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Why Are Human Cells Resistant to Malignant Cell Transformation in vitro?*
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Transformation of human cells, both induced and spontaneous, is an extremely rare event, whereas
rodent cells are relatively easily transformed when treated with a single carcinogenic agent. The
present review addresses the question of why human cells are resistant to malignant transformation in
vitro. To facilitate understanding of the problem, the process of transformation is divided opera-
tionally into two phases, i.e. phase I, immortalization; and phase II, malignant transformation. In
human ecells, one-phase transformation, i.e., the consecutive occurrence of phases I and IT due to the
action of a single carcinogenic agent, is observed only rarely. Once human cells are immortalized,
however, malignant transformation by chemical carcinogens or oncogenes proceeds, suggesting that
for human cells, phase I immortalization is a prerequisite for such transformation to take place. To
date, about 20 papers have been published describing protocols for the two-phase transformation of a
variety of human epithelial cells and fibroblasts. In most experiments, SV4{, human papilloma viruses
and their transforming genes are utilized for induction of phase I (immortalization) followed by the
use of chemical carcinogens or activated oncogenes for induction of phase I1 (malignant transforma-
tion). Possible mechanisms that would render human cells refractory to transformation are discussed

below.
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Since human studies in vivo, other than epidemiological
and clinical ones, are ethically unacceptable, the use of
cultured human cells represents the most promising ex-
perimental approach. In particular, a knowledge of ma-
lignant cell transformation in vitre should facilitate our
understanding of carcinogenesis in human beings.

Malignant cell transformation of rodent cells in vitro
was achieved with polyoma virus first (1959-1960),
followed by transformation with chemical carcinogens in
the mid-1960s. Reports of human cell transformation
came much later, however, appearing only in the late
1970s. Successful in vitro transformation of the human
cell by a single carcinogenic agent is an extraordinarily
rare event and it was often impossible for other labora-
tories to reproduce findings even when using the same or
similar protocols. It is thought that many data concern-
ing unsuccessful, or non-reproducible transformation
studies have been generated but remain unpublished, and
it is believed therefore that human cells are rarely trans-

! This review was presented at the Second International Sym-
posium on “Theories of Carcinogenesis” which was held on
15-21 August 1992 in Oslo, Norway. A summary version of
this article was included in the Proceedings."

? To whom requests for reprints should be addressed.

3 The abbreviations uwsed are: SHE cells, Syrian hamster
embryo cells; NQO, 4-nitroquinoline-1-oxide; MNNG, N-
methyl-N’-nitro-N-nitrosoguanidine; HPV, human papilloma
virus; EBV, Epstein-Barr virus; SMC, 5-methylcytosine.
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formed in vitro, although the reasons for this are not
known. The present review addresses directly the ques-
tion of why human cells are resistant to malignant cell
transformation in vitro.

In this article, the transformation process is divided
operationally into two phases, i.e., phase I, immortaliza-
tion; and phase II, malignant transformation. When ma-
lignant transformation is achieved without specific induc-
tion of immortalization by an agent, we refer to it as
“one-phase transformation” (Fig. 1). If immortalization
is a prerequisite of malignant transformation, the whole
process is referred to as “two-phase transformation”
(Fig. 2).

Transformation of human cells has been reviewed pre-
viously by DiPaoclo,”? Chang,¥ Rhim® and Shay et al®
The proceedings of a symposium on “Neoplastic trans-
formation in human cell culture” have also been pub-
lished.?

One-phase Transformation of Rodent Cells: a Commonly
Observed Event

The first successful transformation in vitro of rodent
cells was achieved during 1959 and 1960 by infecting
SHE? cells with polyoma virus. Transformation of these
and other rodent cells by chemical carcinogens was
reported independently by the laboratories of Sachs,™¥
Kuroki,” ' Kakunaga'"’ and Heidelberger'? in the mid-
1960s.
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Fig. 1. One-phase transformation. Rodent cells are relatively
easily transformed into malignant cells by treatment with chem-
ical carcinogens or oncogenes, but this is a rare event with
human cells.
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Fig. 2. Two-phase transformation. In human cells, immortal-
ization by 5V40 or HPV is a prerequisite for malignant cell
transformation by carcinogens or oncogenes.

