The anti-tumor effect increased by
80.1%.

Promoted drug
diffusion

Wang
D.S. et al.

[110]

Vascular
endothelial
tumor cell

DNA

Group 1: Cationic MBs +
US

Group 2: Neutral MBs +
US

Group 3: US
Group 4: Cationic MBs

Cationic MBs protect plasmid
DNA from degradation.

Cationic MBs promote gene
transfection approximately

two-fold.

Enhanced
permeability

Ren S.T.
et al.
[111]

Colon adeno-
carcinoma

cell
Docetaxel

Group 1: DOC
Group 2: DOC + US
Group 3: MBs + US

Group 4: DOC + MBs +
US

The maximum encapsulation rate:
54.9%.

The anti-tumor effect increased
approximately two-fold.

Enhanced
permeability

Promoted drug
diffusion

Escoffre
J.M. et al.

[112]

Glioblastoma
cell Doxorubicin

Group 1: MBs + US
Group 2: DOX + MBs

Group 3: DOX + MBs +
US

US-mediated MBs significantly
increased drug uptake.
Tumor cell death with

US-mediated MBs was enhanced
approximately three-fold.

Abbreviations: MBs, microbubbles; DOX, doxorubicin; US, ultrasound; PTX, paclitaxel; DOC, docetaxel; rAAV,
recombinant adeno-associated virus; UTMD, ultrasound-targeted microbubble destruction; ODNs, oligodeoxynu-
cleotides; MI, mechanical index; AR, androgen receptor.

Table 2. Ultrasound-mediated microbubble adjuvant drug therapy in vivo.

Cavitation
Mechanism Authors Cell Type Component Intervention Outcomes after Cavitation Effect

Enhanced
permeability

Wang G.
et al.
[113]

Hepatic
cancer Evans Blue

Group 1: EB
Group 2: EB + MBs
Group 3: EB + US

Group 4: EB + MBs + US

US-mediated MBs cavitation can
increase tumor vascular

permeability.
The cavitation effect promotes

drug release approximately
three-fold.

Enhanced
permeability

Tang Q.
et al.
[114]

Hepatic
cancer

HSV-
TK/GCV

Group 1: pEGFP-KDR-TK +
pEGFP-C1-AFP-TK

Group 2: pEGFP-KDR-TK +
pEGFP-C1-AFP-TK + US

Group 3: pEGFP-KDR-TK +
pEGFP-C1-AFP-TK + MBs

+ US

US-mediated MBs can increase
killing effect of HSV-TK/GCV and
CD/5-FC systems on vascular and

hepatoma cells.
US-mediated MBs can increase

tumor vascular permeability and
gene transfection efficiency.

Enhanced
permeability

Induced tumor
necrosis

Li P. et al.
[115]

Subcutaneous
VX2 cancer Evans Blue

Group 1: EB
Group 2: EB + MBs
Group 3: EB + US

Group 4: EB + MBs + US

US-mediated MBs can induce
tumor microvasculature
disruption resulting in

hemorrhage, edema, and
thrombosis to cause necrosis.
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Table 2. Cont.

Cavitation
Mechanism Authors Cell Type Component Intervention Outcomes after Cavitation Effect

Enhanced
permeability

Cool S.K.
et al.
[100]

No tumor ICG-
liposomes

Group 1: Drug-MBs + US
Group 2: Drug + MBs + US

Group 3: MBs + US
Group 4: Drug + US

MBs can increase ICG-liposomes
loaded approximately three-fold.
US-mediated MBs increase drug

release two times more.
US-mediated MBs can cause skin
lesions due during microbubble

collapse.

Enhanced
permeability

Promoted drug
diffusion
Enhanced
perfusion

Lin C.Y.
et al.
[116]

Colon cancer DOX

Group 1: DOX
Group 2: DOX + MBs
Group 3: DOX + US

Group 4: DOX + MBs + US

US-mediated MBs cavitation can
increase tissue permeability and

destroy tumor vessels.
US-mediated MBs can increase
tumor drug uptake and inhibit

growth.
US intervention time should be

less than 2 min.

Enhanced
permeability

Promoted drug
diffusion

Fokong
S. et al.
[117]

Colon cancer Rhodamine-B
Coumarin-6

Group 1:
MBs-Rhodamine-B

Group 2: MBs-Coumarin-6
Group 3:

MBs-Rhodamine-B + US
Group 4: MBs-Coumarin-6

+ US

The polymer-based MBs are highly
suitable for image-guided,

targeted, and triggered drug
delivery to tumors and blood

vessels.

Enhanced
permeability

Induced tumor
necrosis

Huang P.
et al.
[65]

Colon cancer No drug
Group 1: MBs
Group 2: US

Group 3: MBs + US

US-mediated MBs inhibit tumor
growth and metastasis.

US-mediated MBs destroy tumor
cell nucleus and microvascular.

US-mediated MBs decreases the
expression of CD31.

Abbreviations: EB, Evans Blue; MBs, microbubbles; DOX, doxorubicin; US, ultrasound; HSV-TK/GCV, Herpes
simplex virus-thymidine kinase/ganciclovir; KDR, kinase insert domain receptor; 5-FC, 5-fluorocytosine; TK,
thymidine kinase; pEGFP, enhanced green fluorescent protein plasmid; ICG, indocyanine green; PBCA, poly
(butyl cyanoacrylate).

Meanwhile, complex models are crucial to represent the in vivo TME better which
can provide a unique opportunity to study cellular interactions and biophysical mecha-
nisms involved which are difficult to replicate in vitro due to lacking intricate intracellular
and intercellular signaling pathways. It is therefore important to use more experimental
efforts to comprehend the inherent differences between in vitro and in vivo that will affect
microbubble behavior for exploring effective treatment interventions.