Treatment of normal SHE cells in primary or second-
ary culture with chemical carcinogens resulted in conver-
sion to the malignant state within 2-3 months. Typically,
transformation of SHE cells could be achieved by expo-
sure to 4-hydroxyaminoquinoline-1-oxide for 15 min-
utes.'” Although untreated SHE cells ceased dividing after
day 30, the carcinogen-treated cells continued to grow,
being immortalized after day 40 and eventually becoming
tumorigenic after 3 months in culture. In this and other
experiments with SHE cells, immortalization occurred
prior to malignant transformation and without the re-
quirement for a specific agent. This type of transforma-
tion is referred to as “one-phase (phase I plus II) trans-
formation” (Fig. 1).

Subsequently one-phase transformation by various car-
cinogens was achieved in several types of rodent cells
including a variety of epithelial cells. This is a commonly
observed event.

One-phase Transformation of Human Cells: a Rare Event

The successtul transformation of rodent cells prompted
attempts to transform: human cells by use of the protocol
for one-phase transformation. After many attempts and
few successes (summarized in Table I) it was concluded
that, unlike rodent cells, one-phase transformation of
human cells is a rare event.
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Table I.  One-phase Transformation of Human Cells

Cell type Agent Reference

Fibroblasts Radiation Borek "

Bronchial epithelial v-Ha-ras Yoakum et al'®
cells

Embryo kidney cells  Adenovirus 12 Whittaker er ol

The first purportedly successful in vitro transformation
of human cells was reported by Kakunaga in 1978.'%
Human skin fibroblasts were treated with NQO or
MNNG and transformed phenotypes such as anchorage-
independent growth and morphological alteration were
observed on days 60-88 after treatment. Tumorigenicity
in nude mice was observed on days 107-150. Ten years
after Kakunaga’s report, however, these transformed
cells were found to have been derived not from the
normal human fibroblasts to which carcinogens had been
applied, but from the human fibrosarcoma cell line 8387,
established in 1966.'%'9

One-phase transformation of human cells by onco-
genes is also a rare event {Table I). In most cases,
dominant oncogenes or oncogene-carrying viruses, do
not cause immortalization or malignant transformation
of human cells. One of the few cases observed concerns
immortalization and malignant transformation of human
bronchial epithelial cells by the Harvey ras oncogene.'®
Transfected cells overcame the crisis which occurred in
untreated cells at 3 months and continued to grow,
showing transformed phenotypes and eventually forming
tumors in nude mice. A marked change in karyotype was
also noted. In this experiment, the ras gene seemed to
trigger a cascade of events leading to malignant trans-
formation, probably due to the induction of genetic in-
stability.!”

Failure of one-phase transformation does not imply
that human cells are not competent to be transformed
by chemicals, viruses or oncogenes. We have previously
shown that human epidermal keratinocytes in primary
culture are capable of activating chemical carcinogens,
repairing DNA damage and binding phorbol ester tumor
promoters.’® These observations imply that certain
capabilities of chemical transformation are inherent in
human keratinocytes.

All these observations show that one-phase transfor-
mation is not applicable to human cells, and it is con-
cluded that in order to obtain successful transformation
the established protocol requires modification.

Immortalization of Human Cells

Three decades ago, Hayflick and Moorhead™ dem-
onstrated that human diploid fibroblasts are unable to be
cultured in vitro for more than 10 months or 60 popula-



" tion doublings. Spontaneous immortalization following
senescence is an extremely rare event in human
fibroblasts and epithelial cells (Table II), although it
occurs commonly in rodent cells with varying fre-
quencies depending on the species from which the cells
are derived. In order to immortalize human diploid cells,
for example, Namba et /***" had to expose them to
more than 10 treatments with either NQO or gamma-
irradiation. With the exception of three reports,'® >
activated ras genes have not been found to be able to
immortalize human fibroblasts or epithelial cells.?: 2%
From the mid-1980s, DNA tumor viruses such as
SV40 and HPV have been used for immortalizing human
cells, especially human epithelial cells (Table III). The
large T-antigen protein encoded by the early region of
the SV40 genome is responsible for immortalization of

Table II.  Spontaneous Immortalization of Human Cells

Cell type Reference

Fibroblasts Mukherji et el
Epidermal keratinocytes Boukamp ez al™
Mammary epithelial cells Soule ef al™

Table III, Immortalization of Human Cells

Human Cell Transformation

human epithelial cells. Immortalized cells by S¥40 or an
SV40-adenovirus 12 hybrid include epidermal keratino-
cytes,’® uroepithelial cells,” mammary epithelial cells™®
and liver parenchymal cells.’"

Human diploid fibroblasts, however, are rarely im-
mortalized by SV40. Infection of human fibroblasts with
SV40 results in extension of their life span in vitro for
about 20-30 population doublings but eventually they
become senescent. Wright et al*® defined the normal and
extended life spans as M1 (mortality stage 1) and M2
(stage 2), respectively. SV40 allows the cells to escape
from the M1 phase, but progression from the M2 stage
to immortalization is a rare event, being estimated as
Ix1077.%

From amongst more than 60 HPVs, HPV16 and
HPV18 are known to immortalize human epithelial cells
such as epidermal keratinocytes™ " and cervical epithe-
lial cells,*®* immortalization being due to the E6 and
E7 regions of the HPV genome. However, human
fibroblasts are not immortalized by HPV, showing an
extended life span only.*

Human B lymphocytes are efficiently immortalized by
EBV: 101009 of the EBV-infected B cells yield progeny
that can proliferate indefinitely. Among about 100 genes
encoded in EBV, nuclear and membrane antigen genes,

Cell type Agent Reference
Fibroblasts NQO Namba ef al?)
Radiation Namba et al ™"
V40 Radna et al™
Shay and Wright*®
Wright et al*®
myc Morgan et al.™
Epidermal keratinocytes HPV16 Diirst et al*¥
Pirisi et al®
HPV16 E6+E7 Miinger et al*®
HPV18 E6+E7 Hudson et al®"
Ad12-8V40 Rhim ez al?®
Bronchial epithelial cells Ad12-§V40 Reddel et al™
Tracheal epithelial cells SV40 Gruenert et al.™
Cervical epithelial cells HPV1e, 18 Woodworth et al®
Pecoraro et al**
Prostate epithelial cells SV40 Kaighn et al.’®
Uroepithelial cells SV40 Christian et al.®™
Mammary epithelial cells SvV40 Chang et al*®
HPV16 Band et al™
BP Stampfer and Bartley™
Kidney epithelial cells Nickel Tveito ef al™
Liver parenchymal cells SV40 Namba et al?V
Ciliary epithelial cells 5V40 Coca-Prados and Wax ™

Endothelial cells
Kidney tubule cells

v-ras, v-mos
v-Fas

Faller et al®®
Nanus et al.*?

BP: benzo[a]pyrene.
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termed EBNA-1, -2 and LMP, are required for the virus
to immortalize human B cells.*®

Thus, although S$V40, HPV and EBV DNA tumor
viruses can immortalize certain human cells, the effi-
ctency with which this is done differs markedly according
to cell type. However, so far no mechanism to explain the
cell-type specificity in response has been proposed.
Assigning functions to these viral genes appears to be the
best way of understanding the molecular and cellular
events needed for immortalization.

Two-phase Transformation of Human Cells

Immortalized human cells in general exhibit certain
phenotypic changes including altered morphology, a
higher saturation density, growth in low-serum medium
and anchorage-independent growth. They are not, how-
ever, tumorigenic when injected into nude mice. Immor-
talization, therefore, is accompanied by partial transfor-
mation, but further changes are needed to obtain fully
malignant phenotypes.

When chemical carcinogens or activated oncogenes are
applied to immortalized cells, malignant transformation

is achieved as summarized in Tables IV and V. Rhim er
al.**) for example, immortalized and transformed malig-
nantly human epidermal keratinocytes by infecting them
with a hybrid of adenovirus 12 and SV40 followed by
infection with Kirsten-murine sarcoma virus or treat-
ment with a chemical carcinogen (NQO or MNNG).
Malignant transformation of human uroepithelial cells
was achieved only when SV40-immortalized cells were
treated with 4-aminobiphenyl, a human bladder carcino-
gen, 3-methylcholanthrene or EJ ras oncogene.?® 4243 Ip
these experiments, either chemical carcinogens or EJ ras
alone could not immortalize human cells, suggesting that
immortalization by SV40 is a prerequisite for malignant
transformation. Two-phase transformation of human
cells is thus a commonly observed event (Fig. 2).