4. Challenges and Perspectives of Ultrasonic Microbubble Cavitation in Tumor Therapy

The TME is a complex and variable milieu in which it is a key point of efficacious
therapy to overcome obstacles existing in solid tumors for successfully targeting therapeutic
agents to the tumor site. In recent years, a variety of tumor-targeted drug delivery systems,
including nanogels, liposomes, microbubbles, magnetic nanomaterials, etc., have been
researched and developed to enhance tissue permeability and facilitate drug diffusion for
antineoplastic therapy. This review focuses on the therapeutic role of ultrasound-mediated
microbubble cavitation by enhancing TME permeability and promoting drug diffusion in
solid tumors. Although these applications in this sector have realized significant progress,
there are still many difficulties and challenges which require further efforts to explore more
suitable delivery systems and effective efficacy.

Firstly, the particle size of microbubbles remains a key factor affecting localized drug
accumulation and cavitation effects in tumors. Currently, many researchers choose to
encapsulate the therapeutic agents inside the microbubble for controllable and targeted
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release. Studies have shown that liposomes with particle sizes from 100 to 200 nm can
accumulate agent concentration four times greater than particle sizes smaller than 50 nm or
larger than 300 nm in tumors [118]. Therefore, we need to develop a new process to solve the
situation that the cavitation effect is weakened due to the low accumulation of microbubbles
around the tumor tissue caused by the unsuitable particle size of microbubbles.

Secondly, with the emergence of multifunctional drug delivery systems, the structure
with membrane shells continues to present complex trends. We need to reduce adverse
effects of membrane shell material, particle size, and targeted modification type on the
cavitation effect in the complex and variable TME, and optimize the best-suited parame-
ters of different drug-loading systems in realizing the cavitation effect for achieving the
controllability and stability of the targeted microbubble-loading system between different
individuals with finally attaining the standardized application in clinical intervention.

Of course, due to the different research directions of each scholar, there are also dif-
ferences in the parameters they used. The optimization of the parameters used for the
ultrasound-mediated microbubble cavitation effect makes it very important to apply this
technology to the clinic. Therefore, we need more efforts to verify the effects of ultra-
sound intervention time, irradiation time interval, ultrasound frequency, sound intensity,
microbubble size, drug dose, and concentration on the therapeutic efficacy of the disease.

Meanwhile, the integration of multiple technologies needs to be carried out, including
protein-membrane-targeted modification, photothermal, magnetic field, radiation, free
radicals, gene interference, immunotherapy, etc., to comprehensively enhance the anti-
tumor efficacy.

Absolutely, the safety of antitumor drugs is also an issue that closer attention should
be paid to. Ultrasound-mediated microbubble cavitation accompanied by tissue microvas-
cular damage and thrombosis could cause systematic tissue adverse effects, similarly, the
toxicity of intermediate metabolites and degradation products of the microbubble-loading
system should also attract our attention. Although many studies have confirmed the high
histocompatibility of microbubbles, more research is still needed in the future to further
confirm the potential harm caused by long-term accumulation in the body.

At present, there are still many problems to be solved in the treatment of tumors
with low-frequency ultrasound combined with microbubbles, but it is undeniable that this
technology has shown great clinical application value as a safe, effective, easy-to-operate,
and targeted non-invasive treatment method. With the development of technology, this
promising non-invasive tumor treatment method will be widely used in clinical practice.

5. Conclusions

The development of tumor therapy relies heavily on the development of non-invasive
drug delivery methods to efficiently and selectively deliver drugs to target cells while
minimizing the systemic toxicity of drugs, which is especially the focus of future research.
Microbubble-mediated ultrasonic cavitation has unique advantages in the study of en-
hanced drug delivery to improve the efficiency of tumor treatment. The application
of ultrasound has certain advantages, such as good tolerance, non-toxicity, easy opera-
tion and implementation, and low dependence on instruments and equipment. Many
studies have confirmed that thermal and cavitation effects play a major role in various
treatments; however, researchers should be aware that the anti-tumor effects of various
ultrasound-mediated treatments are produced by a combination of multiple biological
effects. Meanwhile, the safety issues generated by ultrasonic cavitation with EPR effects
enhancement including toxicity and tissue damage still need to be fully investigated as a
priority for future clinical applications.

Although both diagnostic ultrasound and contrast agents are generally recognized as
safe and approved for widespread use in clinical diagnosis, the combination of ultrasound
and microbubble therapy has some limitations. Recently, several preclinical studies have
used small animals to evaluate the safety of ultrasound combined with microbubbles
using parameters such as body weight, dietary habits, and mobility [119,120]. However,
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the specific mechanism of the synergistic effect of ultrasonic cavitation combined with
chemotherapeutic drugs is still unclear, the current sample size of relevant clinical stud-
ies is small, and the efficacy and safety of combined therapy need more studies with a
larger sample size for support. Before the new technology of microbubble-enhanced ul-
trasonic cavitation combined with drug therapy for tumors is widely used in the clinic,
more systematic and comprehensive side effects studies on various treatment options are
still needed.

With the further development of molecular targeting technology, the preparation of
more new microbubbles, the exploration of new treatment modes, the development of new
ultrasonic equipment, and the optimization of new treatment procedures, will provide an
opportunity for the treatment of tumors by microbubble-enhanced cavitation combined
with drugs. This new technology brings more possibilities and brings more benefits to
clinical oncology treatment programs.
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