It appears from the above data that immortalization is
a key step in malignant transformation in human cells.
Although this is also the case in rodent cells, the impor-
tance of immortalization has been ignored, because
rodent cells are malignantly converted without a distinct
immortalization phase and without the aid of recognized
inducers of immortalization.

Table IV, Two-phase Transformation of Human Cells by Carcinogens and Radiation

Cell type Phase I Phase II Reference
Fibroblasts v-myc BPDE Yang et al®"
Epidermal keratinocytes Ad12-§V40 NQO, MNNG Rhim et al*?
Radiation Thraves et al.®?
Uroepithelial cells SV40 MCA Reznikoff et al*?
SV40 ABP Bockland et ¢l

BPDE: benzo[a]pyrene-7,8-dihydrodiol-9,10-epoxide, MCA.: 3-methylcholanthrene, ABP: 4-amino-

biphenyl.

Table V. Two-phase Transformation of Human Cells by Oncogenes

Cell type Phase T Phase II Reference
Fibroblasts SV40 K-ras O’Brien et al.®»
V-Imyc T24ras Hurlin et al™
Radiation H-ras Namba et gl?®
Epidermal keratinocytes Adi2-8v40 Ki-MSv Rhim et ol 2
v-fes, v-fms Rhim*
v-src, v-erbB
EBV-LMP Fahraeus et gl*®
Bronchial epithelial cells SVaQ v-Ha-ras Amstad et al®®
Cervical epithelial cells HPV-16 v-H-ras DiPaolo et al®
Uroepithelial cells SV40 Elras Christian er al.®®
Mammary epithelial cells Spont. c-Ha-ras Basolo et al®™
BP v-Tas, v-mos Clark et al®®
SV40LT
Liver parenchymal cells SV40 Ha-MSV Namba et al*?

EBV-LMP: EB virus latent membrane protein.
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Molecular Mechanisms of Immortalization

An understanding of the molecular mechanisms under-
lying immortalization should provide essential informa-
tion on human cell transformation in vitro. Two broad
hypotheses can be proposed to explain the phenomenon
of cellular senescence: (1) random accumulation of
damage and (2) genetically programmed processes.
Pereira-Smith and Smith* *> addressed this question and
proved by hybridizing normal human fibroblasts with
immortalized cell lines that the latter mechanism oper-
ates. The hybrid cells that resulted had a limited life span
and could be classified into four immortal complemen-
tation groups, indicating that the immortal state is re-
cessive. Immortalization might result from recessive
changes in growth inhibitory genes involved in cellular
senescence.

Of the suggested mechanisms for inhibition of cell
growth, two lines of evidence support the implication of
tumor suppressor genes in cellular senescence. Firstly,
the p53 and Rb tumor suppressor genes have been found
to bind to DNA tumor virus cncoproteins, such as the
large T antigen of SV40 and E6 and E7 of HPV, all of
which mediate their immortalizing functions.**" Such
binding may result in a perturbation of the normal regu-
latory functions of tumor suppressor genes.

Further evidence is available from studies with
fibroblasts from hereditary cancer patients, e.g. those
with Li-Fraumeni syndrome, which is associated with a
mutated p53 gene transmitted through the germ line,™
and familial polyposis coli, associated with mutations in
the MCC and APC tumor suppressor genes. Bischoff et
al®V reported that fibroblasts from seven of eight Li-
Fraumeni syndrome patients escaped senmescence and
were immortalized spontaneously. These cells were as-
sumed to be heterozygous (+/—) for p53 gene muta-
tions. Chen et ¢l found that fibroblasts from familial
polyposis coli showed delayed senescence in vitro when
cultured with a feeder layer of 3T3 cells. All these results
implicate the action of tumor suppressor genes in preven-
tion of cellular immortalization. Indeed, Hara et al®™
reported that targeting these genes with anti-sense

Human Cell Transformation

oligomers resulted in an extended life span of human
fibroblasts.

Further possible mechanisms to explain cellular senes-
cence include a decrease in degree of DNA methylation
and length of telomere sequence. SMC in DNA appears
to be an important modulator of gene expression. There
are several lines of evidence indicating that gradual loss
of SMC is relevant to cell senescence in vitro (for review,
see Ref. 54). Wilson and Jones™ demonstrated that 5SMC
ievels decrease during cellular senescence of fibroblasts,
while cells immortalized by §V40 are stably methylated
over several hundred cell divisions.

Recently, attrition of telomere sequence has been pro-
posed as a possible mechanism of senescence. Telomere
sequence is an essential structural element of the ends of
chromosomes and protects them from degradation or
fusion. Telomeres of human cells seem to act as a mitotic
clock, shortening with cell senescence in vitro as welil as
aging in vivo.’*>

Human Cells versus Rodent Cells

Spontaneous transformation is an extremely rare event
in human cells, whereas rodent cells are relatively easily
immortalized in the absence of any causative agent.
However, there is no good explanation for this difference
between human and rodent cells. As summarized in
Table VI, human beings have 30-fold longer maximum
life span than mice in vivo, and the same is true for their
cells in culture. Levels of SMC decline during cellular
senescence but the rate of decrease is much slower in
human cells than in mouse cells.”® Human cells form
fewer oxidative lesions than rodent cells owing to their
lower oxygen consumption and more efficient repair
system.®%? The mouse genome contains 8—16 times more
telomere sequence than the human genome and, unlike
human cells, its size in mouse cells seems to remain
largely unchanged during passage in vitro.*? In mouse
cells, however, the number of complementation groups
for cellular senescence is not known. .

The mechanisms mentioned above, with the exception
of those involving the telomere, may explain, but only in
part, the difference observed between human and mouse

Table VI. Comparison of Human Cells with Mouse Cells in Cellular Senescence and Its Possible

Mechanisms

Human cells in comparison with mouse cells (human vs. mouse)

Life span

DNA methylation
Telomere
DNA damage

Longer turnover of SMC

Less oxidative damage

Longer maximum life span in vivo
More population doublings in vitro

Shorter telomere, decreasing with age

{100 years vs. 3 years)

(60 vs. 10)

(0.5-1.0% vs. 3.5% fall per cell cycle)
(10 vs. 150 kilobases)

(0.4 vs. 5.5% thymine glycol/kg/day)

a) A value obtained with rats.

1095



Jpn. J. Cancer Res. 84, November 1993

cells in their ability to undergo spontaneous transforma-
tion or immortalization.

In vivo versus in vitro

Cancer is prevalent in human beings. From one-fourth
to one-third of the population die of cancer in developed
countries where the life span is close to the expected
maximum. Nevertheless, why is induction of cancer a
rare event in cell culture? The answer may be that there
are many more cells in the human body as compared to
the number in a Petri dish. The total number of cells in
a body is likely to be in the order of 10", while that in a
cell culture experiment rarely exceeds 107. Possibly, the
answer may lie in that the life span of a human being
as compared to the duration of cell culture results in
a longer time of exposure to carcinogenic agents and a
longer time for expression of transformed cells: 60 years
OT mMOre in vivo versus one year or less in vitro.

One of the most likely answers to the question posed
above is that stem cells are present in vive, but not in
vitro. These cells are defined as cells with the capacity for
extensive self-maintenance throughout the entire life-
span of the organism.* Stem cells divide asymmetrically:
one daughter cell provides for a differentiating lineage
and one remains as a stem cell at a clearly defined site in
the tissue architecture. In vivo, there are three main types
of cell population in tissue: stem cells, transit cells that
divide symmetrically and static cells that are being differ-
entiated and have no proliferative potential (Fig. 3).
However, cultured populations contain proliferating
transit cells only. In the case of epidermal keratinocytes,
for example, stem cells may be carried over from the
tissue during initiation of the primary culture, but seem
to be eliminated afterwards, possibly due to the absence
of a specific site for their establishment and/or of growth
factors allowing their maintenance in vitro. Certain stem
cells seemn to escape cellular senescence in vivo and in vitro
under appropriate conditions. For example, embryonal
stem cells (ES cells) are able to divide permanently when
cultured in the presence of leukemia inhibitory factor
(LIF).*%) They are, in principle, regarded as im-
mortalized.

The absence of stem cells in vitro does not account for
the resistance of human cells to malignant transforma-
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stem cells.
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